Preprint
Article

Exploring Biogenic Dispersion Inside Star Clusters with System Dynamics Modeling

Altmetrics

Downloads

242

Views

162

Comments

0

This version is not peer-reviewed

Submitted:

10 October 2020

Posted:

12 October 2020

You are already at the latest version

Alerts
Abstract
The discovery of a growing number of exoplanets and even extrasolar systems supports the scientific consensus that it is possible to find other signs of life in the universe. The present work proposes for the first time, an explicit mechanism inspired by the dynamics of biological dispersion, widely used in ecology and epidemiology, to study the dispersion of biogenic units, interpreted as complex organic molecules, between rocky or water exoplanets (habitats) located inside star clusters. The results of the dynamic simulation suggest that for clusters with populations lower than 4 M+/ly3 it is not possible to obtain biogenic worlds after 5 Gyr. Above this population size, biogenic dispersion seems to follow a power law, the larger the density of worlds lesser will be the impact rate (β ) value to obtain at least one viable biogenic Carrier habitat after 5 Gyr. Finally, when we investigate scenarios by varying β, a well-defined set of density intervals can be defined in accordance to its characteristic β value, suggesting that biogenic dispersion has a behavior of “minimal infective dose” of “minimal biogenic effective” events by interval i.e. once this dose has been achieved, doesn’t matter if additional biogenic impact events occur on the habitat.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated