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Abstract: Genetic Programming (GP) is a powerful Machine Learning (ML) algorithm that can
produce readable white-box models. Although successfully used for solving an array of problems
in different scientific areas, GP is still not well known in Remote Sensing. The M3GP algorithm, a
variant of the standard GP algorithm, performs Feature Construction by evolving hyper-features
from the original ones. In this work, we use the M3GP algorithm on several sets of satellite images
over different countries to create hyper-feature from satellite bands to improve the classification
of land cover types. We add the evolved hyper-features to the reference datasets and observe a
significant improvement of the performance of three state-of-the-art ML algorithms (Decision Trees,
Random Forests and XGBoost) on multiclass classifications and no significant effect on the binary
classifications. We show that adding the M3GP hyper-features to the reference datasets brings better
results than adding the well-known spectral indices NDVI, NDWI and NBR. We also compare the
performance of the M3GP hyper-features in the binary classification problems with those created by
other Feature Construction methods like FFX and EFS.

Keywords: Genetic Programming; Evolutionary Computation; Machine Learning; Classification;
Multiclass Classification; Feature Construction; Hyper-features; Spectral Indices

1. Introduction

Since the establishment of the Warsaw Framework in 2013, Remote Sensing (RS) is recommended
as an appropriate technology for monitoring and Measuring, Reporting and Verification (MRV)
for countries reporting forest land cover and land cover change to the UNFCCC !. However, many
difficulties, from the availability of adequate in-situ reference data to the spatial and temporal resolution
of freely available satellite imagery and data processing power, have been hindering the operational
use of this technology for MRV. Now, with the evolution of Earth Observation systems (with provision
of higher spatial and temporal resolution images) and with novel open-data distribution policies, there
is an opportunity of applying Machine Learning (ML) to induce models that automatically identify
land cover types in satellite images and improve the capacity for producing frequent and accurate land
cover maps.

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.
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Previous ML work in classification of satellite imagery for land cover mapping has been very
successful. One simple practice that helps obtain good results is the inclusion of spectral indices
as additional independent variables? in the reference dataset. Spectral indices are combinations of
reflectance values from different wavelengths that represent the relative abundance of certain terrain
elements. They have been used by the RS community for a long time to enhance the identification of
vegetation (e.g., NDVI[1]), water (e.g., NDWI [2]), burnt areas (e.g., NBR [3]) and many other elements.
Over the years, many indices were created and adapted to accommodate the particularities of different
images. In the case of vegetation indices, this number is so vast that over one hundred of them were
reviewed in [4].

Like indices, hyper-features are mathematical expressions that combine the original features of
the data (the independent variables) with the goal of representing data properties that facilitate the
learning of ML models. Spectral indices are, in fact, particular cases of hyper-features. Ideally, the
hyper-features should be simple and meaningful, allowing the RS experts to easily understand the ML
models that are based on them, or to directly use them in image analysis software to visualise what
they represent.

Notwithstanding the success of ML methods when performing classification of satellite imagery,
the reported results are often obtained by applying a model in the same images where it was trained
(e.g., [5-7]), or in an image time series from the same location (e.g., [8—10]). Training models to be
ready to be used outside their training images is not a trivial task due to the radiometric variations
between different images. These variations can arise from multiple sources, such as the difference in
the angle of the solar incidence on the ground; the weather; the conditions of the terrain; the type of
terrain; or the growth stage of the vegetation. Spectral indices are also sensitive to these variations,
despite the efforts to increase their robustness.

Our goal is to improve satellite imagery classification, by creating hyper-features that increase
the performance of ML algorithms. In previous work [11], we used a Genetic Programming (GP) [12]
classifier called M3GP [13] to evolve hyper-features that, when used instead of the original ones, were
able to improve the accuracy of different ML algorithms in binary classification of images different
from the ones used in training (although, for unseen data of the same images, there was no significant
effect). GP is a powerful ML evolutionary algorithm that can produce readable white-box models.
Successfully used for solving an array of problems in different scientific areas, GP is, however, still not
well known in RS. The M3GP algorithm is a variant of standard GP that was originally developed as a
multiclass classifier, but later used as a Feature Construction method for other algorithms, both for
classification and for regression [11,14,15]. Creating hyper-features from one image and using them
for classifying a different image falls under the area of Transfer Learning [15], which attempts to use
knowledge from one problem to solve another similar problem.

The area of ML is divided into several fields, one of which is named Evolutionary
Computation (EC). This field deals with the creation (or evolution) of models using an evolutionary
cycle that was inspired by the evolution theories of Charles Darwin. Using this cycle, different flavors
of EC (from which GP is one of the youngest) use a fitness function to guide a population of evolving
models through a search space, until one of its individuals reaches a certain fitness and is returned
as the best model. This cycle will be further explained in Section 3.3.1, in the context of the M3GP
algorithm.

In this work, we perform a thorough study of the effects of adding M3GP-evolved hyper-features
to the reference datasets. We test our approach on several datasets from different images in two types
of problems that have been tackled several times over the last decades, the binary classification of
burnt areas [16-22] and the multiclass classification of land cover types [23-27]. The images used
in our study cover several different regions over developing countries: Angola, Brazil, Democratic



https://doi.org/10.20944/preprints202010.0168.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 December 2020 d0i:10.20944/preprints202010.0168.v2

30f27

Republic of the Congo, Guinea-Bissau and Mozambique. We add the evolved hyper-features to the
reference datasets and analyse the differences in the generalisation ability of different ML algorithms
when tested on unseen data from the same images. Three common state-of-the-art algorithms are
tested, namely Decision Trees [28], Random Forests [29] and XGBoost [30]. We also perform the same
experiments when adding spectral indices instead of the hyper-features, comparing the results. The
selected indices are the popular NDVI, NDWI and NBR. For the binary classification problems, we
also compare our results with the ones obtained when adding hyper-features created by two different
Feature Construction methods, EFS [31] and FFX [32].

It is important to emphasise the differences between the current work and the previous one [11].
On the previous work, a manual selection of evolved hyper-features completely replaced the original
features of the reference datasets, while here all the hyper-features resulting from each run are
automatically added to the reference datasets. The goal of the previous work was to explore feature
spaces in order to explain the variable degrees of success of Transfer Learning to different images.
Here, we concentrate on the performance inside each image, and compare our approach to alternative
ones that use indices and other types of hyper-features. Finally, while the previous work only used
binary classification datasets, this one greatly extends its reach by tackling also multiclass classification
problems.

2. Related Work

Feature Engineering is an essential step in the knowledge discovery process and one of the
keys to success in applied ML. The features used to induce a data model can directly influence the
quality of the model itself and the results that it can achieve. Feature Engineering can be broadly
partitioned into Feature Selection and Feature Construction. According to [33], Feature Selection is a
process that chooses a subset of features from the original data variables, so that the feature space is
optimally reduced according to a certain criterion, while Feature Construction/Extraction (also called
Feature Generation, Feature Learning, or Constructive Induction) is a process that creates a new set of
hyper-features from the original data. Feature Construction typically combines existing variables into
more informative hyper-features. Both Feature Selection and Feature Construction attempt to improve
model performance and can be used in isolation or in combination.

Feature Construction, the focus of this work, has been widely studied in the last two decades.
Recent surveys can be found in [34-36], while the book [37] gives an in-depth presentation of the
area. In all these references, the importance of EC as an effective method for Feature Construction
is asserted, together with other Feature Construction methods such as the ones based on Decision
Trees, Inductive Logic Programming and Clustering. A very recent survey of EC techniques for
Feature Construction can be found in [38]. Among the different EC flavours, GP is probably the one
that has been used more often and more successfully. Indeed, GP is particularly suited for Feature
Construction because it naturally evolves functions of the original variables. The versatility offered by
the user-defined fitness function of GP allows the user to choose among several possible criteria for
evolving new hyper-features. Additionally, the fact that the evolved hyper-features are, in principle,
readable and understandable, can play an important role in model interpretability. Several existing
GP-based methods for Feature Construction are discussed in [39,40], and a deep analysis of previous
work can be found in [15], where GP-constructed features are used for Transfer Learning.

Among the large set of Feature Construction methods available, in this paper we use M3GP [13]
as our method of choice, and two others for comparison purposes: the non-EC method FFX [32] and
the EC method EFS [31]. The remainder of this section will focus on GP-based Feature Construction,
including applications, and on Feature Construction and GP in the context of RS.

2.1. Feature Construction with Genetic Programming

Among the several previous contributions in which GP was used for Feature Construction,
Krawiec has shown that classifiers induced using the representation enriched by GP-constructed
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hyper-features provide better accuracy on a set of benchmark classification problems [41]. Krawiec
and colleagues have also used GP in a co-evolutionary system for Feature Construction [42,43].

The use of GP for Feature Construction was later deeply investigated by Zhang and colleagues.
For instance, in [44], a GP approach was proposed that, instead of wrapping a particular classifier
for single Feature Construction as in most of the existing methods, it used GP to construct multiple
features from the original variables. The proposed method used a fitness function based on class
dispersion and entropy, and thus was independent of any particular classification algorithm. The
approach was tested using Decision Trees on the new obtained dataset and experimentally compared
with the standard Decision Tree method, using the original features. The results showed that the
proposed approach outperforms standard Decision Trees on the studied test problems in terms of the
classification performance, dimension reduction and the learned Decision Tree size. Several years
later, in [45], GP was used for both Feature Construction and implicit Feature Selection. The work
presented a comprehensive study, investigating the use of GP for Feature Construction and Feature
Selection on high-dimensional classification problems. Different combinations of the constructed
and/or selected features were tested and compared on seven high-dimensional gene expression
problems, and different classification algorithms were used to evaluate their performance. The results
indicated that the constructed and/or selected feature sets can significantly reduce the dimensionality
and maintain or even increase the classification accuracy in most cases. In [46], previous GP-based
approaches for Feature Construction were extended to deal with incomplete data. The results indicated
that the proposed approach can, at the same time, improve the accuracy and reduce the complexity of
the learnt classifiers. While until a few years ago GP-based Feature Construction had been applied
mainly to classification, in [47] it was applied with success to symbolic regression, thus giving
a demonstration of the generality of the approach. In [48], different approaches based on GP to
constructing multiple features were investigated. One of the most interesting results showed that
multiple-feature construction achieves significantly better performance than single-feature construction.
Consistently with that result, also the method presented in this paper uses GP to construct multiple
features.

It should be noted that the use of GP for Feature Construction has been explored for some time, as
surveyed in [40]. Although the most common approach to multiclass classification problems used to be
splitting a classification problem with 7 classes into n binary classification problems, and evolving one
hyper-feature for each class [49,50], some methods create several hyper-features to separate the classes
within the feature space. In this category, the survey includes works that converted the datasets into
hyper-datasets using exclusively the evolved hyper-features [41], and works that include the original
hyper-features in the hyper-dataset [51] (similarly to our work).

GP-based Feature Construction methods have been used with success in several real-life
applications. For instance, [52] proposed a novel method for breast cancer diagnosis using the features
generated by GP. A few years later, in [53], GP-based Feature Construction was used for improving
the accuracy of several classification algorithms for biomarker identification. In [54], a method to
find smaller solutions of equally high quality compared to other state-of-the-art GP approaches was
coupled with a GP-based Feature Construction method and applied to cancer radiotherapy dose
reconstruction. One year later, in [55], GP-based Feature Construction was successfully applied to
the classification of ten different categories of skin cancer from lesion images. Interestingly, while the
application tackled in [54] is a symbolic regression problem, the one in [55] is a multiclass classification
problem, thus confirming that the GP-based Feature Construction approach can be successfully applied
to both types of problems. Finally, in [56], GP-based Feature Construction was extended for the first
time to experimental physics. In particular, to be applicable to physics, dimensional consistency was
enforced using grammars. The presented results showed that the constructed hyper-features can both
significantly improve classification accuracy and be easily interpretable.
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2.2. Feature Construction and Genetic Programming in Remote Sensing

In the RS domain, many techniques have been used to extract features from satellite images. These
features include statistical descriptors, obtained by the Gray Level Co-occurrence Matrix (GLCM) and
other methods [57]; features of interest, such as known structures (e.g., buildings, roads), using deep
learning [58]; sets of generic features, using the Principal Component Analysis (PCA) [59]; and even
temporal features, using the Continuous Change Detection and Classification (CCDC) algorithm [60].

GP-based algorithms, mainly the standard GP algorithm, have been previously used in the area of
RS in tasks such as the creation of vegetation indices [61], the detection of riparian zones [62] and the
estimation of soil moisture [62,63], the estimation of canopy nitrogen content at the beginning of the
tasselling stage [64], the estimation of chlorophyll levels to monitor the water quality in reservoirs [65],
the prediction of soil salinity by estimating the electrical conductivity on the ground [66] and also in
geoscience projects reviewed in [67].

The expressions obtained by the GP-based algorithms can be used in Transfer Learning by
exporting them to datasets under the form of hyper-features, in the attempt to improve the performance
of ML algorithms. Our work continues to develop this kind of application, which was already explored
in the area of RS using EC-based algorithms [68,69] and specifically GP-based algorithms [11,62].

3. Materials and Methods

In this section, we describe the used datasets and the respective climate and type of vegetation in
each of their geographic locations. This section also includes a description of the Feature Construction
and Classification algorithms used, with particular emphasis on the M3GP algorithm, whose algorithm
is explained step by step.

3.1. Datasets and Study Areas

The datasets used in this work are meant to train ML models to classify burnt areas and land
cover types on a pixel-level. We use a total of nine datasets, obtained from Landsat-7, Landsat-8
and Sentinel-2A satellite images. The characteristics of these images and datasets are summarised in
Tables 1 and 2, and their associated geographic locations are highlighted in Figure 1.

3.1.1. Datasets

From the Landsat-7 images, we have one binary classification dataset (Gw2) and two multiclass
classification datasets (IM-10 and IM-3). The IM-3 dataset was built, in previous work, from IM-10
by extracting only the pixels classified in-situ from the three forest land cover types that ML models
failed to correctly discriminate. These images were both obtained over Guinea-Bissau.

From the Landsat-8 images, we have three binary classification datasets and two multiclass
classification datasets. The binary classification datasets have the objective of training models to
identify burnt areas, by classifying each pixel as "burnt" or "non-burnt". These three datasets were
obtained from satellite images over Angola (Ao2), Brazil (Br2) and Democratic Republic of the
Congo (Cd2). The multiclass classification datasets have the objective of training models to correctly
classify each pixel as one of several different land cover types. These two datasets were extracted from
satellite images over Angola (Ao8) and Guinea-Bissau (Gw10).

Lastly, from the Sentinel-2A satellite images, we have one multiclass classification dataset that
was extracted from several satellite images from the entire country of Mozambique (Mz6). These
images were obtained through 2016, between February 19" and October 6" [70].

3.1.2. Study Areas

In terms of size of the classified areas, the pixels used in the Landsat satellite images consist
of 900m? areas and those used in the Sentinel-2A satellite images consist of 400m? areas. As such,
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Table 1. Summary of the datasets used.
Scene Identifier Acq. Date .
Dataset Ref. Country Path / Row DD/MM/YYYY No. Images  Satellite KGCS
Ao2 a Angola 177 / 67 09/07/2013 1 LS-8 Cwa
Br2 [71] Brazil 225 / 64 28/02/2015 1 LS-8 Af, Am
Cd2 [71] DR Congo 175 / 62 08/06/2013 1 LS-8 Aw
Gw2 [71] | Guinea-Bissau 204 / 52 13/05/2002 1 LS-7 Am, Aw
203 / 51,52
M-3 b ) . ’ From: 02/01/2010
IM-10 [72] Guinea-Bissau 2024O é 515,152 To: 01,/04/2010 17 LS-7 Am, Aw
Ao8 [73] Angola 182 / 64, 65 18/06/2016 2 LS-8 Aw
. . 204 / 51,52 01/03/2019
c . ’ -
Gwl10 Guinea-Bissau 205 / 51 24/03/2019 3 LS-8 Am, Aw
. Entire Country ~ From: 19/02/2016 d Am, Aw, BSh,
Mz6 /0] | Mozambique 1oy goatiled)  To:06/10/2016 200 S2A  Cwa, Cwb, Cfa

 There is no reference paper for this dataset.

b This is a sub-dataset, obtained by extracting three forest classes from the IM-10 dataset.

¢ The reference paper for this dataset is under review.

4 An approximation obtained by considering that the S-2A mapped every tile of Mozambique once every 10 days for 230 days.

the classified areas can be calculated from Table 2. Next, we describe the climate (according to the
Koppen-Geiger Classification System (KGCS) [74]) and vegetation in each of the study areas:

Brazil: The study area of the Br2 dataset is located in eastern Amazonia, in southeastern Par4,
Brazil. According to the KGCS, the climate in this image is classified as Equatorial Monsoon (Am) and
Equatorial rainforest, fully humid (Af) in the north and south sections, respectively. This area is drier
than central and western Amazonia, with annual rainfall between 1500mm and 2000mm and average
temperatures ranging from 23°C to 30°C. The vegetation in this image ranges from lowland Amazon
forest in the north through submontane dense and open forests in the south [71].

Guinea-Bissau: The study area of the Gw2, IM-3, IM-10 and Gw10 datasets, is located in
Guinea-Bissau, West Africa. According to the KGCS, the climate in this area is classified as Am
and Equatorial savanna with dry winter (Aw) within the coastal and interior areas, respectively. This
area is characterised by having a marshy coastal plain with a dry to moist (North to South) tropical
climate. There are two marked seasons, a dry season between November and May, and a wet season
between June and October. Total annual rain values vary from 1200 to 1400mm in the Northeast
region, and from 2400 to 2600mm in the Southwest region. The monthly average temperature ranges
from 25.9°C and 27.1°C. The vegetation consists of mangroves on the coast and gradually becomes
composed of mainly dry forest and savanna inland [71].

Northern Angola: The study area of the Ao8 dataset is located in the Zaire province, northern
Angola. According to the KGCS, the climate in this region is classified as Aw with a mean annual
rainfall near 1300mm, distributed in two periods separated by a short dry spell. The monthly
average temperature ranges from 20.5°C and 24.9°C. The vegetation is mainly savanna scrublands
and some dense humid forests mostly located along rivers, creeks, and gullies. There are anthropic
forests composed by native species and mango, cola, safou, avocado, citrus, and guava trees in
ancestral settlements, abandoned due to forced relocation along the main roads by the colonial
administration [75].

Eastern Angola: The study area of the Ao2 dataset is located in Lunda Sul, Eastern Angola.
According to the KGCS, the climate in this area is classified as Warm temperate climate with dry winter
and hot summer (Cwa) and a mean annual rainfall near 1300mm, distributed between October and
April and a dry season from May to September. The monthly average temperature ranges from 20.0°C
and 24.4°C. The vegetation is mainly dominated by woody and shrub savannas and gallery forests
essentially located along the valleys of the great rivers [76].

Democratic Republic of Congo: The study area of the Cg2 dataset is located in the central-eastern
Democratic Republic of Congo. According to the KGCS, the climate in this area is classified as Aw with
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Table 2. Summary of the datasets used.
. No. No. Bands Total
Dataset Classes (No. Pixels) Classes  No. Features  Pixels
Ao2 Burnt (1573) Non-Burnt (2309) 2 7 3882
Br2 Burnt (2033) Non-Burnt (2839) 2 7 4872
Cd2 Burnt (877) Non-Burnt (1972) 2 7 2849
Gw2 Burnt (1101) Non-Burnt (3430) 2 7 4531
M-3 Savanna Woodland (114) Dense Forest (68)  Open Forest (140) 3 6 322
Agriculture/Bare Soil (950) Burnt (77) Dense Forest (524)
: Grassland (75) Mangrove (1240)  Open Forest (723)
M-10 Savanna Woodland (1626) Sand (166) Mud (509) 10 6 6798
Water (908)
Agriculture/Bare Soil (73) Burnt (301) Clouds (332)
Ao8 Forest (662) Grassland (12) Urban (53) 8 10 2183
Savanna Woodland (598) Water (152)
Agriculture/Bare Soil (449) Burnt (157) Dense Forest (62)
Grassland (16) Mangrove (1383)  Open Forest (646)
Gw10 Savanna Woodland (1308) Sand (50) Water (620) 10 7 5080
Wetland (389)
Agriculture/Bare Soil (33611)  Forest (63190) Grassland (28406)
Mz6 Urban (4194) Wetland (35673) Other (25128) 6 10 190202

a mean annual rainfall near 1600mm. There are two distinct seasons, a dry season (with temperatures
ranging between 18°C and 27°C) from June to August, and a rainy season (with temperatures ranging
between 22°C and 33°C) from September to May. The vegetation is characterised by a congolian
lowland forest in the north to miombo woodlands in the south. In the southwestern region, the
population pressure had conducted to the degradation of the miombo woodlands [71].

Mozambique: The study area of the Mz6 dataset includes the entire country of Mozambique.
According to the KGCS, the climate is classified as Aw in the coastal area and near the Zambezi river;
as Cwa in the interior, at the north and the west of the Zambezi river; as Warm temperate climate with
dry winter and warm summer (Cwb) near Lichinga and west of Chibabava; as Hot semi-arid (BSh) in
the interior in south Mozambique and east of Mungari and Derre, and as Hot desert (Bwh) in the area
between Dindiza and the frontier between Mozambique and Zimbabwe, south of the Save river. It has
a wet season from October to March and a dry season from April to September. The lowest average
rainfall (300-800mm /year) occur in the interior southern regions and the highest average rainfall (over
1200 mm/year) occur in the area around Espungabera. The average temperatures are the highest along
the coast in the northern regions (with temperatures ranging between 25°C and 27°C in summer and
between 20°C and 23°C in winter) and in the southern regions (with temperatures ranging between
24°C and 26°C in summer and between 20°C and 22°C in winter), while the high inland regions have
cooler temperatures (with temperatures ranging between 18°C and 20°C in summer and between 13°C
and 16°C in winter). The northern areas are predominantly occupied by miombo woodlands and the
western and southern borders by Zambezian and Mopane woodland. The most widespread vegetation
in the north coast is the Zanzibar-Inhambane forest mosaic, followed by the African mangroves and
the Maputaland forest mosaic in the south-east coast [70,77,78].

3.2. Methodology

The core of this work is to expand the reference datasets with hyper-features that improve the
performance of different ML methods. Figure 2 illustrates the process of obtaining and using such
hyper-features. As usual, the reference dataset is split in two datasets, one for training the classifiers,
called the training set, and one for testing the classifiers on unseen data, called the test set. Based only
on the training set, the Feature Construction algorithm creates a set of hyper-features that are used to
expand the reference dataset, in both training and test sets. The expanded training set is used by the
classification algorithm to obtain a trained classifier, that is applied to both (expanded) training and
test sets in order to report the performance in terms of learning and generalisation, respectively.
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Figure 1. Location of the study areas, in red, in Brazil (Br2), Guinea-Bissau (Gw2, Gw10, IM-3, IM-10),
Democratic Republic of Congo (Cd2), Angola (Ao2, Ao8) and Mozambique (Mz6) in South America
and Africa continent.

A small deviation to this process has been made for the datasets IM-3 and IM-10, where the
hyper-features used to expand the IM-10 datasets where obtained in the training data of its subset
IM-3, and not the training data of the complete IM-10. The goal of this deviation was to check whether
a larger dataset could also benefit from hyper-features obtained in a much limited context (results
reported in Section 4.3).

As Feature Construction algorithms, we use M3GP and compare it with FFX and EFS, all described
below. As classification algorithms, we use Decision Trees (DT), Random Forests (RF) and XGBoost
(XGB), also briefly described below. The number and complexity of the created hyper-features is not
predefined, but automatically determined by the Feature Construction algorithm.

We also experiment with expanding the reference datasets with the NDVI, NDWI and NBR
indices, instead of doing Feature Construction. These indices were selected from the RS literature as
being helpful to the ML algorithms for separating vegetation, water and burnt classes, since these
elements are present among the pixels used in the datasets.

Each experiment is performed 30 times for each possible trio of reference dataset, Feature
Construction algorithm and Classification algorithm (with the exception of the EFS and FFX algorithms,
which are only used in binary classification datasets), each time with a different random split of the
reference dataset in training and test sets. In other words, and limiting the explanation to Figure 2, our
experimental process follows these steps:

Splitting the Dataset: The reference dataset is split randomly into training (70% of the pixels)
and test sets (remaining 30%), stratified by class;

Creating and Adding Hyper-Features / Indices: The training set is used by a Feature
Construction algorithm to create a new set of hyper-features, and the training and test sets are
then extended using these hyper-features, or the indices;

Training and Testing a Classifier: A classifier is trained using the extended training set and
tested on the extended test set, providing the final results.
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Figure 2. Representation of the methodology adopted to obtain and use hyper-features.

3.3. Feature Construction Algorithms

We use three different methods for Feature Construction. Our method of choice is the M3GP
algorithm, because of the interpretability of the hyper-features it creates, and because it can evolve
hyper-features for multiclass classification problems. For comparing our M3GP results with the results
of other evolutionary and non-evolutionary methods, we selected the EFS and FFX algorithms, due to
their running speed, availability of the authors’ implementations and number of citations. However,
EFS and FFX are focused on regression problems, rather than classification problems. They are easily
adapted to binary classification, by defining a threshold separating the two classes, but there is no
easy adaptation for multiclass problems, the reason why we test them only on the binary classification
datasets.

M3GP algorithm: Multidimensional Multiclass GP with Multidimensional Populations (M3GP)
is a GP-based algorithm that evolves a set of hyper-features that convert the original feature space into
a new feature space, guided by a fitness function that measures the performance of a classifier in the
new feature space. The M3GP is an all-in-one algorithm that both creates the hyper-features and uses
them for solving both regression and classification problems. The inner workings of this algorithm are
explained below, in section 3.3.1.

EFS algorithm: Evolutionary Feature Synthesis (EFS) is an evolutionary algorithm that uses
pathwise LASSO [79] regression to optimise multiple linear regression models that are extended for
nonlinear relationships between features. This extension is made using functions such as cos, sin and
log, as well as functions with several inputs, e.g., multiplication of variables. This regression tool can
produce a set of interpretable hyper-features in seconds.

FFX algorithm: Fast Function Extraction (FFX) is a deterministic algorithm that applies Pathwise
Regularised Learning [80] to a large set of generated nonlinear functions to search for a set of
hyper-features with minimal error. Although the hyper-features observed are simple, this algorithm
generates hundreds of hyper-features, which leads us to consider the final model non-interpretable.

3.3.1. The M3GP Algorithm

The M3GP [13] is a GP-based algorithm that evolves models similar in structure to the models of
standard GP [12]. Standard GP represents each model as a parse tree, to be read depth-first, where
the terminal nodes are features and the non-terminal nodes are operators that combine features (e.g.,
arithmetic operators like multiplication, subtraction, etc). The main difference between the models
evolved by M3GP and the ones of standard GP is that, in M3GP, each model is not a single tree, but a
set of trees, as exemplified in Figure 3. These trees are what we call hyper-features and are evolved
using the steps shown in Figure 4 and explained here:
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Initialisation: The M3GP algorithm initialises its population of models as single, randomly
generated, trees. Therefore, in the beginning of the evolutionary cycle, each individual is a simple
model consisting of a single hyper-feature.

Evaluation: Each individual of the population is evaluated by the following procedure. The n
hyper-features are used to convert the original features into a new n-dimensional dataset. The fitness
of the model is then calculated by applying a fitness function to this new (hyper) feature space. This
fitness function rewards the individuals whose set of hyper-features creates a space where the different
classes are more easily separable. In the original M3GP algorithm, the fitness was the overall accuracy
of the Mahalanobis Distance Classifier (described below), but in the current implementation we use
the Weighted Average of F-measures (WAF) instead of the overall accuracy?, for its robustness to class
imbalance, especially in multiclass classification.

Stopping Criteria: After the population is evaluated, the algorithm decides whether to
stop the evolution or not. The most common stopping criteria are related to the number of
generations/iterations already done, and to the quality of the best model achieved (in terms of
accuracy or any other metric). In the current implementation, the evolution stops when 50 generations
are completed or when one individual achieves 100% accuracy on the training set, whichever occurs
first. If the evolution does not stop, a new generation of models is created, following the steps described
next.

Selection: The parents of the next generation are selected using the tournament method. To select
each parent, the algorithm randomly selects a small group of models and, out of these models, chooses
the best. The tournament method is able to maintain enough selective pressure to choose mostly the
best individuals, thus promoting the propagation of their good traits in the next generation, while
allowing also the bad ones to become parents, thus avoiding the loss of genetic diversity that would
stagnate the evolution.

Breeding: After selecting models to act as parents, each new model is created either through a
mutation of one parent or through a crossover of two parents. When using a mutation genetic operator,
the parent can either: create a new, randomly generated, tree and add it to its set of hyper-features;
randomly select one of its hyper-features and remove it (if it contains more than one hyper-feature);
or modify one of its hyper-features by replacing one of its branches with a new, randomly generated,
tree. When using a crossover genetic operator, the parent models can swap either branches or entire
hyper-features between each other. Unlike the mutation genetic operator, the crossover results in two
offspring.

After a new population has been created, the algorithm returns to the evaluation step.

(B1-B3)//(B1+B3) (B1-B3)//(B1+B3)

@
Y

Y

B1 + B3

B6 // B4

Y

Ty > B7 * B6 * BS
/

Figure 3. Example of an M3GP model that uses six of the seven available features to build four

hyper-features (left) and a single hyper-feature (right). The solid and dashed lines indicate the first and
second variables used by the operators. // is a division operator protected against division by zero.
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Figure 4. Evolutionary cycle used by M3GP.

Y

3.4. Classification Algorithms

Four different classifiers are used in this work: MD, DT, RF and XGB. The MD classifier is used
only as part of M3GP, but the other three are used to independently test the effectiveness of the indices
and hyper-features added to the reference datasets.

Mahalanobis Distance classifier: The MD classifier is a non-parametric supervised cluster-based
algorithm that classifies a data point by associating it with the closest cluster centroid using the
Mahalanobis distance, where a cluster is defined as a set of pixels belonging to the same class.

Decision Tree classifier: The DT algorithm is a non-parametric supervised algorithm that infers
simple decision rules from the training data. This algorithm can be used in both classification and
regression problems.

Random Forest classifier: The RF algorithm is an ensemble algorithm that uses a set of DT to
solve both classification and regression problems, by assigning each data point to the majority vote of
all DT in classification problems, or to the average of the prediction of all DT in regression problems.

XGBoost classifier: The XGB algorithm is DT-based ensemble algorithm that uses an optimised
gradient boosting to minimise errors. This algorithm can be used in both classification and regression
problems.

3.5. Tools and Parameters

All the experiments involving M3GP are performed using our own implementation of the M3GP
algorithm*, which includes the implementation of the MD classifier. The DT and RF implementations
belong to the sklearn python library [81] and the XGB implementation belongs to the xgboost python
library [30]. The EFS implementation® is provided by the authors in their paper [31] and the FFX
implementation® belongs to the ffx python library.

The parameter settings used in this work are the standard within the ML community, with the
main parameters and variations specified in Table 3. The EFS, FFX and M3GP algorithms used the
same parameters as those used by the authors in their respective papers. The variations in this work
include our implementation of the M3GP using the WAF of the MD classifier (untied with the number
of hyper-features and then with the total size of the model) as fitness, rather than the accuracy, and only
pruning the final individual, for consistency with previous work that had this variation [11]. Every run
using the DT, RF and XGB classifiers used the default parameters of their respective implementations,
except for the XGB runs in the Mz6 dataset. In this dataset, the XGB was unable to obtain perfect
training accuracy with the default maximum depth for its models. As such, the maximum depth was
increased from 6 to 20.

4. Results and Discussion

We start this section by presenting the results and hyper-features obtained by running M3GP by
itself on all the datasets. Then, we discuss the interpretability of the hyper-features and the popularity
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Table 3. Main parameters and variations used in the experiments.

General:
Runs 30
Training Set 70% of the samples of each class
Statistical Significance p-value < 0.01 (Kruskal-Wallis H-test)
M3GP:
Stopping Criteria 50 generations or 100% training accuracy
Fitness WAF (Weighted Average of F-measures)
Pruning Final individual
XGBoost:
Maximum Depth 20 in the Mz6 dataset and 6 (default) in the other datasets

of the different satellite bands in the solutions proposed by M3GP. Next, we compare the overall
accuracy, and class accuracy, obtained when running the DT, RF and XGB algorithms on the original
datasets and on the datasets expanded with indices or hyper-features. Regarding the class accuracy,
we present the results only for XGB because the results for DT and RF were very similar in terms of the
relationship between the classes, and therefore would not bring any new information.

The presentation of the results is split into three categories: binary classification datasets (Ao2,
Br2, Cg2 and Gw2), regarding the detection of burnt areas; discrimination of similar classes (IM-3
and IM-10), regarding the separation of forest types; and discrimination of all classes (Ao8, Gw10 and
Mz6), regarding the separation of different land cover types.

We present the results in tables, boxplots and confusion matrices. On the tables, each overall
accuracy value is the median obtained in the 30 runs. The confusion matrices, rather than showing
the class accuracy, show the difference (in percentage of pixels) between using hyper-features (or
indices) and using the original dataset, to facilitate the identification of the effect produced by the
hyper-features. Statistical significance is determined with the non-parametric Kruskal-Wallis H-test
(from the scipy Python library) at p < 0.01.

4.1. M3GP Performance and Hyper-feature Analysis

Although we use M3GP as a Feature Construction method for other ML algorithms, M3GP can
perform binary and multiclass classification by itself, as described in Section 3.4. While using M3GP to
evolve the hyper-features, we have registered the accuracy values it achieved in each dataset, presented
in Table 4. Although the accuracy is high, it is generally worse than the accuracy achieved by the other
ML algorithms we used, and therefore we will not refer to the results of standalone M3GP again.

In terms of interpretability of the evolved hyper-features, in Table 4 we report the number of
hyper-features and their median size (with minimum and maximum values, between parenthesis).
While the number of evolved hyper-features seems to depend heavily on the number of classes of the
problem, the median average size of each hyper-feature tends to be higher for the binary datasets,
where a very large dispersion of values is observed.

To exemplify the variety of different sets of evolved hyper-features, we picked three examples.
On the first two examples, a single hyper-feature was evolved, but with very different sizes. Both
were evolved for the Gw2 dataset and obtained perfect test accuracy on the respective runs. The third
example is a set of 16 hyper-features that were evolved in a run for the Ao8 dataset and obtained
median test accuracy. This variety of hyper-features can be seen in Egs. 1 through 7. Note that Bn refers
to the n' band of the satellite. As we can see, the M3GP algorithm can generate hyper-features that are
as simple as (and perfectly equal to) the original features themselves (Egs. 3), hyper-features that are
simple enough to be interpreted (Egs. 1, 4 and 5), and hyper-features which need to be decomposed
for a proper analysis of the expression (Egs. 2, 6 and 7).

Looking at Table 4 and the examples of hyper-features in Egs. 1 through 7, we can state that,
although the M3GP sometimes produces complex hyper-features, the general case seems to be the
production of interpretable hyper-features. While this work focuses exclusively on datasets from the
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Table 4. The median training and test overall accuracy, size, number of hyper-features and average
size of the hyper-features obtained by the M3GP models in 30 runs in each dataset.

Ao2 Br2 Cg2 Gw2 IM-3 IM-10 Ao8 Gwl10 Mz6
Accuracy
Training 1.000 0.992 0.993 1.000 0.996 0.932 1.000 0.988 0.620
Test 0.999 0.990 0.993 1.000 0.948 0.916 0.983 0.971 0.620
Hyper-Features
Number 5(3-8) 8(1-15)  4(3-8) 2(1-3) | 85(5-13) 23(17-29) | 18(14-21) 21(15-23) 14.5(12-17)
Avg. Size 149-28)  14(6-39) 23(6-40) 11(2-43) | 11(5-22)  108-13) | 10(5-14)  8(6-12) 11(5-17)

RS domain, the same tendency regarding interpretability was already observed in the original M3GP
paper [13], which used datasets from a much wider range of domains.
Gw2, Run#l11, 1 Hyper-feature:

B5 (B3 + B5) )
B7+B4+1
Gw2, Run#26, 1 Hyper-feature:
B22B3B4B5B6 — B22B42B5 + B2 B32B5%2B6 — B2B3 B4B5%> — B3B43B7 @)
B42 B7 (B2 B4 + B3 B5)
Ao8, Run#18, 16 Hyper-features :
B3 B5 B6 B10 B11 (3)
B3 B1 B2 B9
B9—-B2 55 B2pz D2 B6TBI-2BI0 0 BoBs @)
(31+B4_%160) (B3 + B9) B6 B9 — B1B2 — B1 + B3+ B6 — B9 ®)
B9 (B9 — B11) B1? B3
B4+B10— ————) (2 B2+ — — B4+ B5+ B1
B7 (B3 B6 + B9 — B11) (B4 + B10 B5—B9)( B + B5 + B10) ©)
B7 B9? (B2 + B7 — B11) B1B2 + B1B3B6 + B1B3B9 + B3 B4B5 )
B5B6 B112 (B2 + B3 — B9) B11

Regarding the popularity of the different satellite bands in the evolved hyper-features, Table 5 and
Figure 5 show, for each band and each dataset, the fraction of hyper-features generated for that dataset
(in 30 runs) that use the band. We only check whether a band appears in a hyper-feature. Measuring
its importance inside the hyper-feature would be a complex exercise that we do not perform here. For
each dataset, we subjectively identify a group of most popular bands as the ones ranked higher and at
a larger distance from the rest (Figure 5). We do not identify any popular bands for Ao8, since on this
dataset all the bands are ranked low, with very small distances between them.

In Binary Classification Datasets: The most popular band in all four datasets was the SWIR2 (B7
in both LS-7 and LS-8), which appears in 62.4% to 81.4% of the hyper-features across all datasets. This
preference for the SWIR2 band is expected due to its usefulness when searching for dry earth, which
may indicate a recent fire [82].

When Discriminating Similar Forest Classes: The most popular band in the IM-3 and IM-10
datasets was the NIR (B4), which appeared in 69.6% and 67.5% of the hyper-features, respectively. The
popularity of the NIR band in the creation of hyper-features can be justified by its importance on the
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Table 5. Fraction of hyper-features generated for each dataset (in 30 runs) that use a given band. The
bands identified as popular are highlighted.

]iasr_‘g Ao2 B2 Cg2 Aos8 Gwl0 ]iasn‘; Gw2 IM3 IM-10 ggf‘: Mz6
Bl | 0590 0600 0625 0381 0378 | Bl | 0197 0563 0542 | B2 | 0.374
B2 | 0565 0564 0708 0350 0427 | B2 | 0246 0470 0478 | B3 | 0.505
B3 | 0602 0612 0567 0370 0403 | B3 | 0492 0466 0551 | B4 | 0.486
B4 | 0553 0.528 0642 0376 0562 | B4 | 0377 0696 0675 | B5 | 0422
B5 | 0.665 0536 0575 0396 0543 | B5 | 0.639 0551 0473 | B6 | 0.427

B6 0528 0.552 0.717 0419 0.483 B6 0492 0.530 0.542 B7 0.390

B7 0.814 0.624 0.742 0402 0438 B7 0.705 — B8 0.427
B9 — — — 0.325 — — — — — B8A | 0.516
B10 — — — 0.374 — — — — — B11 | 0.397
B11 — — — 0.351 — — — — — B12 | 0.349
0os8{ T B
——B7
0.7 1 B6—p2 —B7
—B5 —B4
— j— —BS5
0.6 3123353231 :;
——B2 —B2 =383 —_— —B1
P as s —1p4 —8 —Bp—8 R
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Figure 5. Fraction of hyper-features generated for each dataset (in 30 runs) that use a given band. The
bands identified as popular are highlighted.

visualisation of healthy vegetation in the discrimination between Dense Forest and Open Forest pixels.
The importance of this band has also led to the creation of indices, such as the NDVI [1,82].

When Discriminating All Classes: Since the target classes are not similar to each other, here we
observe which are the most popular bands on each dataset, and attempt to explain their popularity
based on which classes benefited the most from the hyper-features. We do not discuss the Ao8 dataset,
not only because it lacks popular bands, but also because it did not benefit from the hyper-features, as
we will see below in Section 4.4.

In the Gw10 dataset, the Red (B4) and NIR (B5) bands were the most popular, appearing in 56.2%
and 54.3% of the hyper-features, respectively. We will see in the next section that on this dataset the
hyper-features improved the classification of the Mangrove, Savanna Woodland and Wetland pixels. This
suggests that the better discrimination of these land cover types took into account the amount of
healthy vegetation and the composition of the soil.

Regarding the Mz6 dataset, the Vegetation Red Edge (B8A), Green (B3) and Red (B4) were
identified as the most popular bands, appearing in 51.6%, 50.5% and 48.6% of the hyper-features,
respectively. However, their effect is not so clear, since the improvement brought by the hyper-features
affected several different classes. Taking into consideration only the classes with the highest
improvement, which were Agriculture / Bare Soil, Forest and Wetlands, we suggest that the better
discrimination of these land cover types considered the health and age of the vegetation, as well as the
composition of the soil.
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Table 6. Comparison of the median overall test accuracy obtained by the three ML algorithms in the
original datasets, when adding indices, and when using hyper-features evolved by EFS, FEX and M3GP.
The coloured p-values indicate significantly better/worse results.

Decision Trees Random Forests XGBoost
Dataset Ao2 Br2 Cd2 Gw2 | Ao2 Br2 Cd2 Gw2 | Ao2 Br2 Cd2 Gw2
Orig. Dataset
Test Accuracy | 0.999 0989 0.996 0.999 | 0.999 0.992 0.999 1.000 | 0.999 0.993 0.998 0.999
Indices
Test Accuracy | 0.999 0.990 0.996 0.999 | 0.999 0.993 0.999 1.000 | 0.999 0.993 0.998 0.999
p-valuevs Orig. | 0.694 0.678 0909 0.669 | 0.675 0917 0436 0.871 | 1.000 1.000 1.000 1.000
EFS
Test Accuracy | 0.998 0989 0.996 0.999 | 1.000 0.992 0.999 1.000 | 0.999 0.993 0.998 0.999
p-valuevs Orig. | 0.012 0.226 0.143 0.735 | 0.091 0.777 0.137 0.619 | 0.256 0.682 0.489 0.127
FFX
Test Accuracy | 0.999 0990 0.996 1.000 | 0.999 0.993 0.999 1.000 | 0.999 0.993 0.998 1.000
p-valuevs Orig. | 0.224 0.941 0294 0.000 | 0.363 0988 0.148 0.730 | 0.739 0.794 0.886 0.000
M3GP
Test Accuracy | 0.999 0990 0.996 0.999 | 0.999 0.992 0.999 1.000 | 0.999 0.993 0.998 0.999
p-value vs Orig. | 0.908 0.947 0.672 0.813 | 0.500 0.846 0.688 0.871 | 1.000 1.000 1.000 1.000
p-value vs Ind. 0.782 0.761 0598 0.849 | 0.780 0.982 0.738 1.000 | 1.000 1.000 1.000 1.000
p-value vs FFX 0276 0.830 0.525 0.001 | 0.095 0905 0.319 0.868 | 0.739 0.794 0.886 0.000
p-value vs EFS 0.017 0.272 0291 0572 | 0.286 0.682 0.309 0.757 | 0.256 0.682 0.489 0.127

In some of the related work regarding the use of GP to build hyper-features in RS, the authors
reveal what were considered the best hyper-features obtained. For comparison with our own, here
we also comment on those hyper-features. It is important to say that these works address regression
problems (rather than classification problems), which sometimes require more complex models in
order to be solved. In comparison with our own, these works use an extensive list of mathematical
operators to combine the original features (which also tends to cause the creation of larger models).
The authors also include indices in the datasets, similarly to what is done in part of our work.

In [65], the authors use GP to monitor the quality of the water in reservoirs, by predicting the
amount of chlorophyll in the water. The final model is quite simple (having a size of 8), according to
our criteria, and only uses the Green, Red and NIR bands. While in this case the hyper-feature used
is simple, that is not the case in the other two works. In [66], the authors attempt to predict the soil
salinity. Their final model uses one band and five indices, and its size is near 50 (making it larger than
any of our hyper-features). In [62], the authors attempt to predict the soil moisture and, although their
final model only uses four terminals (SAR backscatter coefficient, slope, soil permeability (in/hr) and
the NDVI), this model is the most complex out of these three.

4.2. Hyper-features in Binary Classification Datasets

The results obtained on the binary classification datasets (Ao2, Br2, Cd2, Gw2) are reported in
Table 6 and Figure 6. In terms of training accuracy, the three classification algorithms managed to obtain
perfect results in nearly every run, and therefore those results are not included in the table. In terms of
test accuracy, the induced models achieved very high values, nearly all above 99% (both in terms of
overall accuracy and class accuracy, as seen in Table 7), also on the original (non-expanded) datasets.
The lowest results belong to DT that, when applied to the Br2 dataset, achieved a median overall test
accuracy of 98.9%. Without much room for improvement, FEX was still able to create hyper-features
that improved the test accuracy in two cases (DT and XGB in the Gw2 dataset), surpassing also the
M3GP hyper-features, while neither the indices nor the M3GP or EFS hyper-features caused any
significant difference in the results. The boxplots show a very low dispersion of accuracy values (the
ranges of the y-axes are very limited), which seems to be marginally larger for the EFS results.

These seemingly uninteresting results agree with the findings of our previous work [11]. There,
using a different method of selecting and using the hyper-features also had no effect in the cases where
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Figure 6. Boxplots of the test accuracy obtained in the binary classification datasets in each test case.
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the training and test datasets came from the same image. However, the hyper-features revealed to be
beneficial when the induced models where applied to datasets that came from images not seen during
training. This suggests that the current method of obtaining and using the hyper-features may also
prove beneficial in a similar training and test setting.

4.3. Hyper-features to Discriminate Similar Classes in a Multiclass Classification Dataset

Before looking at these results, it is worth recalling that the IM-3 dataset was built from three
similar classes within the IM-10 dataset. As such, even though it has a reduced number of classes, it is
not unexpected to see a lower accuracy in this dataset. It is also worth specifying that the hyper-features
used in the IM-10 dataset were obtained only in the IM-3 dataset, in an attempt to help discriminate
these similar classes. Finally, we also recall that EFS and FFX are not used in the multiclass datasets.

The results for IM-10 and IM-3 are reported in Table 8 and Figure 7. Once again, the training
results are omitted from the table because all three algorithms achieved perfect results in nearly every
run. In terms of test accuracy, we observe that, although the values are high, they have a larger margin
for improvement when compared to the binary classification results reported above. When adding
indices to the original dataset, the test accuracy on the IM-10 dataset increased with two algorithms
(RF and XGB). When adding the hyper-features evolved by M3GD, the test accuracy in the IM-10
dataset increased with all three algorithms, and in the IM-3 dataset it increased with the XGB algorithm.
Neither the indices nor the M3GP hyper-features degraded the test accuracy. When comparing the
performance of indices versus M3GP hyper-features, M3GP is better with two algorithms (DT and
XGB). In the boxplots, we observe that IM-3 has a larger dispersion of values than IM-10 (notice the
different y-axes ranges). On IM-10, the DT algorithm visibly falls behind RF and XGB.


https://doi.org/10.20944/preprints202010.0168.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 December 2020 d0i:10.20944/preprints202010.0168.v2

17 of 27

Table 7. Average test accuracy in each class when using the XGBoost algorithm in the original datasets.

XGB - Original Ao2 Br2 Cg2 Gw2 IM-3 IM-10 | Gwl10 Ao8 Mz6
Agriculture / Bare Soil — — — — — 98.96% | 96.34%  83.02%  72.59%
Burnt 99.81% 99.51% 99.63%  99.80% — 93.19% | 98.72%  99.22% —
Clouds — — — — — — — 100.00% —
Forest — — — — — — — 99.87%  88.05%

- Dense Forest — — — — 92.67% 87.67% | 79.81% — —

- Open Forest — — — — 93.02%  93.65% | 98.41% — —
Grassland — — — — — 92.73% | 81.67%  85.56%  64.02%
Mangrove — — — — — 99.12% | 98.41% — —
Mud — — — — — 96.07% — — —
Sand — — — — — 95.78% | 90.22% — —
Savanna Woodland — — — — 99.71%  84.41% | 98.66%  98.66% —
Urban — — — — — — — 87.78%  56.82%
Water — — — — — 97.33% | 99.48%  99.48% —
Wetland — — — — — — 95.29% — 80.34%
Other 99.97%  99.16% 99.88%  99.98% — — — — 76.07%

Table 8. Comparison of the median overall test accuracy obtained by the three ML algorithms in
the original datasets, when adding indices, and when adding hyper-features evolved by the M3GP
algorithm. The coloured p-values indicate significantly better results.

Decision Trees | Random Forests XGBoost

Dataset IM-3  IM-10 | IM-3 IM-10 IM-3  IM-10
Original Dataset

Test Accuracy 0.948 0.956 | 0.969 0.974 0.958 0.973
Indices

Test Accuracy 0.938 0.959 | 0.958 0.979 0.948 0.977

p-value vs Original | 0.151  0.051 0.062 0.000 0.178  0.001
M3GP

Test Accuracy 0.958 0.961 | 0.969 0.978 0.969 0.978

p-value vs Original | 0.020  0.000 | 0.844 0.000 0.009  0.000

p-value vs Indices 0.000  0.407 | 0.055 0.218 0.000 0.711

In terms of class accuracy in the IM-3 dataset, we can see in Table 9 that the hyper-features
improved the discrimination between the Dense Forest and the Open Forest pixels, at the cost of reducing
the accuracy on the Savanna Woodland class, by increasing its confusion with Open Forest. Looking
at Table 7, we see that Savanna Woodland had almost perfect accuracy, and therefore any changes
on this class would certainly be for the worse. In the end, the three classes became more balanced
in terms of accuracy. Although these hyper-features do not seem to be helpful in the classification
of Savanna Woodland on the IM-3 dataset, when applied to the IM-10 dataset (See Table 10) their
largest impact is precisely in this class, by correcting pixels that were previously misclassified as
Agriculture/Bare soil, Grassland and Mangrove. Their second biggest impact is in the classification of
Dense Forest, by improving its discrimination from Open Forest and by correcting pixels that were
previously misclassified as Mangrove.

In these two datasets, although the M3GP hyper-features performed better than the indices, these
were also clearly beneficial when added to the original datasets. This behaviour was similar to all
three classification algorithms and, as such, we only displayed the confusion matrices related to the
XGBoost algorithm, which had the best results. It is worth noticing that the IM-3 and IM-10 datasets
were extracted from a set of satellite images with different acquisition dates. Next, we will observe
additional evidence that indices and hyper-features seem to be more useful in datasets coming from
sets of images with different acquisition dates.

4.4. Hyper-features to Discriminate All Classes in Multiclass Classification Datasets

The results obtained on the three unrelated multiclass classification datasets (Ao8, Gw10, Mz6)
are reported in Table 11 and Figure 8. Once again, the training results were omitted from the table, as
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Figure 7. Boxplots of the test accuracy obtained in the IM-3 and IM-10 datasets in each test case.
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Table 9. Confusion matrix comparing the average test accuracy obtained by the XGBoost algorithm
with and without hyper-features in the IM-3 dataset. This table shows the difference in the percentage
of pixels in each line. Improvements are in green and deteriorations in red. The rightmost column

indicates the accuracy obtained in each class without using hyper-features.

XGB Savanna Original
IM-3 Dense Forest Open Forest Woodland | Accuracy
Dense Forest 2.83% -2.83% 0.00% 92.67%
Open Forest -3.33% 2.46% 0.87% 93.02%
Savanna o ooy L
(3 .57% -1.57% 71%
Woodland 0.00% 1.57 1.57 99.71%

perfect accuracy was achieved in almost every run. However, for the Mz6 dataset, XGB required a
maximum tree depth larger than the implementation default in order to achieve it (see Section 3.5).

In terms of test accuracy, the indices improved the accuracy in two test cases (DT on Gw10, XGB
on Mz6) and reduced the accuracy in one test case (RF on Mz6). On the other hand, the hyper-features
evolved by M3GP improved the test accuracy in five test cases (Mz6 with all algorithms, and Gw10
with RF and XGB), when comparing the results with those on the original dataset, and in four test
cases, when comparing with the results obtained with the indices (Mz6 with all algorithms, Gw10
with XGB). Once again, the hyper-features evolved by M3GP did not lead to a degradation of the test
accuracy in any of the cases.

Both the indices and the M3GP-evolved hyper-features had an impact on the Gw10 and Mz6
datasets, which were obtained from a set of satellite images with different acquisition dates. Neither
the indices nor the hyper-features had an impact on the Ao8 dataset, which was obtained from two
images with the same acquisition date. These results, together with those displayed previously, seem
to indicate that both the indices and the hyper-features are particularly useful in datasets obtained by
mixing satellite images with different acquisition dates.

On the boxplots, once again we observe that DT falls behind RF and XGB, and completely
struggles on the Mz6 problem.

In terms of class accuracy in the Gw10 dataset (Tables 12 and 13), when using the hyper-features
with the DT algorithm, the hyper-features are particularly useful in the classification of Grassland,
by correcting pixels that were misclassified as Savanna Woodland (although some of those are now
misclassified as Mangrove); in the classification of Dense Forest, by correcting pixels that were
misclassified as Open Forest (although some of those are now misclassified also as Mangrove); and in
the classification of Wetlands, by correcting pixels previously misclassified as Mangrove. When using
the XGBoost algorithm, the improvements are more general across the classes, with the exception of
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Table 10. Confusion matrix comparing the average test accuracy obtained by the XGBoost algorithm
with and without hyper-features in the IM-10 dataset. This table shows the difference in the percentage
of pixels in each line. Improvements are in green and deteriorations in red. Only the 20 cells with

the highest impact are coloured. The rightmost column indicates the accuracy obtained in each class
without using hyper-features.

XGB Agriculture  Open  Dense Savanna Original
IM-10 Water  Burnt  Sand /Baresoil  Forest Forest Grassland  Mangrove Woodland Mud Accuracy
Water 0.00% -0.05%  0.00% 0.02% 0.00%  0.00% 0.00% -0.01% 0.00% 0.04% 97.33%
Burnt 0.87% 0.29%  0.00% -0.29% 0.00%  0.00% 0.14% -0.87% -0.58% 0.43% 93.19%
Sand 0.00%  0.00%  0.95% -0.95% 0.00%  0.00% 0.00% 0.00% 0.00% 0.00% 95.78%

A/g];;izlst;‘irf 0.00% 000% -015%  0.19% 0.00% 000%  -0.01% -0.18% 013%  0.02% | 98.96%
Open Forest | 0.00%  0.00%  0.00% -0.08% 1.03% -1.83% -0.08% 0.79% 0.16% 0.00% 93.65%
Dense Forest | 0.00%  0.00%  0.00% 0.00% -2.50% 4.33% 0.00% -1.83% 0.00% 0.00% 87.67%
Grassland -0.15%  0.15%  0.00% -0.15% -0.45%  0.00% 0.15% 0.61% -0.15% 0.00% 92.73%
Mangrove -0.15%  0.00%  0.00% -0.03% -0.03%  0.00% 0.00% 0.23% -0.04% 0.01% 99.12%
savanna -\ gg00 0299  0.00%  255%  0.10% 0.00%  -127% -1.18% 549%  -029% | 84.41%
Woodland
Mud -1.29%  0.09%  0.00% -0.02% 0.00%  0.00% 0.00% 0.07% 0.00% 1.16% 96.07%

Table 11. Comparison of the overall test accuracy obtained by the three ML algorithms in the original
datasets, when adding indices, and when adding hyper-features evolved by the M3GP algorithm. The
coloured p-values indicate significantly better/worse results.

Decision Trees Random Forests XGBoost

Dataset Ao8 Gwl0 Mz6 Ao8 Gwl0 Mz6 Ao8 Gwl0 Mz6
Original Dataset

Test Accuracy 0977 0964 0.662 | 0988 0981 0.773 | 0985 0.979 0.780
Indices

Test Accuracy 0978 0968 0.662 | 0989 0980 0.769 | 0986 0.980 0.781

p-value vs Original | 0.291  0.000 0.371 | 0.213 0.824 0.000 | 0.645 0.335 0.003
M3GP

Test Accuracy 0980 0970 0.665 | 0988 0982 0.775 | 0987 0983 0.786

p-value vs Original | 0.125  0.000  0.000 | 0.923 0.0564 0.006 | 0.389  0.000  0.000

p-value vs Indices 0.693 0.847 0.000 | 0.228 0.038 0.000 | 0.650 0.002  0.000

the Grassland pixels, which are now misclassified as Savanna Woodland, and the Dense Forest pixels,
which were previously misclassified as Open Forest.

In this case, we omitted the results regarding the RF classifier since there was no statistically
significant difference between the runs in the original and the extended datasets. We present the results
of both the DT and XGBoost classifier to show that the same hyper-features can have different effects
on two classifiers. In this case, they improved the DT accuracy primarily in three classes, while the
improvements on the XGBoost accuracy were general.

Regarding class accuracy in the Mz6 case (Tables 14 and 15), in addition to showing the
improvements when using hyper-features with the XGB algorithm, we show the degradation obtained
by using indices in the RF algorithm. The idea is not to say that the indices are bad, but to show that
adding more hyper-features will not necessarily bring an improvement. When using the hyper-features
in the XGBoost algorithm, the improvement was general among all classes, with a higher impact on
the Urban pixels that were previously misclassified as Other. The improvements in this class’s pixels
can be easily justified by being the class with the lowest accuracy in the original dataset, followed by
Grassland, which was also improved. When using indices in the RF algorithm, the class accuracy was
degraded, in particular in the classification of Agriculture / Bare Soil, Grassland and Wetland. When
misclassified, these pixels tend to be classified as either Agriculture / Bare Soil, Forest or Grassland.

4.5. Impact on the MRV Performance

When training hyper-features to discriminate multiple classes, the results indicate an overall
improvement, particularly in the classes that previously had a lower accuracy. The improvements are
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Figure 8. Boxplots of the test accuracy obtained in the Ao8, Gw10, and Mz6 datasets in each test case.
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significant in the IM-3, IM-10, Gw10 and Mz6 datasets. These datasets have one thing in common: they
consist of mosaics derived from several acquisition dates. On the contrary, in the Ao8 dataset, where
the two images of the mosaic are from the same day, there are no significant improvements. These
results, together with those previously obtained in [11], indicate that both indices and hyper-features
are more useful when training models in images with more than one acquisition date (or from different
locations).

Monitoring forest land cover at country level, in compliance with UNFCCC standards, is a
challenging endeavor, especially for vast countries covering various ecosystem types with distinct
seasonality. The production of wall-to-wall maps derived from satellite imagery is especially attractive
in these cases because remote sensing can cover large extents, greatly reducing costs, improving
consistency, and increasing the periodicity of observations. However, in such cases, the image
mosaics required to produce good quality maps are likely to include many different acquisition
dates, maximizing image quality and observation date adequacy regarding vegetation cycles and
climatic conditions. Thus, considering the results obtained, with hyper-features improving both
the discrimination of analogous wooded vegetation classes and the classification accuracy of large
image mosaics, it can be ascertained that the methods presented merit further development to exploit
improvements in remote sensing based MRV performance.
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Table 12. Confusion matrix comparing the average test accuracy obtained by the DT algorithm with
and without hyper-features in the Gw10 dataset. This table shows the difference in the percentage
of pixels in each line. Improvements are in green and deteriorations in red. Only the 20 cells with

the highest impact are coloured. The rightmost column indicates the accuracy obtained in each class
without using hyper-features.

DT Agriculture Dense Open Savanna Original
Gw10 /gBare soil Burnt Forest Grassland ~ Mangrove Fol;)'est Sand Woodland Water  Wetland Accgracy
Agriculture 0.25% 0.00% 0.00%  0.02% 0.05%  0.00% -0.22%  -027%  000%  017% | 95.32%
/Bare soil
Burnt 0.07% 0.64%  0.00%  0.00% 0.00%  0.00% 000%  -0.14%  0.00%  -057% | 98.65%
Dense Forest | 0.00% 0.00% 222%  0.00% 185%  -407% 000%  000%  000%  000% | 71.85%
Grassland 0.00% 0.00% 0.00%  5.83% 167%  000% 000%  -750%  0.00%  0.00% | 70.83%
Mangrove 0.02%  -006% 0.00%  -0.02% 020%  0.04% 000%  -0.02%  0.02% -0.18% | 97.28%
Open Forest 0.00% 0.00% 010%  0.02% 0.03%  014% 000%  -017%  -0.02% -0.03% | 96.60%
Sand 0.22% 0.00%  0.00%  0.00% 0.00%  0.00% -022%  0.00%  0.00%  0.00% | 87.78%
Savanna 026%  0.02% -0.03%  011% 031%  002% 000%  068%  0.00% 0.22% | 97.16%
Woodland
Water 0.00%  -0.04% 0.00%  0.00% 011%  -0.02% 0.00%  0.00%  -0.02% -0.04% | 99.46%
Wetland 023%  -014% 000%  0.11% 149%  -0.03% 000%  -034%  006%  161% | 92.30%

Table 13. Confusion matrix comparing the average test accuracy obtained by the XGBoost algorithm
with and without hyper-features in the Gw10 dataset. This table shows the difference in the percentage
of pixels in each line. Improvements are in green and deteriorations in red. Only the 20 cells with

the highest impact are coloured. The rightmost column indicates the accuracy obtained in each class
without using hyper-features.

XGB Agriculture Dense en Savanna Original
Gw10 /%are soil Burnt Forest Grassland Mangrove IS)F; est Sand Woodland Water  Wetland Accﬁraey
Agriculture 0.77%  0.00% 0.00%  0.00% 0.00%  0.00% -062%  -017%  0.00%  0.02% | 96.34%
/Bare soil
Burnt 0.14%  028% 000%  0.00% 043%  -007% 000%  021%  000%  0.14% | 98.72%
Dense Forest | 0.00%  0.00% 093%  0.00% 093%  -185% 000%  000%  000%  0.00% | 79.81%
Grassland 0.00%  0.00% 000%  -250% 0.00%  0.00% 000%  250%  000%  0.00% | 81.67%
Mangrove 0.00%  0.00% -0.03%  0.00% 040%  -002% 000%  -0.08%  -0.08% -0.19% | 98.41%
Open Forest 0.00%  0.00% -0.19%  0.00% 0.03%  031% 000%  -0.09%  000%  0.00% | 9841%
Sand 067%  000% 0.00%  0.00% 0.00%  0.00% -0.67%  000%  000%  0.00% | 90.22%
Savanna 0.09%  0.00% 000%  0.00% 0.02%  -0.14% 0.00%  029%  0.00% -0.04% | 98.66%
Woodland
Water 0.00%  0.00% 000%  0.00% 0.05%  0.00% 0.00%  000%  016% -011% | 99.48%
Wetland 0.11%  006% 0.00%  0.00% 0.34%  000% 000%  000%  006%  034% | 9529%

Table 14. Confusion matrix comparing the average test accuracy obtained by the RF algorithm with
and without indices in the Mz6 dataset. This table shows the difference in the percentage of pixels
in each line. Deteriorations are shown in red. The 10 cells with the highest impact are coloured The
rightmost column indicates the accuracy obtained in each class without using indices.

RF - Mz6 Agrlcultu.r € Forest Grassland Urban Wetland Other Original Accuracy
/Bare soil
Agriculture ) o0 g0 039%  -001%  0.02%  0.07% 71.79%
/Bare soil

Forest -0.07% -0.01% 0.03% 0.00% -0.01% 0.05% 89.06%
Grassland 0.33% 0.31% -0.90% -0.01% 0.31% -0.04% 60.58%
Urban -0.29% 0.03% -0.16% -0.14% 0.06% 0.50% 50.91%
Wetland 0.14% 0.25% 0.15% 0.02% -0.45% -0.09% 79.72%
Other 0.19% -0.09% 0.32% -0.04% -0.02% -0.36% 75.35%

Table 15. Confusion matrix comparing the average test accuracy obtained by the XGBoost algorithm
with and without hyper-features in the Mz6 dataset. This table shows the difference in the percentage of
pixels in each line. Improvements are shown in green. The 10 cells with the highest impact are coloured.

The rightmost column indicates the accuracy obtained in each class without using hyper-features.

XGB - Mz6 Agrlcultu'r € Forest Grassland Urban Wetland ~Other Original Accuracy
/Bare soil
Agriculture | 00 o040, 028%  -001%  -0.01%  -0.32% 72.59%
/Bare soil

Forest -0.00% 0.34% -0.29% 0.00% -0.04%  -0.01% 88.05%
Grassland -0.26% -0.32% 0.51% 0.00% 0.14% -0.08% 64.02%
Urban -0.03% -0.02% -0.25% 1.82% -0.06% -1.48% 56.82%
Wetland -0.15% -0.19% -0.39% 0.02% 0.84% -0.12% 80.34%
Other -0.26% -0.04% -0.18% -0.04%  -0.08% 0.60% 76.07%
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5. Conclusions

We performed Feature Construction using M3GP, a variant of the standard Genetic Programming
algorithm, with the goal of improving the performance of several Machine Learning algorithms by
adding the new hyper-features to the reference datasets. We tested the approach in the tasks of binary
classification of burnt areas and multiclass classification of land cover types. The datasets used were
obtained from Landsat-7, Landsat-8 and Sentinel-2A satellite images over the countries of Angola,
Brazil, Democratic Republic of Congo, Guinea-Bissau, and Mozambique.

The hyper-features produced by the M3GP algorithm, although variable in number and size,
were generally not very complex, and considered to be quite interpretable. While a larger number of
hyper-features were created on the multiclass classification problems, a higher dispersion of sizes was
observed on the binary problems. Regarding the popularity of each satellite band in the binary and
multiclass classification problems, the models frequently used the SWIR2 band when trying to detect
burnt areas in the binary datasets. On the multiclass classification datasets, the models seemed to have
a preference for the Vegetation Red Edge, NIR, Red, and Green bands when training hyper-features to
discriminate different forest classes or when the hardest classes included vegetation (e.g., Agriculture /
Bare Soil and Forest), and in some cases, also water (e.g., Mangroves and Wetlands).

The performance of Decision Trees, Random Forests and XGBoost was assessed on the original
datasets and on the datasets expanded with the evolved hyper-features, and the results compared
for statistical significance. For comparison purposes, we also assessed the performance of the same
algorithms on all datasets expanded with the well-known spectral indices NDVI, NDWI and NBR, and
on the binary datasets expanded with hyper-features created by the FFX and EFS Feature Construction
algorithms. On the binary classification problems, we conclude that neither of the four alternatives
(M3GP, indices, FFX, EFS) leads to substantial improvements. Only FFX was able to improve the
results in 2 out of 12 test cases (both on the same dataset). On the multiclass classification problems,
the hyper-features evolved by the M3GP caused significant improvements in 9 out of 15 test cases,
with no degradation of results in any test case, while the indices caused significant improvements in 4
out of 15 test cases and significant degradation of results in one test case. The approach appears to be
equally beneficial to all three Machine Learning algorithms.

Overall, both hyper-features and indices displayed the capability of improving the robustness of
the machine learning models in multiclass classification datasets. However, this improvement seems
to exist only in datasets built from collections of images with several acquisition dates, which indicates
that both hyper-features and indices can be robust to the radiometric variations across images and can
be used to improve the MRV performance of mechanisms such as REDD+.

Although the hyper-features have the advantage of being created automatically with specific
goals, such as the discrimination of specific classes, there is a computational cost associated with this
task. Taking this into consideration, one of our objectives for future work is to continue the validation
of the efficacy of the hyper-features in the discrimination of similar classes and their robustness to
the radiometric variations across different satellite images. We hope to be able to create reusable
hyper-features, thus reducing the computational cost of generating them frequently. Besides this
validation, we also want to expand this work into regression problems, such as the estimation of
biomass from satellite images.
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Abbreviations

The following abbreviations are used in this manuscript:

Af Equatorial rainforest, fully humid
Am Equatorial Monsoon
Ao Angola
Aw Equatorial savanna with dry winter
Bx Band x
Br Brazil
BSh Hot semi-arid
Bwh Hot desert
CCDC Continuous Change Detection and Classification
Cd Democratic Republic of the Congo
Cwa Warm temperate climate with dry winter and hot summer
Cwb Warm temperate climate with dry winter and warm summer
DT Decision Tree
EC Evolutionary Computation
EFS Evolutionary Feature Synthesis (algorithm)
FEX Fast Function Extraction (algorithm)
GLCM Gray Level Co-occurrence Matrix
Gw Guinea-Bissau
GP Genetic Programming
KGCs Kopper-Geiger Classification System
LS-7 Landsat 7
LS-8 Landsat 8
M3GP Multidimensional Multiclass GP with Multidimensional Populations (algorithm or classifier)
MD Mahalanobis Distance (classifier)
ML Machine Learning
MRV Measure, Report and Verify
Mz Mozambique
NBR Normalized Burn Ratio
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
PCA Principal Component Analysis
REDD+ Reducing Emissions from Deforestation and forest Degradation
RF Random Forest
RS Remote Sensing
S-2A Sentinel-2A
UNFCCC  United Nations Framework Convention on Climate Change
XGB XGBoost
WAF Weighted Average of F-measures
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