Preprint
Article

Portfolio Risk Assessment under Dynamic (Equi)Correlation and Semi-Nonparametric Estimation: an Application to Cryptocurrencies

This version is not peer-reviewed.

Submitted:

21 October 2020

Posted:

22 October 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The semi-nonparametric (SNP) modeling of the return distribution has been proved to be a flexible and accurate methodology for portfolio risk management that allows two-step estimation of the dynamic conditional correlation (DCC) matrix. For this SNP-DCC model, we propose a stepwise procedure to compute pairwise conditional correlations under bivariate marginal SNP distributions, overcoming the curse of dimensionality. The procedure is compared to the assumption of Dynamic Equicorrelation (DECO), which is a parsimonious model when correlations among the assets are not significantly different but requires joint estimation of the multivariate SNP model. The risk assessment of both methodologies is tested for a portfolio on cryptocurrencies by implementing backtesting techniques and for different risk measures: Value-at-Risk, Expected Shortfall and Median Shortfall. The results support our proposal showing that the SNP-DCC model has better performance for a smaller confidence level than the SNP-DECO model, although both models perform similarly for higher confidence levels.
Keywords: 
Subject: 
Business, Economics and Management  -   Accounting and Taxation
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated