You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident in the APR1400 Containment Using a Multi-Dimensional Hydrogen Analysis System

Altmetrics

Downloads

210

Views

134

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

16 October 2020

Posted:

19 October 2020

You are already at the latest version

Alerts
Abstract
Korea Atomic Energy Research Institute (KAERI) established a multi-dimensional hydrogen analysis system to evaluate a hydrogen release, distribution, and combustion in the containment of a nuclear power plant using MAAP, GASFLOW, and COM3D. KAERI developed the COM3D analysis methodology on the basis of the COM3D validation results against the experiments of ENACCEF and THAI. The proposed analysis methodology accurately predicts the peak overpressure with an error range of approximately ±10% using the Kawanabe turbulent flame speed model. KAERI performed a hydrogen flame acceleration analysis using the multi-dimensional hydrogen analysis system for a severe accident initiated by a station blackout (SBO) under the assumption of 100% metal-water reaction in the reactor pressure vessel for evaluating an overpressure buildup in the Advanced Power Reactor 1400 MWe (APR1400). The COM3D calculation results using the established analysis methodology showed that the calculated peak pressure in the containment was much lower than the fracture pressure of the APR1400 containment. This calculation result may have resulted from a large air volume of the containment, a reduced hydrogen concentration owing to passive auto-catalytic recombiners installed in the containment, and a lot of stem presence during the hydrogen flame acceleration in the containment. Therefore, we can know that the current design of the APR1400 containment maintains its integrity when the flame acceleration occurs during the severe accident initiated by the SBO accident.
Keywords: 
Subject: Physical Sciences  -   Nuclear and High Energy Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated