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Abstract: Genetic Programming (GP) is a powerful Machine Learning (ML) algorithm that can1

produce readable white-box models. Although successfully used for solving an array of problems2

in different scientific areas, GP is still not well known in Remote Sensing. The M3GP algorithm, a3

variant of the standard GP algorithm, performs Feature Construction by evolving hyper-features4

from the original ones. In this work, we use the M3GP algorithm on several sets of satellite images5

over different countries to create hyper-feature from satellite bands to improve the classification6

of land cover types. We add the evolved hyper-features to the reference datasets and observe a7

significant improvement of the performance of three state-of-the-art ML algorithms (Decision Trees,8

Random Forests and XGBoost) on multiclass classifications and no significant effect on the binary9

classifications. We show that adding the M3GP hyper-features to the reference datasets brings better10

results than adding the well-known spectral indices NDVI, NDWI and NBR. We also compare the11

performance of the M3GP hyper-features in the binary classification problems with those created by12

other Feature Construction methods like FFX and EFS.13

Keywords: Genetic Programming; Evolutionary Computation; Machine Learning; Classification;14

Multiclass Classification; Feature Construction; Hyper-features; Spectral Indices15

1. Introduction16

Since the establishment of the Warsaw Framework in 2013, Remote Sensing (RS) is recommended17

as an appropriate technology for monitoring and Measuring, Reporting and Verification (MRV)18

for countries reporting forest land cover and land cover change to the UNFCCC 1. However, many19

difficulties, from the availability of adequate in-situ reference data to the spatial and temporal resolution20

of freely available satellite imagery and data processing power, have been hindering the operational21

use of this technology for MRV. Now, with the evolution of Earth Observation systems (with provision22

of higher spatial and temporal resolution images) and with novel open-data distribution policies, there23

is an opportunity of applying Machine Learning (ML) to induce models that automatically identify24

land cover types in satellite images and improve the capacity for producing frequent and accurate land25

cover maps.26

1 https://unfccc.int/topics/land-use/resources/warsaw-framework-for-redd-plus
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Previous ML work in classification of satellite imagery for land cover mapping has been very27

successful. One simple practice that helps obtain good results is the inclusion of spectral indices28

as additional independent variables2 in the reference dataset. Spectral indices are combinations of29

reflectance values from different wavelengths that represent the relative abundance of certain terrain30

elements. They have been used by the RS community for a long time to enhance the identification of31

vegetation (e.g., NDVI [1]), water (e.g., NDWI [2]), burnt areas (e.g., NBR [3]) and many other elements.32

Over the years, many indices were created and adapted to accommodate the particularities of different33

images. In the case of vegetation indices, this number is so vast that over one hundred of them were34

reviewed in [4].35

Like indices, hyper-features are mathematical expressions that combine the original features of36

the data (the independent variables) with the goal of representing data properties that facilitate the37

learning of ML models. Spectral indices are, in fact, particular cases of hyper-features. Ideally, the38

hyper-features should be simple and meaningful, allowing the RS experts to easily understand the ML39

models that are based on them, or to directly use them in image analysis software to visualise what40

they represent.41

Notwithstanding the success of ML methods when performing classification of satellite imagery,42

the reported results are often obtained by applying a model in the same images where it was trained43

(e.g., [5–7]), or in an image time series from the same location (e.g., [8–10]). Training models to be44

ready to be used outside their training images is not a trivial task due to the radiometric variations45

between different images. These variations can arise from multiple sources, such as the difference in46

the angle of the solar incidence on the ground; the weather; the conditions of the terrain; the type of47

terrain; or the growth stage of the vegetation. Spectral indices are also sensitive to these variations,48

despite the efforts to increase their robustness.49

Our goal is to improve satellite imagery classification, by creating hyper-features that increase50

the performance of ML algorithms. In previous work [11], we used a Genetic Programming (GP) [12]51

classifier called M3GP [13] to evolve hyper-features that, when used instead of the original ones, were52

able to improve the accuracy of different ML algorithms in binary classification of images different53

from the ones used in training (although, for unseen data of the same images, there was no significant54

effect). GP is a powerful ML evolutionary algorithm that can produce readable white-box models.55

Successfully used for solving an array of problems in different scientific areas, GP is, however, still not56

well known in RS. The M3GP algorithm is a variant of standard GP that was originally developed as a57

multiclass classifier, but later used as a Feature Construction method for other algorithms, both for58

classification and for regression [11,14,15]. Creating hyper-features from one image and using them59

for classifying a different image falls under the area of Transfer Learning [15], which attempts to use60

knowledge from one problem to solve another similar problem.61

The area of ML is divided into several fields, one of which is named Evolutionary62

Computation (EC). This field deals with the creation (or evolution) of models using an evolutionary63

cycle that was inspired by the evolution theories of Charles Darwin. Using this cycle, different flavors64

of EC (from which GP is one of the youngest) use a fitness function to guide a population of evolving65

models through a search space, until one of its individuals reaches a certain fitness and is returned66

as the best model. This cycle will be further explained in Section 3.3.1, in the context of the M3GP67

algorithm.68

In this work, we perform a thorough study of the effects of adding M3GP-evolved hyper-features69

to the reference datasets. We test our approach on several datasets from different images in two types70

of problems that have been tackled several times over the last decades, the binary classification of71

burnt areas [16–22] and the multiclass classification of land cover types [23–27]. The images used72

in our study cover several different regions over developing countries: Angola, Brazil, Democratic73

2 also called attributes, or features, by the ML community
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Republic of the Congo, Guinea-Bissau and Mozambique. We add the evolved hyper-features to the74

reference datasets and analyse the differences in the generalisation ability of different ML algorithms75

when tested on unseen data from the same images. Three common state-of-the-art algorithms are76

tested, namely Decision Trees [28], Random Forests [29] and XGBoost [30]. We also perform the same77

experiments when adding spectral indices instead of the hyper-features, comparing the results. The78

selected indices are the popular NDVI, NDWI and NBR. For the binary classification problems, we79

also compare our results with the ones obtained when adding hyper-features created by two different80

Feature Construction methods, EFS [31] and FFX [32].81

It is important to emphasise the differences between the current work and the previous one [11].82

On the previous work, a manual selection of evolved hyper-features completely replaced the original83

features of the reference datasets, while here all the hyper-features resulting from each run are84

automatically added to the reference datasets. The goal of the previous work was to explore feature85

spaces in order to explain the variable degrees of success of Transfer Learning to different images.86

Here, we concentrate on the performance inside each image, and compare our approach to alternative87

ones that use indices and other types of hyper-features. Finally, while the previous work only used88

binary classification datasets, this one greatly extends its reach by tackling also multiclass classification89

problems.90

2. Related Work91

Feature Engineering is an essential step in the knowledge discovery process and one of the92

keys to success in applied ML. The features used to induce a data model can directly influence the93

quality of the model itself and the results that it can achieve. Feature Engineering can be broadly94

partitioned into Feature Selection and Feature Construction. According to [33], Feature Selection is a95

process that chooses a subset of features from the original data variables, so that the feature space is96

optimally reduced according to a certain criterion, while Feature Construction/Extraction (also called97

Feature Generation, Feature Learning, or Constructive Induction) is a process that creates a new set of98

hyper-features from the original data. Feature Construction typically combines existing variables into99

more informative hyper-features. Both Feature Selection and Feature Construction attempt to improve100

model performance and can be used in isolation or in combination.101

Feature Construction, the focus of this work, has been widely studied in the last two decades.102

Recent surveys can be found in [34–36], while the book [37] gives an in-depth presentation of the103

area. In all these references, the importance of EC as an effective method for Feature Construction104

is asserted, together with other Feature Construction methods such as the ones based on Decision105

Trees, Inductive Logic Programming and Clustering. A very recent survey of EC techniques for106

Feature Construction can be found in [38]. Among the different EC flavours, GP is probably the one107

that has been used more often and more successfully. Indeed, GP is particularly suited for Feature108

Construction because it naturally evolves functions of the original variables. The versatility offered by109

the user-defined fitness function of GP allows the user to choose among several possible criteria for110

evolving new hyper-features. Additionally, the fact that the evolved hyper-features are, in principle,111

readable and understandable, can play an important role in model interpretability. Several existing112

GP-based methods for Feature Construction are discussed in [39,40], and a deep analysis of previous113

work can be found in [15], where GP-constructed features are used for Transfer Learning.114

Among the large set of Feature Construction methods available, in this paper we use M3GP [13]115

as our method of choice, and two others for comparison purposes: the non-EC method FFX [32] and116

the EC method EFS [31]. The remainder of this section will focus on GP-based Feature Construction,117

including applications, and on Feature Construction and GP in the context of RS.118

2.1. Feature Construction with Genetic Programming119

Among the several previous contributions in which GP was used for Feature Construction,120

Krawiec has shown that classifiers induced using the representation enriched by GP-constructed121
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hyper-features provide better accuracy on a set of benchmark classification problems [41]. Krawiec122

and colleagues have also used GP in a co-evolutionary system for Feature Construction [42,43].123

The use of GP for Feature Construction was later deeply investigated by Zhang and colleagues.124

For instance, in [44], a GP approach was proposed that, instead of wrapping a particular classifier125

for single Feature Construction as in most of the existing methods, it used GP to construct multiple126

features from the original variables. The proposed method used a fitness function based on class127

dispersion and entropy, and thus was independent of any particular classification algorithm. The128

approach was tested using Decision Trees on the new obtained dataset and experimentally compared129

with the standard Decision Tree method, using the original features. The results showed that the130

proposed approach outperforms standard Decision Trees on the studied test problems in terms of the131

classification performance, dimension reduction and the learned Decision Tree size. Several years132

later, in [45], GP was used for both Feature Construction and implicit Feature Selection. The work133

presented a comprehensive study, investigating the use of GP for Feature Construction and Feature134

Selection on high-dimensional classification problems. Different combinations of the constructed135

and/or selected features were tested and compared on seven high-dimensional gene expression136

problems, and different classification algorithms were used to evaluate their performance. The results137

indicated that the constructed and/or selected feature sets can significantly reduce the dimensionality138

and maintain or even increase the classification accuracy in most cases. In [46], previous GP-based139

approaches for Feature Construction were extended to deal with incomplete data. The results indicated140

that the proposed approach can, at the same time, improve the accuracy and reduce the complexity of141

the learnt classifiers. While until a few years ago GP-based Feature Construction had been applied142

mainly to classification, in [47] it was applied with success to symbolic regression, thus giving143

a demonstration of the generality of the approach. In [48], different approaches based on GP to144

constructing multiple features were investigated. One of the most interesting results showed that145

multiple-feature construction achieves significantly better performance than single-feature construction.146

Consistently with that result, also the method presented in this paper uses GP to construct multiple147

features.148

It should be noted that the use of GP for Feature Construction has been explored for some time, as149

surveyed in [40]. Although the most common approach to multiclass classification problems used to be150

splitting a classification problem with n classes into n binary classification problems, and evolving one151

hyper-feature for each class [49,50], some methods create several hyper-features to separate the classes152

within the feature space. In this category, the survey includes works that converted the datasets into153

hyper-datasets using exclusively the evolved hyper-features [41], and works that include the original154

hyper-features in the hyper-dataset [51] (similarly to our work).155

GP-based Feature Construction methods have been used with success in several real-life156

applications. For instance, [52] proposed a novel method for breast cancer diagnosis using the features157

generated by GP. A few years later, in [53], GP-based Feature Construction was used for improving158

the accuracy of several classification algorithms for biomarker identification. In [54], a method to159

find smaller solutions of equally high quality compared to other state-of-the-art GP approaches was160

coupled with a GP-based Feature Construction method and applied to cancer radiotherapy dose161

reconstruction. One year later, in [55], GP-based Feature Construction was successfully applied to162

the classification of ten different categories of skin cancer from lesion images. Interestingly, while the163

application tackled in [54] is a symbolic regression problem, the one in [55] is a multiclass classification164

problem, thus confirming that the GP-based Feature Construction approach can be successfully applied165

to both types of problems. Finally, in [56], GP-based Feature Construction was extended for the first166

time to experimental physics. In particular, to be applicable to physics, dimensional consistency was167

enforced using grammars. The presented results showed that the constructed hyper-features can both168

significantly improve classification accuracy and be easily interpretable.169
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2.2. Feature Construction and Genetic Programming in Remote Sensing170

In the RS domain, many techniques have been used to extract features from satellite images. These171

features include statistical descriptors, obtained by the Gray Level Co-occurrence Matrix (GLCM) and172

other methods [57]; features of interest, such as known structures (e.g., buildings, roads), using deep173

learning [58]; sets of generic features, using the Principal Component Analysis (PCA) [59]; and even174

temporal features, using the Continuous Change Detection and Classification (CCDC) algorithm [60].175

GP-based algorithms, mainly the standard GP algorithm, have been previously used in the area of176

RS in tasks such as the creation of vegetation indices [61], the detection of riparian zones [62] and the177

estimation of soil moisture [62,63], the estimation of canopy nitrogen content at the beginning of the178

tasselling stage [64], the estimation of chlorophyll levels to monitor the water quality in reservoirs [65],179

the prediction of soil salinity by estimating the electrical conductivity on the ground [66] and also in180

geoscience projects reviewed in [67].181

The expressions obtained by the GP-based algorithms can be used in Transfer Learning by182

exporting them to datasets under the form of hyper-features, in the attempt to improve the performance183

of ML algorithms. Our work continues to develop this kind of application, which was already explored184

in the area of RS using EC-based algorithms [68,69] and specifically GP-based algorithms [11,62].185

3. Materials and Methods186

In this section, we describe the used datasets and the respective climate and type of vegetation in187

each of their geographic locations. This section also includes a description of the Feature Construction188

and Classification algorithms used, with particular emphasis on the M3GP algorithm, whose algorithm189

is explained step by step.190

3.1. Datasets and Study Areas191

The datasets used in this work are meant to train ML models to classify burnt areas and land192

cover types on a pixel-level. We use a total of nine datasets, obtained from Landsat-7, Landsat-8193

and Sentinel-2A satellite images. The characteristics of these images and datasets are summarised in194

Tables 1 and 2, and their associated geographic locations are highlighted in Figure 1.195

3.1.1. Datasets196

From the Landsat-7 images, we have one binary classification dataset (Gw2) and two multiclass197

classification datasets (IM-10 and IM-3). The IM-3 dataset was built, in previous work, from IM-10198

by extracting only the pixels classified in-situ from the three forest land cover types that ML models199

failed to correctly discriminate. These images were both obtained over Guinea-Bissau.200

From the Landsat-8 images, we have three binary classification datasets and two multiclass201

classification datasets. The binary classification datasets have the objective of training models to202

identify burnt areas, by classifying each pixel as "burnt" or "non-burnt". These three datasets were203

obtained from satellite images over Angola (Ao2), Brazil (Br2) and Democratic Republic of the204

Congo (Cd2). The multiclass classification datasets have the objective of training models to correctly205

classify each pixel as one of several different land cover types. These two datasets were extracted from206

satellite images over Angola (Ao8) and Guinea-Bissau (Gw10).207

Lastly, from the Sentinel-2A satellite images, we have one multiclass classification dataset that208

was extracted from several satellite images from the entire country of Mozambique (Mz6). These209

images were obtained through 2016, between February 19th and October 6th [70].210

3.1.2. Study Areas211

In terms of size of the classified areas, the pixels used in the Landsat satellite images consist212

of 900m2 areas and those used in the Sentinel-2A satellite images consist of 400m2 areas. As such,213
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Table 1. Summary of the datasets used.

Dataset Ref. Country
Scene Identifier

Path / Row
Acq. Date

DD/MM/YYYY
No. Images Satellite KGCS

Ao2 a Angola 177 / 67 09/07/2013 1 LS-8 Cwa
Br2 [71] Brazil 225 / 64 28/02/2015 1 LS-8 Af, Am
Cd2 [71] DR Congo 175 / 62 08/06/2013 1 LS-8 Aw
Gw2 [71] Guinea-Bissau 204 / 52 13/05/2002 1 LS-7 Am, Aw

IM-3
IM-10

b

[72]
Guinea-Bissau

203 / 51, 52
204 / 51, 52

205 / 51

From: 02/01/2010
To: 01/04/2010 17 LS-7 Am, Aw

Ao8 [73] Angola 182 / 64, 65 18/06/2016 2 LS-8 Aw

Gw10 c Guinea-Bissau
204 / 51, 52

205 / 51
01/03/2019
24/03/2019 3 LS-8 Am, Aw

Mz6 [70] Mozambique
Entire Country
( 122 S-2A tiles )

From: 19/02/2016
To: 06/10/2016 2806d S-2A

Am, Aw, BSh,
Cwa, Cwb, Cfa

a There is no reference paper for this dataset.
b This is a sub-dataset, obtained by extracting three forest classes from the IM-10 dataset.
c The reference paper for this dataset is under review.
d An approximation obtained by considering that the S-2A mapped every tile of Mozambique once every 10 days for 230 days.

the classified areas can be calculated from Table 2. Next, we describe the climate (according to the214

Köppen–Geiger Classification System (KGCS) [74]) and vegetation in each of the study areas:215

Brazil: The study area of the Br2 dataset is located in eastern Amazonia, in southeastern Pará,216

Brazil. According to the KGCS, the climate in this image is classified as Equatorial Monsoon (Am) and217

Equatorial rainforest, fully humid (Af) in the north and south sections, respectively. This area is drier218

than central and western Amazonia, with annual rainfall between 1500mm and 2000mm and average219

temperatures ranging from 23ºC to 30ºC. The vegetation in this image ranges from lowland Amazon220

forest in the north through submontane dense and open forests in the south [71].221

Guinea-Bissau: The study area of the Gw2, IM-3, IM-10 and Gw10 datasets, is located in222

Guinea-Bissau, West Africa. According to the KGCS, the climate in this area is classified as Am223

and Equatorial savanna with dry winter (Aw) within the coastal and interior areas, respectively. This224

area is characterised by having a marshy coastal plain with a dry to moist (North to South) tropical225

climate. There are two marked seasons, a dry season between November and May, and a wet season226

between June and October. Total annual rain values vary from 1200 to 1400mm in the Northeast227

region, and from 2400 to 2600mm in the Southwest region. The monthly average temperature ranges228

from 25.9ºC and 27.1ºC. The vegetation consists of mangroves on the coast and gradually becomes229

composed of mainly dry forest and savanna inland [71].230

Northern Angola: The study area of the Ao8 dataset is located in the Zaire province, northern231

Angola. According to the KGCS, the climate in this region is classified as Aw with a mean annual232

rainfall near 1300mm, distributed in two periods separated by a short dry spell. The monthly233

average temperature ranges from 20.5ºC and 24.9ºC. The vegetation is mainly savanna scrublands234

and some dense humid forests mostly located along rivers, creeks, and gullies. There are anthropic235

forests composed by native species and mango, cola, safou, avocado, citrus, and guava trees in236

ancestral settlements, abandoned due to forced relocation along the main roads by the colonial237

administration [75].238

Eastern Angola: The study area of the Ao2 dataset is located in Lunda Sul, Eastern Angola.239

According to the KGCS, the climate in this area is classified as Warm temperate climate with dry winter240

and hot summer (Cwa) and a mean annual rainfall near 1300mm, distributed between October and241

April and a dry season from May to September. The monthly average temperature ranges from 20.0ºC242

and 24.4ºC. The vegetation is mainly dominated by woody and shrub savannas and gallery forests243

essentially located along the valleys of the great rivers [76].244

Democratic Republic of Congo: The study area of the Cg2 dataset is located in the central-eastern245

Democratic Republic of Congo. According to the KGCS, the climate in this area is classified as Aw with246
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Table 2. Summary of the datasets used.

Dataset Classes (No. Pixels)
No.

Classes
No. Bands
No. Features

Total
Pixels

Ao2 Burnt (1573) Non-Burnt (2309) 2 7 3882
Br2 Burnt (2033) Non-Burnt (2839) 2 7 4872
Cd2 Burnt (877) Non-Burnt (1972) 2 7 2849
Gw2 Burnt (1101) Non-Burnt (3430) 2 7 4531
IM-3 Savanna Woodland (114) Dense Forest (68) Open Forest (140) 3 6 322

IM-10

Agriculture/Bare Soil (950) Burnt (77) Dense Forest (524)
Grassland (75) Mangrove (1240) Open Forest (723)
Savanna Woodland (1626) Sand (166) Mud (509)
Water (908)

10 6 6798

Ao8
Agriculture/Bare Soil (73) Burnt (301) Clouds (332)
Forest (662) Grassland (12) Urban (53)
Savanna Woodland (598) Water (152)

8 10 2183

Gw10

Agriculture/Bare Soil (449) Burnt (157) Dense Forest (62)
Grassland (16) Mangrove (1383) Open Forest (646)
Savanna Woodland (1308) Sand (50) Water (620)
Wetland (389)

10 7 5080

Mz6 Agriculture/Bare Soil (33611) Forest (63190) Grassland (28406)
Urban (4194) Wetland (35673) Other (25128)

6 10 190202

a mean annual rainfall near 1600mm. There are two distinct seasons, a dry season (with temperatures247

ranging between 18ºC and 27ºC) from June to August, and a rainy season (with temperatures ranging248

between 22ºC and 33ºC) from September to May. The vegetation is characterised by a congolian249

lowland forest in the north to miombo woodlands in the south. In the southwestern region, the250

population pressure had conducted to the degradation of the miombo woodlands [71].251

Mozambique: The study area of the Mz6 dataset includes the entire country of Mozambique.252

According to the KGCS, the climate is classified as Aw in the coastal area and near the Zambezi river;253

as Cwa in the interior, at the north and the west of the Zambezi river; as Warm temperate climate with254

dry winter and warm summer (Cwb) near Lichinga and west of Chibabava; as Hot semi-arid (BSh) in255

the interior in south Mozambique and east of Mungári and Derre, and as Hot desert (Bwh) in the area256

between Dindiza and the frontier between Mozambique and Zimbabwe, south of the Save river. It has257

a wet season from October to March and a dry season from April to September. The lowest average258

rainfall (300-800mm/year) occur in the interior southern regions and the highest average rainfall (over259

1200 mm/year) occur in the area around Espungabera. The average temperatures are the highest along260

the coast in the northern regions (with temperatures ranging between 25ºC and 27ºC in summer and261

between 20ºC and 23ºC in winter) and in the southern regions (with temperatures ranging between262

24ºC and 26ºC in summer and between 20ºC and 22ºC in winter), while the high inland regions have263

cooler temperatures (with temperatures ranging between 18ºC and 20ºC in summer and between 13ºC264

and 16ºC in winter). The northern areas are predominantly occupied by miombo woodlands and the265

western and southern borders by Zambezian and Mopane woodland. The most widespread vegetation266

in the north coast is the Zanzibar-Inhambane forest mosaic, followed by the African mangroves and267

the Maputaland forest mosaic in the south-east coast [70,77,78].268

3.2. Methodology269

The core of this work is to expand the reference datasets with hyper-features that improve the270

performance of different ML methods. Figure 2 illustrates the process of obtaining and using such271

hyper-features. As usual, the reference dataset is split in two datasets, one for training the classifiers,272

called the training set, and one for testing the classifiers on unseen data, called the test set. Based only273

on the training set, the Feature Construction algorithm creates a set of hyper-features that are used to274

expand the reference dataset, in both training and test sets. The expanded training set is used by the275

classification algorithm to obtain a trained classifier, that is applied to both (expanded) training and276

test sets in order to report the performance in terms of learning and generalisation, respectively.277
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Figure 1. Location of the study areas, in red, in Brazil (Br2), Guinea-Bissau (Gw2, Gw10, IM-3, IM-10),
Democratic Republic of Congo (Cd2), Angola (Ao2, Ao8) and Mozambique (Mz6) in South America
and Africa continent.

A small deviation to this process has been made for the datasets IM-3 and IM-10, where the278

hyper-features used to expand the IM-10 datasets where obtained in the training data of its subset279

IM-3, and not the training data of the complete IM-10. The goal of this deviation was to check whether280

a larger dataset could also benefit from hyper-features obtained in a much limited context (results281

reported in Section 4.3).282

As Feature Construction algorithms, we use M3GP and compare it with FFX and EFS, all described283

below. As classification algorithms, we use Decision Trees (DT), Random Forests (RF) and XGBoost284

(XGB), also briefly described below. The number and complexity of the created hyper-features is not285

predefined, but automatically determined by the Feature Construction algorithm.286

We also experiment with expanding the reference datasets with the NDVI, NDWI and NBR287

indices, instead of doing Feature Construction. These indices were selected from the RS literature as288

being helpful to the ML algorithms for separating vegetation, water and burnt classes, since these289

elements are present among the pixels used in the datasets.290

Each experiment is performed 30 times for each possible trio of reference dataset, Feature291

Construction algorithm and Classification algorithm (with the exception of the EFS and FFX algorithms,292

which are only used in binary classification datasets), each time with a different random split of the293

reference dataset in training and test sets. In other words, and limiting the explanation to Figure 2, our294

experimental process follows these steps:295

Splitting the Dataset: The reference dataset is split randomly into training (70% of the pixels)296

and test sets (remaining 30%), stratified by class;297

Creating and Adding Hyper-Features / Indices: The training set is used by a Feature298

Construction algorithm to create a new set of hyper-features, and the training and test sets are299

then extended using these hyper-features, or the indices;300

Training and Testing a Classifier: A classifier is trained using the extended training set and301

tested on the extended test set, providing the final results.302
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Reference Dataset

Training Dataset Test Dataset

Feature Construction Algorithm Set of Hyper-Features

Training Results Test Results

Reference Dataset

Training Dataset with Hyper-Features Test Dataset with Hyper-Features

Classifier Trained Classifier

Figure 2. Representation of the methodology adopted to obtain and use hyper-features.

3.3. Feature Construction Algorithms303

We use three different methods for Feature Construction. Our method of choice is the M3GP304

algorithm, because of the interpretability of the hyper-features it creates, and because it can evolve305

hyper-features for multiclass classification problems. For comparing our M3GP results with the results306

of other evolutionary and non-evolutionary methods, we selected the EFS and FFX algorithms, due to307

their running speed, availability of the authors’ implementations and number of citations. However,308

EFS and FFX are focused on regression problems, rather than classification problems. They are easily309

adapted to binary classification, by defining a threshold separating the two classes, but there is no310

easy adaptation for multiclass problems, the reason why we test them only on the binary classification311

datasets.312

M3GP algorithm: Multidimensional Multiclass GP with Multidimensional Populations (M3GP)313

is a GP-based algorithm that evolves a set of hyper-features that convert the original feature space into314

a new feature space, guided by a fitness function that measures the performance of a classifier in the315

new feature space. The M3GP is an all-in-one algorithm that both creates the hyper-features and uses316

them for solving both regression and classification problems. The inner workings of this algorithm are317

explained below, in section 3.3.1.318

EFS algorithm: Evolutionary Feature Synthesis (EFS) is an evolutionary algorithm that uses319

pathwise LASSO [79] regression to optimise multiple linear regression models that are extended for320

nonlinear relationships between features. This extension is made using functions such as cos, sin and321

log, as well as functions with several inputs, e.g., multiplication of variables. This regression tool can322

produce a set of interpretable hyper-features in seconds.323

FFX algorithm: Fast Function Extraction (FFX) is a deterministic algorithm that applies Pathwise324

Regularised Learning [80] to a large set of generated nonlinear functions to search for a set of325

hyper-features with minimal error. Although the hyper-features observed are simple, this algorithm326

generates hundreds of hyper-features, which leads us to consider the final model non-interpretable.327

3.3.1. The M3GP Algorithm328

The M3GP [13] is a GP-based algorithm that evolves models similar in structure to the models of329

standard GP [12]. Standard GP represents each model as a parse tree, to be read depth-first, where330

the terminal nodes are features and the non-terminal nodes are operators that combine features (e.g.,331

arithmetic operators like multiplication, subtraction, etc). The main difference between the models332

evolved by M3GP and the ones of standard GP is that, in M3GP, each model is not a single tree, but a333

set of trees, as exemplified in Figure 3. These trees are what we call hyper-features and are evolved334

using the steps shown in Figure 4 and explained here:335
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Initialisation: The M3GP algorithm initialises its population of models as single, randomly336

generated, trees. Therefore, in the beginning of the evolutionary cycle, each individual is a simple337

model consisting of a single hyper-feature.338

Evaluation: Each individual of the population is evaluated by the following procedure. The n339

hyper-features are used to convert the original features into a new n-dimensional dataset. The fitness340

of the model is then calculated by applying a fitness function to this new (hyper) feature space. This341

fitness function rewards the individuals whose set of hyper-features creates a space where the different342

classes are more easily separable. In the original M3GP algorithm, the fitness was the overall accuracy343

of the Mahalanobis Distance Classifier (described below), but in the current implementation we use344

the Weighted Average of F-measures (WAF) instead of the overall accuracy3, for its robustness to class345

imbalance, especially in multiclass classification.346

Stopping Criteria: After the population is evaluated, the algorithm decides whether to347

stop the evolution or not. The most common stopping criteria are related to the number of348

generations/iterations already done, and to the quality of the best model achieved (in terms of349

accuracy or any other metric). In the current implementation, the evolution stops when 50 generations350

are completed or when one individual achieves 100% accuracy on the training set, whichever occurs351

first. If the evolution does not stop, a new generation of models is created, following the steps described352

next.353

Selection: The parents of the next generation are selected using the tournament method. To select354

each parent, the algorithm randomly selects a small group of models and, out of these models, chooses355

the best. The tournament method is able to maintain enough selective pressure to choose mostly the356

best individuals, thus promoting the propagation of their good traits in the next generation, while357

allowing also the bad ones to become parents, thus avoiding the loss of genetic diversity that would358

stagnate the evolution.359

Breeding: After selecting models to act as parents, each new model is created either through a360

mutation of one parent or through a crossover of two parents. When using a mutation genetic operator,361

the parent can either: create a new, randomly generated, tree and add it to its set of hyper-features;362

randomly select one of its hyper-features and remove it (if it contains more than one hyper-feature);363

or modify one of its hyper-features by replacing one of its branches with a new, randomly generated,364

tree. When using a crossover genetic operator, the parent models can swap either branches or entire365

hyper-features between each other. Unlike the mutation genetic operator, the crossover results in two366

offspring.367

After a new population has been created, the algorithm returns to the evaluation step.368

B2

B7

-

+

//

*

//

*

( B1 - B3 ) // ( B1 + B3 )

B1 + B3

B6 // B4

B7 * B6 * B5

B1

B3

B4

B5

B6

( B1 - B3 ) // ( B1 + B3 )

//

- +

B1 B3 B1 B3

Figure 3. Example of an M3GP model that uses six of the seven available features to build four
hyper-features (left) and a single hyper-feature (right). The solid and dashed lines indicate the first and
second variables used by the operators. // is a division operator protected against division by zero.

3 although we still use the overall accuracy to assess performance
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Figure 4. Evolutionary cycle used by M3GP.

3.4. Classification Algorithms369

Four different classifiers are used in this work: MD, DT, RF and XGB. The MD classifier is used370

only as part of M3GP, but the other three are used to independently test the effectiveness of the indices371

and hyper-features added to the reference datasets.372

Mahalanobis Distance classifier: The MD classifier is a non-parametric supervised cluster-based373

algorithm that classifies a data point by associating it with the closest cluster centroid using the374

Mahalanobis distance, where a cluster is defined as a set of pixels belonging to the same class.375

Decision Tree classifier: The DT algorithm is a non-parametric supervised algorithm that infers376

simple decision rules from the training data. This algorithm can be used in both classification and377

regression problems.378

Random Forest classifier: The RF algorithm is an ensemble algorithm that uses a set of DT to379

solve both classification and regression problems, by assigning each data point to the majority vote of380

all DT in classification problems, or to the average of the prediction of all DT in regression problems.381

XGBoost classifier: The XGB algorithm is DT-based ensemble algorithm that uses an optimised382

gradient boosting to minimise errors. This algorithm can be used in both classification and regression383

problems.384

3.5. Tools and Parameters385

All the experiments involving M3GP are performed using our own implementation of the M3GP386

algorithm4, which includes the implementation of the MD classifier. The DT and RF implementations387

belong to the sklearn python library [81] and the XGB implementation belongs to the xgboost python388

library [30]. The EFS implementation5 is provided by the authors in their paper [31] and the FFX389

implementation6 belongs to the ffx python library.390

The parameter settings used in this work are the standard within the ML community, with the391

main parameters and variations specified in Table 3. The EFS, FFX and M3GP algorithms used the392

same parameters as those used by the authors in their respective papers. The variations in this work393

include our implementation of the M3GP using the WAF of the MD classifier (untied with the number394

of hyper-features and then with the total size of the model) as fitness, rather than the accuracy, and only395

pruning the final individual, for consistency with previous work that had this variation [11]. Every run396

using the DT, RF and XGB classifiers used the default parameters of their respective implementations,397

except for the XGB runs in the Mz6 dataset. In this dataset, the XGB was unable to obtain perfect398

training accuracy with the default maximum depth for its models. As such, the maximum depth was399

increased from 6 to 20.400

4. Results and Discussion401

We start this section by presenting the results and hyper-features obtained by running M3GP by402

itself on all the datasets. Then, we discuss the interpretability of the hyper-features and the popularity403

4 Python implementation available at https://github.com/jespb/Python-M3GP
5 EFS project website: http://flexgp.github.io/efs/
6 Python implementation available at https://github.com/natekupp/ffx
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Table 3. Main parameters and variations used in the experiments.

General:
Runs 30
Training Set 70% of the samples of each class
Statistical Significance p-value < 0.01 (Kruskal-Wallis H-test)

M3GP:
Stopping Criteria 50 generations or 100% training accuracy
Fitness WAF (Weighted Average of F-measures)
Pruning Final individual

XGBoost:
Maximum Depth 20 in the Mz6 dataset and 6 (default) in the other datasets

of the different satellite bands in the solutions proposed by M3GP. Next, we compare the overall404

accuracy, and class accuracy, obtained when running the DT, RF and XGB algorithms on the original405

datasets and on the datasets expanded with indices or hyper-features. Regarding the class accuracy,406

we present the results only for XGB because the results for DT and RF were very similar in terms of the407

relationship between the classes, and therefore would not bring any new information.408

The presentation of the results is split into three categories: binary classification datasets (Ao2,409

Br2, Cg2 and Gw2), regarding the detection of burnt areas; discrimination of similar classes (IM-3410

and IM-10), regarding the separation of forest types; and discrimination of all classes (Ao8, Gw10 and411

Mz6), regarding the separation of different land cover types.412

We present the results in tables, boxplots and confusion matrices. On the tables, each overall413

accuracy value is the median obtained in the 30 runs. The confusion matrices, rather than showing414

the class accuracy, show the difference (in percentage of pixels) between using hyper-features (or415

indices) and using the original dataset, to facilitate the identification of the effect produced by the416

hyper-features. Statistical significance is determined with the non-parametric Kruskal-Wallis H-test417

(from the scipy Python library) at p < 0.01.418

4.1. M3GP Performance and Hyper-feature Analysis419

Although we use M3GP as a Feature Construction method for other ML algorithms, M3GP can420

perform binary and multiclass classification by itself, as described in Section 3.4. While using M3GP to421

evolve the hyper-features, we have registered the accuracy values it achieved in each dataset, presented422

in Table 4. Although the accuracy is high, it is generally worse than the accuracy achieved by the other423

ML algorithms we used, and therefore we will not refer to the results of standalone M3GP again.424

In terms of interpretability of the evolved hyper-features, in Table 4 we report the number of425

hyper-features and their median size (with minimum and maximum values, between parenthesis).426

While the number of evolved hyper-features seems to depend heavily on the number of classes of the427

problem, the median average size of each hyper-feature tends to be higher for the binary datasets,428

where a very large dispersion of values is observed.429

To exemplify the variety of different sets of evolved hyper-features, we picked three examples.430

On the first two examples, a single hyper-feature was evolved, but with very different sizes. Both431

were evolved for the Gw2 dataset and obtained perfect test accuracy on the respective runs. The third432

example is a set of 16 hyper-features that were evolved in a run for the Ao8 dataset and obtained433

median test accuracy. This variety of hyper-features can be seen in Eqs. 1 through 7. Note that Bn refers434

to the nth band of the satellite. As we can see, the M3GP algorithm can generate hyper-features that are435

as simple as (and perfectly equal to) the original features themselves (Eqs. 3), hyper-features that are436

simple enough to be interpreted (Eqs. 1, 4 and 5), and hyper-features which need to be decomposed437

for a proper analysis of the expression (Eqs. 2, 6 and 7).438

Looking at Table 4 and the examples of hyper-features in Eqs. 1 through 7, we can state that,439

although the M3GP sometimes produces complex hyper-features, the general case seems to be the440

production of interpretable hyper-features. While this work focuses exclusively on datasets from the441
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Table 4. The median training and test overall accuracy, size, number of hyper-features and average
size of the hyper-features obtained by the M3GP models in 30 runs in each dataset.

Ao2 Br2 Cg2 Gw2 IM-3 IM-10 Ao8 Gw10 Mz6
Accuracy

Training 1.000 0.992 0.993 1.000 0.996 0.932 1.000 0.988 0.620
Test 0.999 0.990 0.993 1.000 0.948 0.916 0.983 0.971 0.620

Hyper-Features
Number 5(3-8) 8(1-15) 4(3-8) 2(1-3) 8.5(5-13) 23(17-29) 18(14-21) 21(15-23) 14.5(12-17)
Avg. Size 14(9-28) 14(6-39) 23(6-40) 11(2-43) 11(5-22) 10(8-13) 10(5-14) 8(6-12) 11(5-17)

RS domain, the same tendency regarding interpretability was already observed in the original M3GP442

paper [13], which used datasets from a much wider range of domains.443

Gw2, Run#11, 1 Hyper-feature:444

B5 (B3 + B5)
B7 + B4 + 1

(1)

445

Gw2, Run#26, 1 Hyper-feature:446

B22 B3 B4 B5 B6 − B22 B42 B5 + B2 B32 B52 B6 − B2 B3 B4 B52 − B3 B43 B7
B42 B7 (B2 B4 + B3 B5)

(2)

447

Ao8, Run#18, 16 Hyper-features :448

B3 B5 B6 B10 B11 (3)

B9 − B2
B3
B5

B1
B2 B72 B5 − B6 + B9 − 2 B10

B2 B9
B2 B11 − B10 − B2 B5

(4)

(B1 + B4 − B10) (B3 + B9)
B6

B6 B9 − B1 B2 − B1 + B3 + B6 − B9 (5)

B9 (B9 − B11)
B7 (B3 B6 + B9 − B11)

(B4 + B10 − B12

B5 − B9
) (2 B2 +

B3
B4

− B4 + B5 + B10) (6)

B7 B92 (B2 + B7 − B11)
B5 B6 B112 (B2 + B3 − B9)

B1 B2 + B1 B3 B6 + B1 B3 B9 + B3 B4 B5
B11

(7)

449

Regarding the popularity of the different satellite bands in the evolved hyper-features, Table 5 and450

Figure 5 show, for each band and each dataset, the fraction of hyper-features generated for that dataset451

(in 30 runs) that use the band. We only check whether a band appears in a hyper-feature. Measuring452

its importance inside the hyper-feature would be a complex exercise that we do not perform here. For453

each dataset, we subjectively identify a group of most popular bands as the ones ranked higher and at454

a larger distance from the rest (Figure 5). We do not identify any popular bands for Ao8, since on this455

dataset all the bands are ranked low, with very small distances between them.456

In Binary Classification Datasets: The most popular band in all four datasets was the SWIR2 (B7457

in both LS-7 and LS-8), which appears in 62.4% to 81.4% of the hyper-features across all datasets. This458

preference for the SWIR2 band is expected due to its usefulness when searching for dry earth, which459

may indicate a recent fire [82].460

When Discriminating Similar Forest Classes: The most popular band in the IM-3 and IM-10461

datasets was the NIR (B4), which appeared in 69.6% and 67.5% of the hyper-features, respectively. The462

popularity of the NIR band in the creation of hyper-features can be justified by its importance on the463
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Table 5. Fraction of hyper-features generated for each dataset (in 30 runs) that use a given band. The
bands identified as popular are highlighted.

Band
LS-8 Ao2 Br2 Cg2 Ao8 Gw10

Band
LS-7 Gw2 IM-3 IM-10

Band
S2-A Mz6

B1 0.590 0.600 0.625 0.381 0.378 B1 0.197 0.563 0.542 B2 0.374
B2 0.565 0.564 0.708 0.359 0.427 B2 0.246 0.470 0.478 B3 0.505
B3 0.602 0.612 0.567 0.370 0.403 B3 0.492 0.466 0.551 B4 0.486
B4 0.553 0.528 0.642 0.376 0.562 B4 0.377 0.696 0.675 B5 0.422
B5 0.665 0.536 0.575 0.396 0.543 B5 0.639 0.551 0.473 B6 0.427
B6 0.528 0.552 0.717 0.419 0.483 B6 0.492 0.530 0.542 B7 0.390
B7 0.814 0.624 0.742 0.402 0.438 B7 0.705 — — B8 0.427
B9 — — — 0.325 — — — — — B8A 0.516

B10 — — — 0.374 — — — — — B11 0.397
B11 — — — 0.351 — — — — — B12 0.349

Ao2 Br2 Cg2 Ao8 Gw10 Gw2 IM-3 IM-10 Mz6
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Figure 5. Fraction of hyper-features generated for each dataset (in 30 runs) that use a given band. The
bands identified as popular are highlighted.

visualisation of healthy vegetation in the discrimination between Dense Forest and Open Forest pixels.464

The importance of this band has also led to the creation of indices, such as the NDVI [1,82].465

When Discriminating All Classes: Since the target classes are not similar to each other, here we466

observe which are the most popular bands on each dataset, and attempt to explain their popularity467

based on which classes benefited the most from the hyper-features. We do not discuss the Ao8 dataset,468

not only because it lacks popular bands, but also because it did not benefit from the hyper-features, as469

we will see below in Section 4.4.470

In the Gw10 dataset, the Red (B4) and NIR (B5) bands were the most popular, appearing in 56.2%471

and 54.3% of the hyper-features, respectively. We will see in the next section that on this dataset the472

hyper-features improved the classification of the Mangrove, Savanna Woodland and Wetland pixels. This473

suggests that the better discrimination of these land cover types took into account the amount of474

healthy vegetation and the composition of the soil.475

Regarding the Mz6 dataset, the Vegetation Red Edge (B8A), Green (B3) and Red (B4) were476

identified as the most popular bands, appearing in 51.6%, 50.5% and 48.6% of the hyper-features,477

respectively. However, their effect is not so clear, since the improvement brought by the hyper-features478

affected several different classes. Taking into consideration only the classes with the highest479

improvement, which were Agriculture / Bare Soil, Forest and Wetlands, we suggest that the better480

discrimination of these land cover types considered the health and age of the vegetation, as well as the481

composition of the soil.482
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Table 6. Comparison of the median overall test accuracy obtained by the three ML algorithms in the
original datasets, when adding indices, and when using hyper-features evolved by EFS, FFX and M3GP.
The coloured p-values indicate significantly better/worse results.

Decision Trees Random Forests XGBoost
Dataset Ao2 Br2 Cd2 Gw2 Ao2 Br2 Cd2 Gw2 Ao2 Br2 Cd2 Gw2
Orig. Dataset

Test Accuracy 0.999 0.989 0.996 0.999 0.999 0.992 0.999 1.000 0.999 0.993 0.998 0.999
Indices

Test Accuracy 0.999 0.990 0.996 0.999 0.999 0.993 0.999 1.000 0.999 0.993 0.998 0.999
p-value vs Orig. 0.694 0.678 0.909 0.669 0.675 0.917 0.436 0.871 1.000 1.000 1.000 1.000

EFS
Test Accuracy 0.998 0.989 0.996 0.999 1.000 0.992 0.999 1.000 0.999 0.993 0.998 0.999
p-value vs Orig. 0.012 0.226 0.143 0.735 0.091 0.777 0.137 0.619 0.256 0.682 0.489 0.127

FFX
Test Accuracy 0.999 0.990 0.996 1.000 0.999 0.993 0.999 1.000 0.999 0.993 0.998 1.000
p-value vs Orig. 0.224 0.941 0.294 0.000 0.363 0.988 0.148 0.730 0.739 0.794 0.886 0.000

M3GP
Test Accuracy 0.999 0.990 0.996 0.999 0.999 0.992 0.999 1.000 0.999 0.993 0.998 0.999
p-value vs Orig. 0.908 0.947 0.672 0.813 0.500 0.846 0.688 0.871 1.000 1.000 1.000 1.000
p-value vs Ind. 0.782 0.761 0.598 0.849 0.780 0.982 0.738 1.000 1.000 1.000 1.000 1.000
p-value vs FFX 0.276 0.830 0.525 0.001 0.095 0.905 0.319 0.868 0.739 0.794 0.886 0.000
p-value vs EFS 0.017 0.272 0.291 0.572 0.286 0.682 0.309 0.757 0.256 0.682 0.489 0.127

In some of the related work regarding the use of GP to build hyper-features in RS, the authors483

reveal what were considered the best hyper-features obtained. For comparison with our own, here484

we also comment on those hyper-features. It is important to say that these works address regression485

problems (rather than classification problems), which sometimes require more complex models in486

order to be solved. In comparison with our own, these works use an extensive list of mathematical487

operators to combine the original features (which also tends to cause the creation of larger models).488

The authors also include indices in the datasets, similarly to what is done in part of our work.489

In [65], the authors use GP to monitor the quality of the water in reservoirs, by predicting the490

amount of chlorophyll in the water. The final model is quite simple (having a size of 8), according to491

our criteria, and only uses the Green, Red and NIR bands. While in this case the hyper-feature used492

is simple, that is not the case in the other two works. In [66], the authors attempt to predict the soil493

salinity. Their final model uses one band and five indices, and its size is near 50 (making it larger than494

any of our hyper-features). In [62], the authors attempt to predict the soil moisture and, although their495

final model only uses four terminals (SAR backscatter coefficient, slope, soil permeability (in/hr) and496

the NDVI), this model is the most complex out of these three.497

4.2. Hyper-features in Binary Classification Datasets498

The results obtained on the binary classification datasets (Ao2, Br2, Cd2, Gw2) are reported in499

Table 6 and Figure 6. In terms of training accuracy, the three classification algorithms managed to obtain500

perfect results in nearly every run, and therefore those results are not included in the table. In terms of501

test accuracy, the induced models achieved very high values, nearly all above 99% (both in terms of502

overall accuracy and class accuracy, as seen in Table 7), also on the original (non-expanded) datasets.503

The lowest results belong to DT that, when applied to the Br2 dataset, achieved a median overall test504

accuracy of 98.9%. Without much room for improvement, FFX was still able to create hyper-features505

that improved the test accuracy in two cases (DT and XGB in the Gw2 dataset), surpassing also the506

M3GP hyper-features, while neither the indices nor the M3GP or EFS hyper-features caused any507

significant difference in the results. The boxplots show a very low dispersion of accuracy values (the508

ranges of the y-axes are very limited), which seems to be marginally larger for the EFS results.509

These seemingly uninteresting results agree with the findings of our previous work [11]. There,510

using a different method of selecting and using the hyper-features also had no effect in the cases where511
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Figure 6. Boxplots of the test accuracy obtained in the binary classification datasets in each test case.

Or. Ind. EFS FFX
M3GP Or. Ind. EFS FFX

M3GP Or. Ind. EFS FFX
M3GP

  Decision Trees           Random Forests               XGBoost       

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Ao2

Or. Ind. EFS FFX
M3GP Or. Ind. EFS FFX

M3GP Or. Ind. EFS FFX
M3GP

  Decision Trees           Random Forests               XGBoost       

0.980

0.985

0.990

0.995

Br2

Or. Ind. EFS FFX
M3GP Or. Ind. EFS FFX

M3GP Or. Ind. EFS FFX
M3GP

  Decision Trees           Random Forests               XGBoost       

0.988

0.990

0.992

0.994

0.996

0.998

1.000

Cg2

Or. Ind. EFS FFX
M3GP Or. Ind. EFS FFX

M3GP Or. Ind. EFS FFX
M3GP

  Decision Trees           Random Forests               XGBoost       

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

Gw2

the training and test datasets came from the same image. However, the hyper-features revealed to be512

beneficial when the induced models where applied to datasets that came from images not seen during513

training. This suggests that the current method of obtaining and using the hyper-features may also514

prove beneficial in a similar training and test setting.515

4.3. Hyper-features to Discriminate Similar Classes in a Multiclass Classification Dataset516

Before looking at these results, it is worth recalling that the IM-3 dataset was built from three517

similar classes within the IM-10 dataset. As such, even though it has a reduced number of classes, it is518

not unexpected to see a lower accuracy in this dataset. It is also worth specifying that the hyper-features519

used in the IM-10 dataset were obtained only in the IM-3 dataset, in an attempt to help discriminate520

these similar classes. Finally, we also recall that EFS and FFX are not used in the multiclass datasets.521

The results for IM-10 and IM-3 are reported in Table 8 and Figure 7. Once again, the training522

results are omitted from the table because all three algorithms achieved perfect results in nearly every523

run. In terms of test accuracy, we observe that, although the values are high, they have a larger margin524

for improvement when compared to the binary classification results reported above. When adding525

indices to the original dataset, the test accuracy on the IM-10 dataset increased with two algorithms526

(RF and XGB). When adding the hyper-features evolved by M3GP, the test accuracy in the IM-10527

dataset increased with all three algorithms, and in the IM-3 dataset it increased with the XGB algorithm.528

Neither the indices nor the M3GP hyper-features degraded the test accuracy. When comparing the529

performance of indices versus M3GP hyper-features, M3GP is better with two algorithms (DT and530

XGB). In the boxplots, we observe that IM-3 has a larger dispersion of values than IM-10 (notice the531

different y-axes ranges). On IM-10, the DT algorithm visibly falls behind RF and XGB.532
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Table 7. Average test accuracy in each class when using the XGBoost algorithm in the original datasets.

XGB - Original Ao2 Br2 Cg2 Gw2 IM-3 IM-10 Gw10 Ao8 Mz6
Agriculture / Bare Soil — — — — — 98.96% 96.34% 83.02% 72.59%
Burnt 99.81% 99.51% 99.63% 99.80% — 93.19% 98.72% 99.22% —
Clouds — — — — — — — 100.00% —
Forest — — — — — — — 99.87% 88.05%

- Dense Forest — — — — 92.67% 87.67% 79.81% — —
- Open Forest — — — — 93.02% 93.65% 98.41% — —

Grassland — — — — — 92.73% 81.67% 85.56% 64.02%
Mangrove — — — — — 99.12% 98.41% — —
Mud — — — — — 96.07% — — —
Sand — — — — — 95.78% 90.22% — —
Savanna Woodland — — — — 99.71% 84.41% 98.66% 98.66% —
Urban — — — — — — — 87.78% 56.82%
Water — — — — — 97.33% 99.48% 99.48% —
Wetland — — — — — — 95.29% — 80.34%
Other 99.97% 99.16% 99.88% 99.98% — — — — 76.07%

Table 8. Comparison of the median overall test accuracy obtained by the three ML algorithms in
the original datasets, when adding indices, and when adding hyper-features evolved by the M3GP
algorithm. The coloured p-values indicate significantly better results.

Decision Trees Random Forests XGBoost
Dataset IM-3 IM-10 IM-3 IM-10 IM-3 IM-10
Original Dataset

Test Accuracy 0.948 0.956 0.969 0.974 0.958 0.973
Indices

Test Accuracy 0.938 0.959 0.958 0.979 0.948 0.977
p-value vs Original 0.151 0.051 0.062 0.000 0.178 0.001

M3GP
Test Accuracy 0.958 0.961 0.969 0.978 0.969 0.978
p-value vs Original 0.020 0.000 0.844 0.000 0.009 0.000
p-value vs Indices 0.000 0.407 0.055 0.218 0.000 0.711

In terms of class accuracy in the IM-3 dataset, we can see in Table 9 that the hyper-features533

improved the discrimination between the Dense Forest and the Open Forest pixels, at the cost of reducing534

the accuracy on the Savanna Woodland class, by increasing its confusion with Open Forest. Looking535

at Table 7, we see that Savanna Woodland had almost perfect accuracy, and therefore any changes536

on this class would certainly be for the worse. In the end, the three classes became more balanced537

in terms of accuracy. Although these hyper-features do not seem to be helpful in the classification538

of Savanna Woodland on the IM-3 dataset, when applied to the IM-10 dataset (See Table 10) their539

largest impact is precisely in this class, by correcting pixels that were previously misclassified as540

Agriculture/Bare soil, Grassland and Mangrove. Their second biggest impact is in the classification of541

Dense Forest, by improving its discrimination from Open Forest and by correcting pixels that were542

previously misclassified as Mangrove.543

In these two datasets, although the M3GP hyper-features performed better than the indices, these544

were also clearly beneficial when added to the original datasets. This behaviour was similar to all545

three classification algorithms and, as such, we only displayed the confusion matrices related to the546

XGBoost algorithm, which had the best results. It is worth noticing that the IM-3 and IM-10 datasets547

were extracted from a set of satellite images with different acquisition dates. Next, we will observe548

additional evidence that indices and hyper-features seem to be more useful in datasets coming from549

sets of images with different acquisition dates.550

4.4. Hyper-features to Discriminate All Classes in Multiclass Classification Datasets551

The results obtained on the three unrelated multiclass classification datasets (Ao8, Gw10, Mz6)552

are reported in Table 11 and Figure 8. Once again, the training results were omitted from the table, as553
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Figure 7. Boxplots of the test accuracy obtained in the IM-3 and IM-10 datasets in each test case.
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Table 9. Confusion matrix comparing the average test accuracy obtained by the XGBoost algorithm
with and without hyper-features in the IM-3 dataset. This table shows the difference in the percentage
of pixels in each line. Improvements are in green and deteriorations in red. The rightmost column
indicates the accuracy obtained in each class without using hyper-features.

XGB
IM-3 Dense Forest Open Forest

Savanna
Woodland

Original
Accuracy

Dense Forest 2.83% -2.83% 0.00% 92.67%
Open Forest -3.33% 2.46% 0.87% 93.02%

Savanna
Woodland 0.00% 1.57% -1.57% 99.71%

perfect accuracy was achieved in almost every run. However, for the Mz6 dataset, XGB required a554

maximum tree depth larger than the implementation default in order to achieve it (see Section 3.5).555

In terms of test accuracy, the indices improved the accuracy in two test cases (DT on Gw10, XGB556

on Mz6) and reduced the accuracy in one test case (RF on Mz6). On the other hand, the hyper-features557

evolved by M3GP improved the test accuracy in five test cases (Mz6 with all algorithms, and Gw10558

with RF and XGB), when comparing the results with those on the original dataset, and in four test559

cases, when comparing with the results obtained with the indices (Mz6 with all algorithms, Gw10560

with XGB). Once again, the hyper-features evolved by M3GP did not lead to a degradation of the test561

accuracy in any of the cases.562

Both the indices and the M3GP-evolved hyper-features had an impact on the Gw10 and Mz6563

datasets, which were obtained from a set of satellite images with different acquisition dates. Neither564

the indices nor the hyper-features had an impact on the Ao8 dataset, which was obtained from two565

images with the same acquisition date. These results, together with those displayed previously, seem566

to indicate that both the indices and the hyper-features are particularly useful in datasets obtained by567

mixing satellite images with different acquisition dates.568

On the boxplots, once again we observe that DT falls behind RF and XGB, and completely569

struggles on the Mz6 problem.570

In terms of class accuracy in the Gw10 dataset (Tables 12 and 13), when using the hyper-features571

with the DT algorithm, the hyper-features are particularly useful in the classification of Grassland,572

by correcting pixels that were misclassified as Savanna Woodland (although some of those are now573

misclassified as Mangrove); in the classification of Dense Forest, by correcting pixels that were574

misclassified as Open Forest (although some of those are now misclassified also as Mangrove); and in575

the classification of Wetlands, by correcting pixels previously misclassified as Mangrove. When using576

the XGBoost algorithm, the improvements are more general across the classes, with the exception of577
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Table 10. Confusion matrix comparing the average test accuracy obtained by the XGBoost algorithm
with and without hyper-features in the IM-10 dataset. This table shows the difference in the percentage
of pixels in each line. Improvements are in green and deteriorations in red. Only the 20 cells with
the highest impact are coloured. The rightmost column indicates the accuracy obtained in each class
without using hyper-features.

XGB
IM-10 Water Burnt Sand

Agriculture
/Bare soil

Open
Forest

Dense
Forest Grassland Mangrove

Savanna
Woodland Mud

Original
Accuracy

Water 0.00% -0.05% 0.00% 0.02% 0.00% 0.00% 0.00% -0.01% 0.00% 0.04% 97.33%
Burnt 0.87% 0.29% 0.00% -0.29% 0.00% 0.00% 0.14% -0.87% -0.58% 0.43% 93.19%
Sand 0.00% 0.00% 0.95% -0.95% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 95.78%

Agriculture
/Bare soil 0.00% 0.00% -0.15% 0.19% 0.00% 0.00% -0.01% -0.18% 0.13% 0.02% 98.96%

Open Forest 0.00% 0.00% 0.00% -0.08% 1.03% -1.83% -0.08% 0.79% 0.16% 0.00% 93.65%
Dense Forest 0.00% 0.00% 0.00% 0.00% -2.50% 4.33% 0.00% -1.83% 0.00% 0.00% 87.67%

Grassland -0.15% 0.15% 0.00% -0.15% -0.45% 0.00% 0.15% 0.61% -0.15% 0.00% 92.73%
Mangrove -0.15% 0.00% 0.00% -0.03% -0.03% 0.00% 0.00% 0.23% -0.04% 0.01% 99.12%
Savanna

Woodland 0.00% -0.29% 0.00% -2.55% 0.10% 0.00% -1.27% -1.18% 5.49% -0.29% 84.41%

Mud -1.29% 0.09% 0.00% -0.02% 0.00% 0.00% 0.00% 0.07% 0.00% 1.16% 96.07%

Table 11. Comparison of the overall test accuracy obtained by the three ML algorithms in the original
datasets, when adding indices, and when adding hyper-features evolved by the M3GP algorithm. The
coloured p-values indicate significantly better/worse results.

Decision Trees Random Forests XGBoost
Dataset Ao8 Gw10 Mz6 Ao8 Gw10 Mz6 Ao8 Gw10 Mz6
Original Dataset

Test Accuracy 0.977 0.964 0.662 0.988 0.981 0.773 0.985 0.979 0.780
Indices

Test Accuracy 0.978 0.968 0.662 0.989 0.980 0.769 0.986 0.980 0.781
p-value vs Original 0.291 0.000 0.371 0.213 0.824 0.000 0.645 0.335 0.003

M3GP
Test Accuracy 0.980 0.970 0.665 0.988 0.982 0.775 0.987 0.983 0.786
p-value vs Original 0.125 0.000 0.000 0.923 0.054 0.006 0.389 0.000 0.000
p-value vs Indices 0.693 0.847 0.000 0.228 0.038 0.000 0.650 0.002 0.000

the Grassland pixels, which are now misclassified as Savanna Woodland, and the Dense Forest pixels,578

which were previously misclassified as Open Forest.579

In this case, we omitted the results regarding the RF classifier since there was no statistically580

significant difference between the runs in the original and the extended datasets. We present the results581

of both the DT and XGBoost classifier to show that the same hyper-features can have different effects582

on two classifiers. In this case, they improved the DT accuracy primarily in three classes, while the583

improvements on the XGBoost accuracy were general.584

Regarding class accuracy in the Mz6 case (Tables 14 and 15), in addition to showing the585

improvements when using hyper-features with the XGB algorithm, we show the degradation obtained586

by using indices in the RF algorithm. The idea is not to say that the indices are bad, but to show that587

adding more hyper-features will not necessarily bring an improvement. When using the hyper-features588

in the XGBoost algorithm, the improvement was general among all classes, with a higher impact on589

the Urban pixels that were previously misclassified as Other. The improvements in this class’s pixels590

can be easily justified by being the class with the lowest accuracy in the original dataset, followed by591

Grassland, which was also improved. When using indices in the RF algorithm, the class accuracy was592

degraded, in particular in the classification of Agriculture / Bare Soil, Grassland and Wetland. When593

misclassified, these pixels tend to be classified as either Agriculture / Bare Soil, Forest or Grassland.594

4.5. Impact on the MRV Performance595

When training hyper-features to discriminate multiple classes, the results indicate an overall596

improvement, particularly in the classes that previously had a lower accuracy. The improvements are597
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Figure 8. Boxplots of the test accuracy obtained in the Ao8, Gw10, and Mz6 datasets in each test case.
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significant in the IM-3, IM-10, Gw10 and Mz6 datasets. These datasets have one thing in common: they598

consist of mosaics derived from several acquisition dates. On the contrary, in the Ao8 dataset, where599

the two images of the mosaic are from the same day, there are no significant improvements. These600

results, together with those previously obtained in [11], indicate that both indices and hyper-features601

are more useful when training models in images with more than one acquisition date (or from different602

locations).603

Monitoring forest land cover at country level, in compliance with UNFCCC standards, is a604

challenging endeavor, especially for vast countries covering various ecosystem types with distinct605

seasonality. The production of wall-to-wall maps derived from satellite imagery is especially attractive606

in these cases because remote sensing can cover large extents, greatly reducing costs, improving607

consistency, and increasing the periodicity of observations. However, in such cases, the image608

mosaics required to produce good quality maps are likely to include many different acquisition609

dates, maximizing image quality and observation date adequacy regarding vegetation cycles and610

climatic conditions. Thus, considering the results obtained, with hyper-features improving both611

the discrimination of analogous wooded vegetation classes and the classification accuracy of large612

image mosaics, it can be ascertained that the methods presented merit further development to exploit613

improvements in remote sensing based MRV performance.614
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Table 12. Confusion matrix comparing the average test accuracy obtained by the DT algorithm with
and without hyper-features in the Gw10 dataset. This table shows the difference in the percentage
of pixels in each line. Improvements are in green and deteriorations in red. Only the 20 cells with
the highest impact are coloured. The rightmost column indicates the accuracy obtained in each class
without using hyper-features.

DT
Gw10

Agriculture
/Bare soil Burnt

Dense
Forest Grassland Mangrove

Open
Forest Sand

Savanna
Woodland Water Wetland

Original
Accuracy

Agriculture
/Bare soil 0.25% 0.00% 0.00% 0.02% 0.05% 0.00% -0.22% -0.27% 0.00% 0.17% 95.32%

Burnt 0.07% 0.64% 0.00% 0.00% 0.00% 0.00% 0.00% -0.14% 0.00% -0.57% 98.65%
Dense Forest 0.00% 0.00% 2.22% 0.00% 1.85% -4.07% 0.00% 0.00% 0.00% 0.00% 71.85%

Grassland 0.00% 0.00% 0.00% 5.83% 1.67% 0.00% 0.00% -7.50% 0.00% 0.00% 70.83%
Mangrove 0.02% -0.06% 0.00% -0.02% 0.20% 0.04% 0.00% -0.02% 0.02% -0.18% 97.28%

Open Forest 0.00% 0.00% 0.10% 0.02% -0.03% 0.14% 0.00% -0.17% -0.02% -0.03% 96.60%
Sand 0.22% 0.00% 0.00% 0.00% 0.00% 0.00% -0.22% 0.00% 0.00% 0.00% 87.78%

Savanna
Woodland -0.26% 0.02% -0.03% 0.11% -0.31% 0.02% 0.00% 0.68% 0.00% -0.22% 97.16%

Water 0.00% -0.04% 0.00% 0.00% 0.11% -0.02% 0.00% 0.00% -0.02% -0.04% 99.46%
Wetland 0.23% -0.14% 0.00% 0.11% -1.49% -0.03% 0.00% -0.34% 0.06% 1.61% 92.30%

Table 13. Confusion matrix comparing the average test accuracy obtained by the XGBoost algorithm
with and without hyper-features in the Gw10 dataset. This table shows the difference in the percentage
of pixels in each line. Improvements are in green and deteriorations in red. Only the 20 cells with
the highest impact are coloured. The rightmost column indicates the accuracy obtained in each class
without using hyper-features.

XGB
Gw10

Agriculture
/Bare soil Burnt

Dense
Forest Grassland Mangrove

Open
Forest Sand

Savanna
Woodland Water Wetland

Original
Accuracy

Agriculture
/Bare soil 0.77% 0.00% 0.00% 0.00% 0.00% 0.00% -0.62% -0.17% 0.00% 0.02% 96.34%

Burnt -0.14% 0.28% 0.00% 0.00% -0.43% -0.07% 0.00% 0.21% 0.00% 0.14% 98.72%
Dense Forest 0.00% 0.00% 0.93% 0.00% 0.93% -1.85% 0.00% 0.00% 0.00% 0.00% 79.81%

Grassland 0.00% 0.00% 0.00% -2.50% 0.00% 0.00% 0.00% 2.50% 0.00% 0.00% 81.67%
Mangrove 0.00% 0.00% -0.03% 0.00% 0.40% -0.02% 0.00% -0.08% -0.08% -0.19% 98.41%

Open Forest 0.00% 0.00% -0.19% 0.00% -0.03% 0.31% 0.00% -0.09% 0.00% 0.00% 98.41%
Sand 0.67% 0.00% 0.00% 0.00% 0.00% 0.00% -0.67% 0.00% 0.00% 0.00% 90.22%

Savanna
Woodland -0.09% 0.00% 0.00% 0.00% -0.02% -0.14% 0.00% 0.29% 0.00% -0.04% 98.66%

Water 0.00% 0.00% 0.00% 0.00% -0.05% 0.00% 0.00% 0.00% 0.16% -0.11% 99.48%
Wetland -0.11% 0.06% 0.00% 0.00% -0.34% 0.00% 0.00% 0.00% 0.06% 0.34% 95.29%

Table 14. Confusion matrix comparing the average test accuracy obtained by the RF algorithm with
and without indices in the Mz6 dataset. This table shows the difference in the percentage of pixels
in each line. Deteriorations are shown in red. The 10 cells with the highest impact are coloured The
rightmost column indicates the accuracy obtained in each class without using indices.

RF - Mz6 Agriculture
/Bare soil Forest Grassland Urban Wetland Other Original Accuracy

Agriculture
/Bare soil -0.92% 0.44% 0.39% -0.01% 0.02% 0.07% 71.79%

Forest -0.07% -0.01% 0.03% 0.00% -0.01% 0.05% 89.06%
Grassland 0.33% 0.31% -0.90% -0.01% 0.31% -0.04% 60.58%

Urban -0.29% 0.03% -0.16% -0.14% 0.06% 0.50% 50.91%
Wetland 0.14% 0.25% 0.15% 0.02% -0.45% -0.09% 79.72%

Other 0.19% -0.09% 0.32% -0.04% -0.02% -0.36% 75.35%

Table 15. Confusion matrix comparing the average test accuracy obtained by the XGBoost algorithm
with and without hyper-features in the Mz6 dataset. This table shows the difference in the percentage of
pixels in each line. Improvements are shown in green. The 10 cells with the highest impact are coloured.
The rightmost column indicates the accuracy obtained in each class without using hyper-features.

XGB - Mz6 Agriculture
/Bare soil Forest Grassland Urban Wetland Other Original Accuracy

Agriculture
/Bare soil 0.87% -0.24% -0.28% -0.01% -0.01% -0.32% 72.59%

Forest -0.00% 0.34% -0.29% 0.00% -0.04% -0.01% 88.05%
Grassland -0.26% -0.32% 0.51% 0.00% 0.14% -0.08% 64.02%

Urban -0.03% -0.02% -0.25% 1.82% -0.06% -1.48% 56.82%
Wetland -0.15% -0.19% -0.39% 0.02% 0.84% -0.12% 80.34%

Other -0.26% -0.04% -0.18% -0.04% -0.08% 0.60% 76.07%
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5. Conclusions615

We performed Feature Construction using M3GP, a variant of the standard Genetic Programming616

algorithm, with the goal of improving the performance of several Machine Learning algorithms by617

adding the new hyper-features to the reference datasets. We tested the approach in the tasks of binary618

classification of burnt areas and multiclass classification of land cover types. The datasets used were619

obtained from Landsat-7, Landsat-8 and Sentinel-2A satellite images over the countries of Angola,620

Brazil, Democratic Republic of Congo, Guinea-Bissau, and Mozambique.621

The hyper-features produced by the M3GP algorithm, although variable in number and size,622

were generally not very complex, and considered to be quite interpretable. While a larger number of623

hyper-features were created on the multiclass classification problems, a higher dispersion of sizes was624

observed on the binary problems. Regarding the popularity of each satellite band in the binary and625

multiclass classification problems, the models frequently used the SWIR2 band when trying to detect626

burnt areas in the binary datasets. On the multiclass classification datasets, the models seemed to have627

a preference for the Vegetation Red Edge, NIR, Red, and Green bands when training hyper-features to628

discriminate different forest classes or when the hardest classes included vegetation (e.g., Agriculture /629

Bare Soil and Forest), and in some cases, also water (e.g., Mangroves and Wetlands).630

The performance of Decision Trees, Random Forests and XGBoost was assessed on the original631

datasets and on the datasets expanded with the evolved hyper-features, and the results compared632

for statistical significance. For comparison purposes, we also assessed the performance of the same633

algorithms on all datasets expanded with the well-known spectral indices NDVI, NDWI and NBR, and634

on the binary datasets expanded with hyper-features created by the FFX and EFS Feature Construction635

algorithms. On the binary classification problems, we conclude that neither of the four alternatives636

(M3GP, indices, FFX, EFS) leads to substantial improvements. Only FFX was able to improve the637

results in 2 out of 12 test cases (both on the same dataset). On the multiclass classification problems,638

the hyper-features evolved by the M3GP caused significant improvements in 9 out of 15 test cases,639

with no degradation of results in any test case, while the indices caused significant improvements in 4640

out of 15 test cases and significant degradation of results in one test case. The approach appears to be641

equally beneficial to all three Machine Learning algorithms.642

Overall, both hyper-features and indices displayed the capability of improving the robustness of643

the machine learning models in multiclass classification datasets. However, this improvement seems644

to exist only in datasets built from collections of images with several acquisition dates, which indicates645

that both hyper-features and indices can be robust to the radiometric variations across images and can646

be used to improve the MRV performance of mechanisms such as REDD+.647

Although the hyper-features have the advantage of being created automatically with specific648

goals, such as the discrimination of specific classes, there is a computational cost associated with this649

task. Taking this into consideration, one of our objectives for future work is to continue the validation650

of the efficacy of the hyper-features in the discrimination of similar classes and their robustness to651

the radiometric variations across different satellite images. We hope to be able to create reusable652

hyper-features, thus reducing the computational cost of generating them frequently. Besides this653

validation, we also want to expand this work into regression problems, such as the estimation of654

biomass from satellite images.655
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Abbreviations669

The following abbreviations are used in this manuscript:670

Af Equatorial rainforest, fully humid
Am Equatorial Monsoon
Ao Angola
Aw Equatorial savanna with dry winter
Bx Band x
Br Brazil
BSh Hot semi-arid
Bwh Hot desert
CCDC Continuous Change Detection and Classification
Cd Democratic Republic of the Congo
Cwa Warm temperate climate with dry winter and hot summer
Cwb Warm temperate climate with dry winter and warm summer
DT Decision Tree
EC Evolutionary Computation
EFS Evolutionary Feature Synthesis (algorithm)
FFX Fast Function Extraction (algorithm)
GLCM Gray Level Co-occurrence Matrix
Gw Guinea-Bissau
GP Genetic Programming
KGCS Köpper-Geiger Classification System
LS-7 Landsat 7
LS-8 Landsat 8
M3GP Multidimensional Multiclass GP with Multidimensional Populations (algorithm or classifier)
MD Mahalanobis Distance (classifier)
ML Machine Learning
MRV Measure, Report and Verify
Mz Mozambique
NBR Normalized Burn Ratio
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
PCA Principal Component Analysis
REDD+ Reducing Emissions from Deforestation and forest Degradation
RF Random Forest
RS Remote Sensing
S-2A Sentinel-2A
UNFCCC United Nations Framework Convention on Climate Change
XGB XGBoost
WAF Weighted Average of F-measures
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