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Abstract 

Advanced paternal age at fertilization has been suggested to be a risk factor for 

neurodevelopmental, psychiatric and other disorders in offspring. One emerging hypothesis 

suggests that altered offspring phenotype is linked with age-related accumulation of epigenetic 

changes in the sperm of fathers. Given that paternal age is increasing in the developed world, 

understanding aging-related epigenetic changes in sperm is needed as well as environmental 

factors that modify such changes. In this study, we characterize age-dependent changes in 

sperm DNA methylation profiles between young pubertal (postnatal day (PNDs) 65) and mature 

(PND120) Wistar rats. We also analyze these changes in rats exposed perinatally to 0.2 mg/kg 

of ubiquitous environmental xenobiotic 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47). Reduced 

representation bisulfite sequencing (RRBS) libraries were prepared from caudal epididymal 

sperm DNA and differentially methylated regions (DMRs; ≥ 10x coverage depth, ≥ 3 CpGs per 

cluster, ≥ 5% methylation change, q < 0.05) were identified via MethPipe package. In control 

animals, 5,319 age-dependent DMRs were identified, with 99.3% DMRs hypermethylated in 

mature animals compared to young pubertal rats. These age-related DMRs were enriched for 

functional categories essential for embryonic development, such as pattern specification, 

forebrain and sensory organ development, Hippo and Wnt pathways. Age-related changes in 

sncRNA, reported in different study, target similar list of genes and biological categories.In BDE-

47 exposed rats, sperm DNA methylation was higher in young pubertal and lower in mature 

animals when compared to controls, which resulted in a significant attenuation in the number of 

age-dependent DMRs (N = 189) identified in the exposed group. In conclusion, our results 

indicate that the natural aging process has profound effects on sperm methylation levels and this 

effect may be modified by environmental exposures. Moreover, our results further support the 

role of epigenetic mechanisms as a likely link betwen paternal age and offspring health and 

development. 

Key words: aging, paternal exposure, sperm, advanced paternal age, epigenetics, DNA 

methylation, RRBS, 2,2′,4,4′-tetrabromodiphenyl ether, PBDE, BDE-47, perinatal, environment. 
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1. Background 

Developed countries experience growing trends for delayed parenthood. Over the past 30 years, 

the number of men fathering children at their 35-44 increased 1.5 fold in the USA (Martin et al., 

2012) and up to 40% in the UK (Bray, Gunnell & Davey Smith, 2006).  Mean age on achieving 

fatherhood is 30.9 years in the USA (Khandwala et al., 2017) and 35 years in Italy (Paoli et al., 

2019). While age-related declines of reproductive potential in females are linked to ovarian 

reserves that are fixed at birth, the self-renewal and differentiation of spermatogonial stem cells 

permits the production of mature sperm throughout the adult life-course. However, this benefit of 

continuous spermatogenesis until older age may be outweighed by life-long accumulation of 

genetic mutations and epimutations in spermatozoa.  

 

Compelling epidemiologic data links advanced paternal age with many adverse health conditions 

in the offspring. These include stillbirths (Nybo Andersen et al., 2004, Alio et al., 2012), 

leukemia (Sergentanis et al., 2015, Dockerty et al., 2001), retinoblastoma (Moll et al., 1996, 

Heck et al., 2012), cleft palate (Bille et al., 2005), autism spectrum disorders (Reichenberg et 

al., 2006, Hultman et al., 2011), attention deficit/hyperactivity disorder (D'Onofrio et al., 2014), 

and a range psychiatric conditions (Nybo Andersen, Urhoj, 2017, Liebenberg et al., 2016, 

Malaspina et al., 2001, Frans et al., 2008). Biological mechanisms responsible for the transfer 

of offspring adverse phenotype via the germ cell of older fathers are not well understood.  

 

Recent studies elucidate the role of epigenetic changes in spermatozoa as a potential 

mechanism that connect paternal legacy of lifestyle and exposures to environmental stressors 

with early-life development and offspring (Wu, Hauser et al., 2015).  An association between 

age-dependent changes in fathers’ sperm epigenome (e.g., DNA methylation, histone 

modifications and small noncoding RNA profiles) and altered offspring phenotype has been 

suggested (Sharma et al., 2015, Perrin, Brown & Malaspina, 2007).  
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Recent population research showed that age-related changes in sperm DNA methylation are 

enriched for regions associated with neurobehavior (Jenkins et al., 2014), such that among men 

providing two semen samples ranging from 9-19 years apart, most (94%) of the significant intra-

individual differences in sperm DNA methylation were hypomethylated with aging, including 

methylation changes in genes associated with schizophrenia and bipolar disorder. Similarly, an 

age-dependent loss of sperm DNA methylation in regions association with transcriptional 

regulation was observed in 129SvEv/Tac mice and offspring of older fathers displayed 

transcriptional dysregulation of developmental genes implicated in neurobehavior (Milekic et al., 

2015). Most recently, sperm methylation between young and old C57BL/6J mice revealed 

widespread sperm methylation changes with 62% of regions hypomethylated and enriched in 

pathways associated with senescence, aging and mTOR signaling (Xie et al., 2018).  

 

With existing trend for delayed parenthood and ever expanding preconception period of paternal 

exposure to environmental stressors it is important to understand effects of age and 

environmental factors on the sperm epigenome. Therefore, we utilized existing data from our 

previous study that examined the effects of perinatal exposure to  2,2’,4,4’-

tetrabromodiphenylether (BDE-47), the most ubiquitous congener of polybrominated diphenyl 

ethers (PBDE), on the sperm methylome in adult rat offspring (Suvorov et al., 2018). In this 

study, perinatal BDE-47 exposure resulted in 21 and 9 differentially methylated regions (DMRs) 

in sperm collected on postnatal day (PND) 65 and PND120, respectively (Suvorov et al., 2018). 

In the current study, we first examine the effect of aging on the sperm methylome by comparing 

DNA methylation profiles in control rats on PND65 and PND120, corresponding approximately to 

young pubertal and mature men, respectively (Robb, Amann & Killian, 1978, Zanato et al., 1994). 

Furthermore, we analyze how observed age-dependent changes in DNA methylation are 

modified by BDE-47 exposure. We also compare our findings with another study from our group 

which analyzed age- and BDE-4-dependent changes of sncRNA in the same rat model (Suvorov 

et al., 2020). Our results indicate that the natural aging process has profound effect on sperm 

epigenome and this effect may be modified by environmental exposures.  
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2. Materials and Methods 

2.1. Animals and Treatment 

All animal protocols were conducted in accordance with the Guide for the Care and Use of 

Laboratory Animals and approved by the Institutional Animal Care and Use Committee at 

University of Massachusetts, Amherst (Figure 1A). Seven-week-old Wistar rats were purchased 

from Charles River Laboratories (Kingston, NY, USA) on the sixth day of pregnancy, housed in a 

temperature- and humidity-controlled room with a 12-h light cycle and maintained at 23±2 °C. All 

rats were fed ad libitum with a rodent chow (Prolab Isopro RMH 3000, Cat. # 5P75, LabDiet, St. 

Louis, MO). Between pregnancy day 8 and postnatal day 21 (PND21) dams were fed daily from 

the tip of a pipette 0.2 µl/gram body weight of vehicle (tocopherol stripped corn oil, MP 

Biomedicals, Solon, OH) or same volume of 1 mg/ml solution of BDE-47 (AccuStandard, Inc., 

New Haven, CT; 100% purity) daily (n=6 per exposure group). In the latter group it resulted in 

exposure level of 0.2 mg/kg body weight BDE-47 per day. This method of exposure was 

developed to substitute oral gavage, which induces significant stress response and may interfere 

with analyzed health outcomes (Vandenberg et al., 2014). The litters were not culled after 

delivery to avoid catch-up growth that may be associated with significant increase in nutrient 

availability following culling (Suvorov, Vandenberg, 2016). Pups were weaned on PND21. On 

PND65 and PND120 one male pup was randomly selected from each litter fasted for 2 hours and 

euthanized using cervical dislocation. Other pups were used in a different study. All euthanasia 

was done during morning hours, between 9 and 10 am. At each euthanasia both distal cauda 

epididymis were collected, incised longitudinally and incubated at 37°C for 30 min in 1 ml of 

sperm wash buffer (Cat. # ART1006, Origio, Denmark) to collect motile spermatozoa via the 

swim-up procedure.  

 
2.2. Sperm DNA extraction 

For sperm DNA-methylation analysis we used sperm collected from 6 animals per time-point per 

exposure group. To remove somatic cells contamination 1.5 ml sperm samples were loaded on 
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top of 1 ml density gradient (40% Isolate, Irvine Scientific, USA) in 15 ml conical tubes and 

centrifuge for 25 min at 500 g. Pelleted spermatozoa were used to extract DNA using the rapid 

method developed in Dr. Pilsner’s laboratory (Wu, de Gannes et al., 2015). 

 

2.3. Reduced representation bisulfite sequencing (RRBS)  

Bisulfite converted libraries were prepared from 100 ng of sperm DNA using Ovation RRBS 

Methyl-Seq System (Cat. # 0353, NuGEN) and EpiTect Fast DNA Bisulfite Kit (Cat. # 59824, 

Qiagen) following manufacturers’ protocols. Sequencing of libraries was done on HiSeq 2500 

(Illumina) in Deep Sequencing Core Facility of the University of Massachusetts School of 

Medicine (Shrewsbury, MA).  DNA methylation by RRBS were validated by pyrosequencing 

(Supplemetal Table 1). DNA was bisulfite converted using EZ DNA Methylation Gold Kit (Zymo 

Research) following manufacturer’s instructions. Following PCR amplification all sequences were 

sequenced using a PyroMark Q24 (Qiagen). PCR and sequencing primers were designed using 

PyroMark® Assay Design SW 2.0 (Qiagen). 

 

2.4. Identification of differentially methylated regions  

Differentially methylated regions were analyzed using a pipeline described in our previous study 

(Suvorov et al., 2018). In short, raw reads were processed in accordance with recommended 

protocol for libraries prepared with Ovation RRBS Methyl-Seq System (NuGEN) and then 

mapped to rn6 Rattus norvegicus reference genome using Bismark (version 0.16.1) (Krueger, 

Andrews, 2011) and bowtie-2 (version 2.2.9) (Langmead, Salzberg, 2012).  PCR-duplicates were 

removed using nudup.py (version 2.2). Subsequent analyses were restricted to CpGs with ≥ 10x 

coverage to comply with ENCODE recommendations (ENCODE, 2011) and recommendations of 

MethPipe developers (Song et al., 2013). Differentially methylated regions (DMRs) were 

identified using MethPipe (Song et al., 2013). All DMR spatial annotations with regard to various 

genome structures were produced using closest-features (v. 2.4.25) tool from bedOps package 

(Neph et al., 2012). Gene coordinates were obtained from refGene using UCSC Table Browser 

(Karolchik et al., 2004). For promoters 2kbp regions around gene transcription start site (-1500bp 
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upstream…500bp downstream) were used. Unsupervised hierarchical clustering of DMRs was 

performed using Qlucore Omics Explorer v 3.3 (Qlucore AB, Lund, Sweden). Final DMRs used 

for subsequent functional analysis were limited to windows less than 1 kb total. DMRs had to be 

within 1,500bp upstream of the transcription start site or overlapping an annotated gene to be 

included in the ontology analysis. 

 

2.5. Functional analyses 

To explore enriched functional terms, Metascape (Tripathi et al., 2015) was used with default 

settings. All analyses were performed for the lists of age-dependent hyper- and hypomethylated 

genes (q < 0.05, ≥ 10x coverage depth, ≥ 3 CpGs, and window length < 1kb). To analyze if 

different epigenetic mechanisms have synergistic effects on age-dependent regulation of genes 

in sperm, we used Fisher Exact test to compare genes associated with age-dependent DMRs 

with lists of genes – predicted targets of age-dependent sncRNA, identified in another study 

using the same rat model (Suvorov et al., 2020). 

 

3.0. Results 

There were no significant differences in litter size between exposure group. Litter size was 12.3 ± 

0.5 in control group and 12.7 ± 0.6 in BDE-47 exposed group (all data are for mean ± SE). No 

weight differences were observed between the control and exposed dams or pups throughout 

the experiment. 

 

3.1. Spermatozoa of untreated rats undergo age-related changes in methylation 

To evaluate the effect of natural aging on sperm DNA methylation, we conducted RRBS of 

epididymal sperm collected from young pubertal and mature control rats and rats perinatally 

exposed to 0.2 mg/kg body weight BDE-47 (Figure 1A). RRBS was completed with an average 

18 million unique reads per sample with an average 70.0% (66.2% – 72.4%) reads aligned to the 

reference genome (see Additional File 1 at (Suvorov et al., 2018) for details). Total average CpG 

coverage was 2.1 million CpG per sample with, which represents approximately 10% of all CpGs 
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in the rat genome. Among all identified CpGs, 58% had 10x or higher coverage. Samples 

obtained from animals of different age and exposure group did not differ in the mean of total 

unique reads, percent alignment, total number of covered CpGs and number of 10x covered 

CpGs. To validate RRBS results we conducted pyrosequencing for 5 regions each including 5-12 

CpGs. RRBS and pyrosequencing provided similar assessment of DNA methylation levels for 

these selected sites.   

 

Figure 1. Age-induced changes in sperm DNA methylation is altered in BDE-47 exposed rats. A). 

Summary of the experimental design. Pregnant rats were administered either BDE-47 or 

tocopherol stripped corn oil (vehicle) starting at E8.0 and continuing through PND21. Weaned 

male mice were allowed to grow to maturity without additional exposure. Sperm was collected 

from PND65 and PND120 males for reduced representation bisulfite sequencing (RRBS). B). 

Heatmap and hierarchical clustering based on all 5,319 significant age-dependent DMRs (≥ 10x 

coverage depth, ≥ 3 CpGs per cluster, ≥ 5% methylation change, q < 0.05) in rat sperm identified 

in control group or exposed group or both as a result of comparison PND65 and PND120 
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animals. The heatmap color scale is based on the standard deviations (SD) from the mean of all 

samples ranging from +2 SD (red) to -2 SD (blue). C). Violin plot of methylation percent of 

significant DMRs with a total window length < 1kb (3,866). Circle represents the mean of all 

DMRs within condition. D). Age-dependent changes in the average methylation across all 

individual CpGs of epididymal sperm within intergenic regions, genes and promoters among 

animals exposed to perinatally to vehicle or 0.2 mg/kg body weight BDE-47. 

 

To better understand DNA methylation changes during aging, we first examined age-dependent 

changes in sperm DNA methylation in young and mature control rats.  When restricting DMRs 

with ≥ 10x coverage depth, ≥ 5% methylation change and ≥ 3 CpGs per cluster, we identified 

5,319 age-dependent significant (q < 0.05) sperm DMRs (Figure 1B, Supplemental Table 2). For 

control animals, 5,283 (99.3%) out of the 5,319 sperm DMRs displayed age-dependent 

increases in DNA methylation, while only 36 (0.7%) DMRs had lower methylation in mature 

animals compared to young. Of the 5,319 age-dependent DMRs, 3,866 DMRs had a total 

window length less than 1kb. The distribution of percent methylation at the 3,866 DMRs 

highlights the shift in methylation from PND65 to PND120 (Figure 1C). Majority of DMRs 

undergoing age-dependent hypermethylation in control animals are found in regions with initially 

low level of methylation. Consistent with age-dependent methylation increases in DMRs, average 

methylation of individual CpGs also increased in an age-dependent manner across genomic 

features: gene bodies (+3.5%), promoters (+2.5%) and intergenic regions (+1.1%) (Figure 1D).  

 

In order to understand the biological relevance of the age-related DMRs, we conducted gene 

ontology enrichment analysis on all 3,866 DMRs (≥ 10x coverage depth, ≥ 5% methylation 

change, ≥ 3 CpGs per cluster, q < 0.05, window length < 1kb). These DMRs were associated 

with 3,066 individual genes. Interestingly, ontology results from genes associated with age-

dependent sperm DMRs identified in control animals revealed an overall enrichment of terms 
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related to embryonic and early-life development, including neuron and brain development 

(Supplemental Table 3). For example, genes undergoing age-dependent changes in methylation, 

were enriched for the following GO terms: embryo development, sensory organ development, 

pattern specification, cell differentiation and forebrain development (Figure 2 and Table 1). 

Specifically, the top enriched molecular functions, biological processes, and cellular components 

indicate enrichment of genes participating in DNA binding, transcription regulation, and 

chromatin organization (Table 1). The top enriched domain was homeobox, which is found within 

genes encoding transcription factors (including Hox transcription factors) involved in the 

regulation of patterns of embryonic development. Top enriched pathways include pathways of 

embryonic development (Figure 2A, B), such as Hippo and Wnt (Figure 3), and pathways 

regulating pluripotency of stem cells (Table 1).  
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Figure 2. Gene ontology enrichment analysis of age-related DMRs. A). Most significantly 

enriched biological categories based on Metascape analysis of the list of genes associated with 

5% altered DMRs (q < 0.05) with ≥ 10x coverage depth, ≥ 3 CpGs, and window length < 1kb 

(3,866) undergoing age-dependent hypomethylation and hypermethylation in sperm. B). Network 

of ontology terms enriched in the list of significant DMRs with window length < 1kb based on 

Metascape analysis. Network colored by cluster ID. B’). Network colored by p-value.  
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Figure 3. KEGG map of the Wnt signaling pathway (Kanehisa, Goto, 2000) as an example of 

developmental pathway enriched with genes (red starts) associated with 5% altered DMRs (q < 

0.05, ≥ 10x coverage depth, ≥ 3 CpGs, window length < 1kb (3,866)) undergoing age-dependent 

hypermethylation or hypomethylation in rat sperm.  

 
Table 1. Top biological categories enriched with genes associated with DMRs undergoing age-
dependent hypermethylation in sperm. Based on ToppGene analysis.  
 

Source: ID Name 
q-value 

FDR B&Y 

Hit Count in 

Query List 

Hit Count 

in Genome 

Molecular Function 

GO:0043565 sequence-specific DNA binding 1.19E-37 323 1096 

GO:0000981 DNA-binding TF activity, RNA polymerase II-specific 9.10E-34 224 675 

GO:0001067 regulatory region nucleic acid binding 1.04E-33 265 866 

GO:0044212 transcription regulatory region DNA binding 4.72E-33 262 860 

GO:1990837 sequence-specific double-stranded DNA binding 8.61E-30 228 735 

Biological Process 

GO:0006357 regulation of transcription by RNA polymerase II 1.87E-51 523 1916 

GO:0009790 embryo development 6.87E-43 345 1135 

GO:0051254 positive regulation of RNA metabolic process 3.36E-39 428 1593 

GO:1903508 positive regulation of nucleic acid-templated transcription 3.92E-38 412 1528 

GO:0045893 positive regulation of transcription, DNA-templated 3.92E-38 412 1528 

Cellular Component 
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GO:0005667 transcription factor complex 5.81E-11 107 368 

GO:0045202 synapse 5.56E-09 195 870 

GO:0043005 neuron projection 1.70E-07 244 1194 

GO:0044456 synapse part 3.62E-07 158 708 

GO:0060076 excitatory synapse 3.62E-07 72 252 

Domain 

Pfam: PF00046 Homeobox 1.08E-11 81 234 

PROSITE: PS00027 HOMEOBOX_1 1.08E-11 81 236 

InterPro: IPR017970 Homeobox_CS 1.08E-11 69 186 

SMART: SM00389 HOX 1.08E-11 81 237 

InterPro: IPR009057 Homeodomain-like 1.08E-11 102 332 

Pathway 

KEGG: 83105 Pathways in cancer 2.12E-11 115 395 

KEGG: 1026136 Signaling pathways regulating pluripotency of stem cells 1.58E-06 48 139 

KEGG: 1435207 Breast cancer 1.58E-06 49 144 

KEGG: 749777 Hippo signaling pathway 1.62E-06 51 154 

KEGG: 83061 Wnt signaling pathway 7.19E-06 47 143 

 

3.2. Exposure leads to altered age-related shift in DNA methylation levels 

Additionally, we were interested in examining age-dependent changes in sperm DNA methylation 

among animals that were perinatally exposed to BDE-47.  Unexpectedly, we identified a 

significantly lower amount of age-dependent sperm DNA methylation changes in exposed 

animals (Figure 1B-D, Supplemental Table 2); whereby we identified only 189 sperm DMRs (52 

DMRs (29%) hypomethylated; 137 DMRs (71%) hypermethylated) in BDE-47 exposed animals 

at PND120 compared to PND65. The effect of age on the average methylation across all 

individual CpGs genome-wide was minimal in exposed animals: gene bodies (+0.4%), promoters 

(0%) and intergenic regions (-0.1%) (Figure 1D).  Upon further investigation into the low number 

of sperm DMRs in exposed animals, we found it was largely attributable to higher methylation at 

DMRs of young exposed animals compared to young controls (Figure 1B,C).  Similarly, average 

methylation at individual CpGs at genes, promoters, and intergenic regions for the two time-

points show that sperm methylation levels were higher in young and lower in mature BDE-47 

exposed animals compared to controls (Figure 1D). 
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Of the 189 age-dependent DMRs in the BDE-47 exposed animals, 178 (94%) overlapped with 

age-dependent DMRs in control animals, and out of these overlapping DMRs, 154 (86%) had the 

same direction (e.g., hypo- or hypermethylated) and similar magnitudes of methylation change 

(correlation coefficient = 0.8174, Figure 4A, Supplemental Table 4). Gene ontology enrichment 

analysis revealed that both hyper- and hypomethylated DMRs are enriched for genes involved in 

regulation of development (Figure 4B,C, respectively). Specifically, hypermethlyated DMRs were 

associated with signaling pathways involved in pluripotency, which is important for embryonic 

development, as well as histone modifications and endosome organization (Figure 4B); whereas, 

hypomethylated DMRs were associated with regulation of developmental growth, regulation of 

vesicle-mediated transport, and regulation of anatomical structure size (Figure 4C).  
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Figure 4. Analysis of overlapping age-related differentially methylation regions significantly 

altered in the same direction between control and BDE-47 exposed rats. A). Methylation 

differences in age-dependent DMRs in control and BDE-47 exposed rats. B,C). Gene ontology 

enrichment analysis of 154 overlapping age-related DMRs. Most significantly enriched biological 

categories based on Metascape analysis of the list of genes associated with 5% altered DMRs (q 

< 0.05) with ≥ 10x coverage depth, ≥ 3 CpGs, and window length < 1kb undergoing age-

dependent (B) hypermethylation and (C) hypomethylation in sperm. 
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3.3. Synergy of age-dependent epigenetic mechanisms 

The rat model analyzed in the current study was previously used to dissect age-dependent 

changes in sncRNA in sperm (Suvorov et al., 2020). This study identified sncRNA differentially 

expressed in sperm of unexposed animals between PND65 and 120. Furthermore, it identified 

4908 protein-coding genes – targets of differentially expressed miRNA and 42 genes – targets of 

differentially expressed piRNA. We compared the list of 3,066 genes associated with age-

dependent DMRs (≥ 10x coverage depth, ≥ 5% methylation change, ≥ 3 CpGs per cluster, q < 

0.05, window length < 1kb) with lists of gene-targets of differentially expressed age-dependent 

sncRNA. We found 1052 genes overlapping between DMR-associated genes and gene-targets 

of miRNA (Supplemental Table 5), while 9 genes were common between DMR-associated genes 

and gene-targets of piRNA. Using Fisher Exact test, we identified that DMR-associated genes 

were significantly enriched with gene-targets of age-dependent miRNA (p < 0.00001) and piRNA 

(p = 0.035). Metascape analysis of the 1052 overlapping genes from miRNA targets and DMR-

associated genes showed high enrichment for developmental categories (embryonic 

morphogenesis, brain development, heart development, gland development and other) with high 

statistical significance (-log 10(P) ranged 14-22) (Supplemental Figure 1). 

 

4.0. Discussion 

In this study, we identified >5,000 age-dependent DMRs in rat spermatozoa in which 99% of 

DMRs underwent an increase in DNA methylation in older animals. Furthermore, we found that 

DMRs were associated with genes significantly enriched for biological categories related to 

embryonic development, morphogenesis and brain development. Finally, perinatal exposure of 

rats to low dose of environmental flame retardant resulted in substantial decrease in age-

dependent sperm DMRs.  This was largely due to higher genome-wide methylation levels in 

younger rats (PND65) that were exposed to BDE-47, whereby sperm from younger exposed 

animals more closely resembled sperm from mature (PND120) controls.  Such results suggest 
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that perinatal exposure resulted in sperm from young animals to harbor an advanced epigenetic 

aging phenotype.   

 

Enriched biological categories identified in our ontology analyses are largely related to embryonic 

morphogenesis, development, and cell differentiation. Among enriched molecular functions the 

most significant categories were related to DNA and chromatin binding. These enrichments were 

due to the altered methylation in large number of transcription factors and histone and chromatin 

remodeling genes. Among transcription factors, significant number of genes contain a homeobox 

domain, the most conserved regulators of embryonic development (Holland et al., 2017). Among 

the most enriched molecular pathway identified by our enrichment analysis were Hippo and Wnt 

pathways. Wnt pathway is conserved mechanism that acts on multiple tissues and 

developmental stages to specify cell fate and patterning in animal embryos (Sokol, 2015). Hippo 

is also highly conserved mechanism, which controls organ size in animals through the regulation 

of cell proliferation and apoptosis (Pan, 2010). Additionally, we identified 154 age-depended 

sperm DMRs in which the direction and magnitude of methylation change was similar in exposed 

and control animals.  These age-dependent DMRs that are resistant to environmental exposures 

may represent the most conserved group of DMRs responsive to aging.  Remarkably, these 

DMRs are enriched in biological pathways related to development and cell differentiation.  

 

Interestingly, another study from our group using the same rat model has recently shown 

recently that age-dependent changes in sncRNA in rat sperm target similar sets of 

developmental genes (Suvorov et al., 2020) as we show here for age-dependent changes in 

DNA-methylation. Thus, different age-dependent changes in the sperm epigenome (DNA-

methylation, expression of miRNA and piRNA) may have synergistic effects on the regulation of 

the expression of genes essential for early embryo development.  These results may be relevant 

for reports of reduced embryo quality in association with increased paternal age (Frattarelli et al., 

2008). Other potentially relevant health outcomes include lower rates of fertilization (Aboulghar et 
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al., 2007), implantation, pregnancy (Ferreira et al., 2010)  and live birth (Frattarelli et al., 2008) 

associated with advanced paternal age.  

 

We analyzed age-dependent changes in DNA methylation by comparing sperm of young 

pubertal (PND65) and mature rats (PND120). Between postnatal days 41 and 54 growth 

hormone pulse amplitudes increase twofold (Gabriel, Roncancio & Ruiz, 1992). In Wistar rats, 

spermatozoa are first registered in the epididymis tail by PND50 (Robb, Amann & Killian, 1978). 

After that, reproductive system continues to undergo maturation until approximately PND100. It 

fact, testis weight increases until PND100, sperm production increases until PND75, and blood 

testosterone reaches its maximum by PND76 (Zanato et al., 1994), and then decreases 

gradually till reaching its adult level by PND97.  PND55 male rats are less successful in 

insemination of female rats than 90-95-day old male rats (Zemunik et al., 2001). Thus, two age 

groups in our study represent distinct stages of reproductive maturation in rats, which 

corresponds to young pubertal and mid-life periods in humans. 

 

In our study, 99% of age-dependent DMRs in control sperm underwent age-dependent increases 

in methylation. Not surprisingly, different genomic elements, such as intergenic regions, genes 

bodies and promoters also demonstrate age-dependent increases in methylation, indicating that 

such changes are not restricted to specific genomic features. Age-dependent increases in 

methylation in our study are in contrast to a loss of methylation previously reported in older mice 

(12-14 months old) compared to younger mice (3 months old) in regions associated with 

transcriptional regulation identified using Methyl-MAPS approach (Milekic et al., 2015). In 

another study of total sperm DNA methylation, only slight increases in methylation levels in long 

interspersed nuclear elements were found in sperm collected from 17-months old compared to 

18-week-old mice (Kobayashi et al., 2016). Comparison of global methylation levels in sperm of 

6- and 21-24-months old Brown Norway rats did not show any effect of age, while ribosomal 

DNA was shown to undergo age-dependent hypermethylation (Oakes et al., 2003).  Comparison 

of these studies indicate that age-related changes in sperm DNA methylation may be species- 
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and even strain-specific or may have more complex dynamics than just linear increase or 

decrease in methylation. Other possibility is that different methods of DNA methylation 

sequencing and analysis enrich for different genomic elements resulting in discrepancy across 

studies. Detailed studies following standardized protocols are needed to further characterize 

dynamics of sperm epigenetic aging across the lifespan in humans and laboratory rodents.  

 

Changes in the dynamics of DNA methylation induced by BDE-47 were achieved using a dose 

that approximates environmental exposures in the general population. Exposure of pregnant rats 

to the same dose of BDE-47 in our previous study (Suvorov et al., 2009) resulted in 

accumulation of 234.3 ng BDE-47/g lipid in adipose tissue of dams. This concentration is 

comparable to PBDE concentrations in adipose tissue from American urban populations (New 

York - 399 ng/g lipids, (Johnson-Restrepo et al., 2005)).  

 

Additionally, we designed our exposure protocol to simulate exposures in the general population. 

In human populations exposures to bioaccumulative flame retardants peak at early steps of 

ontogenesis. PBDEs accumulate in maternal adipose tissue and during pregnancy and lactation 

the developing organisms is exposed via cord blood and breast milk (Antignac et al., 2008, 

Schecter et al., 2006, Shi et al., 2013). These findings are supported by the fact that PBDEs are 

found in the majority of fetal samples in North America (Herbstman et al., 2007, Doucet et al., 

2009). Additionally, during early postnatal life exposure levels of kids is higher than of their 

parents due to higher rates of dust ingestion (Wilford et al., 2005) and higher rates of food intake 

(Schecter et al., 2006).  

 

Both animal experiments and human studies show male reproductive toxicity of BDE-47 and 

other PBDE congeners. Developmental (Kuriyama et al., 2005, Khalil et al., 2017) and adult 

exposures (Zhang et al., 2013, van der Ven et al., 2008) to PBDE in rats were associated with 

altered weight of testis, epididymis and seminal vesicles, abnormalities in sperm morphology, 

decreased sperm count and percent of apoptotic sperm cells. In our recent published study, 
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using same dosing paradigm as in the current study, significant changes in testes transcriptome 

were observed in adult male rats, including suppression of genes, essential for spermatogenesis. 

In particular, exposed animals had 4-fold decreased expression of protamine and transition 

protein genes in testis, suggesting dysregulation of histone-protamine exchange in the course of 

spermiogenesis (Khalil et al., 2017). In humans, blood BDE-47, BDE-100 and ΣBDEs were 

negatively associated with sperm mobility (Abdelouahab, Ainmelk & Takser, 2011). In another 

study men recruited in Michigan and Texas from 2005 to 2009 demonstrated decreased semen 

quality, specifically increased percentages of abnormal morphology in relation to blood PBDEs 

concentrations (Mumford et al., 2015). 

 

Our results demonstrate that exposure to BDE-47 during perinatal period of development 

significantly alters DNA methylation levels, such that we observed 5,319 age-dependent DMRs 

in controls compared to 189 age-dependent DMRs in exposed rats. In our previous study, BDE-

47 exposure, compared to controls, resulted in the identification of only 21 and 9 sperm DMRs in 

young pubertal and mature animals, respectively (Suvorov et al., 2018).  It must be noted that 

unsupervised hierarchical clustering of age-dependent DMRs (Figure 1B) revealed that sperm 

methylations of young and mature BDE-47 exposed rats are more similar to sperm of mature 

controls.  Such results indicate that the methylation profiles of sperm from perinatal BDE-47 

exposure resembles those of more “aged” PND120 control sperm.  This notion is further 

supported by our analyses showing that total CpG methylation within genomic regions 

(intergenic, genes, promoters) is higher in young exposed rats compared to young controls 

(Figure 1D).  Moreover, between PND65 and PND120, sperm methylation increases across all 

genomic regions in controls, whereas in exposed rats the slope between the two time points is 

relatively flat, indicating little to no age-dependent changes in DNA methylation.  Taken together, 

our results suggest that perinatal exposure to BDE-47 alters age-dependent dynamics of DNA 

methylation. In particular, perinatal BDE-47 exposure appears to accelerate sperm epigenetic 

aging in younger animals (<PND65) and impedes the normal aging process in older animals 

(between PND65 and PND120). Based on our recent findings, BDE-47 exposure had very 
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similar effect on age-dependent sncRNA in spermatozoa (Suvorov et al., 2020). sncRNA profiles 

of exposed animals undergo changes that may be interpreted as acceleration of age-dependent 

changes in younger animals and their deceleration in older animals. This effect of exposure 

makes sncRNA profiles of younger and older animals look much more alike and seemingly 

decreases age-dependent changes. For example, in control animals 249 miRNA, 908 piRNA and 

227 tRNA were significantly differentially expressed between PND65 and 120, while in exposed 

animals the same numbers were 68, 44 and 53, respectively (Suvorov et al., 2020).  Additionally 

research is needed to identify the effects of environmental exposures on the sperm epigenome 

as well as to understand interaction between exposures and sperm epigenetic changes that 

occur during the natural aging process.    

 

Our study compares sperm DNA methylation in young pubertal and mature rats. Although first 

spermatozoa are registered in testis around 3 weeks before PND65 (Robb, Amann & Killian, 

1978), there is a small but unlikely chance that some fraction of PND65 spermatozoa represent 

the first wave of spermatogenesis, suggesting that some differences reported in our study may 

be due to the comparison of spermatozoa resulting from different developmental phases of 

spermatogenesis maturation. Thus, future research is needed to analyze changes in DNA 

methylation over the whole reproductive lifespan.   

 

5.0. Conclusions 

In our rat model, paternal aging is associated with increase in methylation of over 5,000 DNA 

regions in sperm, enriched with genes essential for embryonic development. Similar set of genes 

and biological functions was associated with age-dependent changes in expression of miRNA 

and piRNA in our previous study (Suvorov et al., 2020), suggesting synergy between age-

dependent changes in different epigenetic mechanisms in sperm. Exposure to BDE-47 increases 

sperm DNA methylation in young animals, making their sperm methylation profiles similar to 

those of older unexposed animals. Similarly, exposure to BDE-47 increased “epigenetic age” of 
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sncRNA profile in sperm of young animals (Suvorov et al., 2020), suggesting, that response to 

exposure is coordinated between the two epigenetic mechanisms. More research is needed to 

understand inter- and transgenerational phenotypes associated with these changes and to 

identify specific mechanisms and developmental windows responsible for epigenetic profiles 

reprograming by chemical exposures. 

 

6.0. Summary points 

• Advanced paternal age at fertilization is a risk factor for many disorders in offspring, 

however effect of age and environmental exposures on sperm epigenome are poorly 

understood. 

• Comparison of sperm DNA methylation between young pubertal and mature rats 

identified 5,319 DMRs, with 99.3% DMRs hypermethylated in mature animals. 

• Age-related DMRs were enriched for functional categories essential for embryonic 

development.  

• Comparison of age-dependent DMRs with age-dependent changes in sncRNA from 

different study indicate that both target similar list of genes and biological categories. 

• In BDE-47 exposed rats, sperm DNA methylation was higher in young pubertal and lower 

in mature animals when compared to controls, which resulted in significantly smaller 

number of age-dependent DMRs (N = 189).  

• Similarly, BDE-47 decreases the difference in sperm expression of age-dependent 

sncRNA betwen young and mature animals, suggesting common response of different 

age-dependent epigenetic changes to environmental stressor. 

• Our results indicate that the natural aging process has profound effects on sperm 

methylation levels and this effect may be modified by environmental exposures.  

• Our results support the role of epigenetic mechanisms as a likely link between paternal 

age and offspring health and development. 
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