Preprint
Article

Downtime Data Analysis Based on Maximum Likelihood (MLE) to Estimate Parameters of Reliability Distributions

Altmetrics

Downloads

485

Views

220

Comments

0

This version is not peer-reviewed

Submitted:

15 October 2020

Posted:

16 October 2020

You are already at the latest version

Alerts
Abstract
Reliability analysis techniques are customary standard tools that are used for evaluating the performance of different equipment and devices in order to minimize their downtime. To predict the reliability, life data from a sample that is satisfactorily representative of the equipment should be fitted to the suitable statistical distribution. The parameterized distribution may be used to estimate essential characteristics such as failure rate; and probability at a precise time, as well as system reliability. In the current study, Weibull++/ALTA software package is used as a novel tool to fit the available data set to estimate the best fitted probability density function (PDF) using Maximum Likelihood (MLE) for parameter estimation. The determined distributions are then assessed using goodness-of-fit test to define how well it fits the available data set. There are multiple methods for determining goodness-of-fit. Weibull distributions and their special cases’ parameters have an effect on life times.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated