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Abstract

Advanced paternal age at fertilization has been suggested to be a risk factor for
neurodevelopmental, psychiatric and other disorders in offspring. One emerging hypothesis
suggests that altered offspring phenotype is linked with age-related accumulation of epigenetic
changes in the sperm of fathers. Given that paternal age is increasing in the developed world,
understanding aging-related epigenetic changes in sperm is needed as well as environmental
factors that modify such changes. In this study, we characterize age-dependent changes in
sperm DNA methylation profiles between young pubertal (postnatal day (PNDs) 65) and mature
(PND120) Wistar rats. We also analyze these changes in rats exposed perinatally to 0.2 mg/kg
of ubiquitous environmental xenobiotic 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47). Reduced
representation bisulfite sequencing (RRBS) libraries were prepared from caudal epididymal
sperm DNA and differentially methylated regions (DMRs; = 10x coverage depth, = 3 CpGs per
cluster, 2 5% methylation change, q < 0.05) were identified via MethPipe package. In control
animals, 5,319 age-dependent DMRs were identified, with 99.3% DMRs hypermethylated in
mature animals compared to young pubertal rats. These age-related DMRs were enriched for
functional categories essential for embryonic development, such as pattern specification,
forebrain and sensory organ development, Hippo and Wnt pathways. Age-related changes in
sncRNA, reported in different study, target similar list of genes and biological categories.In BDE-
47 exposed rats, sperm DNA methylation was higher in young pubertal and lower in mature
animals when compared to controls, which resulted in a significant attenuation in the number of
age-dependent DMRs (N = 189) identified in the exposed group. In conclusion, our results
indicate that the natural aging process has profound effects on sperm methylation levels and this
effect may be modified by environmental exposures. Moreover, our results further support the
role of epigenetic mechanisms as a likely link betwen paternal age and offspring health and

development.
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1. Background
Developed countries experience growing trends for delayed parenthood. Over the past 30 years,
the number of men fathering children at their 35-44 increased 1.5 fold in the USA (Martin et al.,
2012) and up to 40% in the UK (Bray, Gunnell & Davey Smith, 2006). Mean age on achieving
fatherhood is 30.9 years in the USA (Khandwala et al., 2017) and 35 years in Italy (Paoli et al.,
2019). While age-related declines of reproductive potential in females are linked to ovarian
reserves that are fixed at birth, the self-renewal and differentiation of spermatogonial stem cells
permits the production of mature sperm throughout the adult life-course. However, this benefit of
continuous spermatogenesis until older age may be outweighed by life-long accumulation of

genetic mutations and epimutations in spermatozoa.

Compelling epidemiologic data links advanced paternal age with many adverse health conditions
in the offspring. These include stillbirths (Nybo Andersen et al., 2004, Alio et al., 2012),
leukemia (Sergentanis et al., 2015, Dockerty et al., 2001), retinoblastoma (Moll et al., 1996,
Heck et al., 2012), cleft palate (Bille et al., 2005), autism spectrum disorders (Reichenberg et
al., 2006, Hultman et al., 2011), attention deficit/hyperactivity disorder (D'Onofrio et al., 2014),
and a range psychiatric conditions (Nybo Andersen, Urhoj, 2017, Liebenberg et al., 2016,
Malaspina et al., 2001, Frans et al., 2008). Biological mechanisms responsible for the transfer

of offspring adverse phenotype via the germ cell of older fathers are not well understood.

Recent studies elucidate the role of epigenetic changes in spermatozoa as a potential
mechanism that connect paternal legacy of lifestyle and exposures to environmental stressors
with early-life development and offspring (Wu, Hauser et al., 2015). An association between
age-dependent changes in fathers’ sperm epigenome (e.g., DNA methylation, histone
modifications and small noncoding RNA profiles) and altered offspring phenotype has been

suggested (Sharma et al., 2015, Perrin, Brown & Malaspina, 2007).
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Recent population research showed that age-related changes in sperm DNA methylation are
enriched for regions associated with neurobehavior (Jenkins et al., 2014), such that among men
providing two semen samples ranging from 9-19 years apart, most (94%) of the significant intra-
individual differences in sperm DNA methylation were hypomethylated with aging, including
methylation changes in genes associated with schizophrenia and bipolar disorder. Similarly, an
age-dependent loss of sperm DNA methylation in regions association with transcriptional
regulation was observed in 129SvEv/Tac mice and offspring of older fathers displayed
transcriptional dysregulation of developmental genes implicated in neurobehavior (Milekic et al.,
2015). Most recently, sperm methylation between young and old C57BL/6J mice revealed
widespread sperm methylation changes with 62% of regions hypomethylated and enriched in

pathways associated with senescence, aging and mTOR signaling (Xie et al., 2018).

With existing trend for delayed parenthood and ever expanding preconception period of paternal
exposure to environmental stressors it is important to understand effects of age and
environmental factors on the sperm epigenome. Therefore, we utilized existing data from our
previous study that examined the effects of perinatal exposure to 2,2°4,4’-
tetrabromodiphenylether (BDE-47), the most ubiquitous congener of polybrominated diphenyl
ethers (PBDE), on the sperm methylome in adult rat offspring (Suvorov et al., 2018). In this
study, perinatal BDE-47 exposure resulted in 21 and 9 differentially methylated regions (DMRS)
in sperm collected on postnatal day (PND) 65 and PND120, respectively (Suvorov et al., 2018).
In the current study, we first examine the effect of aging on the sperm methylome by comparing
DNA methylation profiles in control rats on PND65 and PND120, corresponding approximately to
young pubertal and mature men, respectively (Robb, Amann & Killian, 1978, Zanato et al., 1994).
Furthermore, we analyze how observed age-dependent changes in DNA methylation are
modified by BDE-47 exposure. We also compare our findings with another study from our group
which analyzed age- and BDE-4-dependent changes of sncRNA in the same rat model (Suvorov
et al., 2020). Our results indicate that the natural aging process has profound effect on sperm

epigenome and this effect may be modified by environmental exposures.
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2. Materials and Methods

2.1. Animals and Treatment
All animal protocols were conducted in accordance with the Guide for the Care and Use of
Laboratory Animals and approved by the Institutional Animal Care and Use Committee at
University of Massachusetts, Amherst (Figure 1A). Seven-week-old Wistar rats were purchased
from Charles River Laboratories (Kingston, NY, USA) on the sixth day of pregnancy, housed in a
temperature- and humidity-controlled room with a 12-h light cycle and maintained at 232 °C. All
rats were fed ad libitum with a rodent chow (Prolab Isopro RMH 3000, Cat. # 5P75, LabDiet, St.
Louis, MO). Between pregnancy day 8 and postnatal day 21 (PND21) dams were fed daily from
the tip of a pipette 0.2 pl/gram body weight of vehicle (tocopherol stripped corn oil, MP
Biomedicals, Solon, OH) or same volume of 1 mg/ml solution of BDE-47 (AccuStandard, Inc.,
New Haven, CT; 100% purity) daily (n=6 per exposure group). In the latter group it resulted in
exposure level of 0.2 mg/kg body weight BDE-47 per day. This method of exposure was
developed to substitute oral gavage, which induces significant stress response and may interfere
with analyzed health outcomes (Vandenberg et al., 2014). The litters were not culled after
delivery to avoid catch-up growth that may be associated with significant increase in nutrient
availability following culling (Suvorov, Vandenberg, 2016). Pups were weaned on PND21. On
PND65 and PND120 one male pup was randomly selected from each litter fasted for 2 hours and
euthanized using cervical dislocation. Other pups were used in a different study. All euthanasia
was done during morning hours, between 9 and 10 am. At each euthanasia both distal cauda
epididymis were collected, incised longitudinally and incubated at 37°C for 30 min in 1 ml of
sperm wash buffer (Cat. # ART1006, Origio, Denmark) to collect motile spermatozoa via the

swim-up procedure.

2.2.  Sperm DNA extraction

For sperm DNA-methylation analysis we used sperm collected from 6 animals per time-point per

exposure group. To remove somatic cells contamination 1.5 ml sperm samples were loaded on
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top of 1 ml density gradient (40% Isolate, Irvine Scientific, USA) in 15 ml conical tubes and
centrifuge for 25 min at 500 g. Pelleted spermatozoa were used to extract DNA using the rapid

method developed in Dr. Pilsner’s laboratory (Wu, de Gannes et al., 2015).

2.3.  Reduced representation bisulfite sequencing (RRBS)
Bisulfite converted libraries were prepared from 100 ng of sperm DNA using Ovation RRBS
Methyl-Seq System (Cat. # 0353, NUGEN) and EpiTect Fast DNA Bisulfite Kit (Cat. # 59824,
Qiagen) following manufacturers’ protocols. Sequencing of libraries was done on HiSeq 2500
(Numina) in Deep Sequencing Core Facility of the University of Massachusetts School of
Medicine (Shrewsbury, MA). DNA methylation by RRBS were validated by pyrosequencing
(Supplemetal Table 1). DNA was bisulfite converted using EZ DNA Methylation Gold Kit (Zymo
Research) following manufacturer’s instructions. Following PCR amplification all sequences were
sequenced using a PyroMark Q24 (Qiagen). PCR and sequencing primers were designed using

PyroMark® Assay Design SW 2.0 (Qiagen).

2.4. Identification of differentially methylated regions
Differentially methylated regions were analyzed using a pipeline described in our previous study
(Suvorov et al., 2018). In short, raw reads were processed in accordance with recommended
protocol for libraries prepared with Ovation RRBS Methyl-Seq System (NUGEN) and then
mapped to rn6 Rattus norvegicus reference genome using Bismark (version 0.16.1) (Krueger,
Andrews, 2011) and bowtie-2 (version 2.2.9) (Langmead, Salzberg, 2012). PCR-duplicates were
removed using nudup.py (version 2.2). Subsequent analyses were restricted to CpGs with = 10x
coverage to comply with ENCODE recommendations (ENCODE, 2011) and recommendations of
MethPipe developers (Song et al., 2013). Differentially methylated regions (DMRs) were
identified using MethPipe (Song et al., 2013). All DMR spatial annotations with regard to various
genome structures were produced using closest-features (v. 2.4.25) tool from bedOps package
(Neph et al., 2012). Gene coordinates were obtained from refGene using UCSC Table Browser

(Karolchik et al., 2004). For promoters 2kbp regions around gene transcription start site (-1500bp
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upstream...500bp downstream) were used. Unsupervised hierarchical clustering of DMRs was
performed using Qlucore Omics Explorer v 3.3 (Qlucore AB, Lund, Sweden). Final DMRs used
for subsequent functional analysis were limited to windows less than 1 kb total. DMRs had to be
within 1,500bp upstream of the transcription start site or overlapping an annotated gene to be

included in the ontology analysis.

2.5. Functional analyses
To explore enriched functional terms, Metascape (Tripathi et al., 2015) was used with default
settings. All analyses were performed for the lists of age-dependent hyper- and hypomethylated
genes (g < 0.05, = 10x coverage depth, 2 3 CpGs, and window length < 1kb). To analyze if
different epigenetic mechanisms have synergistic effects on age-dependent regulation of genes
in sperm, we used Fisher Exact test to compare genes associated with age-dependent DMRs
with lists of genes — predicted targets of age-dependent sncRNA, identified in another study

using the same rat model (Suvorov et al., 2020).

3.0. Results
There were no significant differences in litter size between exposure group. Litter size was 12.3 +
0.5 in control group and 12.7 + 0.6 in BDE-47 exposed group (all data are for mean + SE). No
weight differences were observed between the control and exposed dams or pups throughout

the experiment.

3.1. Spermatozoa of untreated rats undergo age-related changes in methylation
To evaluate the effect of natural aging on sperm DNA methylation, we conducted RRBS of
epididymal sperm collected from young pubertal and mature control rats and rats perinatally
exposed to 0.2 mg/kg body weight BDE-47 (Figure 1A). RRBS was completed with an average
18 million unique reads per sample with an average 70.0% (66.2% — 72.4%) reads aligned to the
reference genome (see Additional File 1 at (Suvorov et al., 2018) for details). Total average CpG

coverage was 2.1 million CpG per sample with, which represents approximately 10% of all CpGs

d0i:10.20944/preprints202010.0641.v1
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in the rat genome. Among all identified CpGs, 58% had 10x or higher coverage. Samples
obtained from animals of different age and exposure group did not differ in the mean of total
unique reads, percent alignment, total number of covered CpGs and number of 10x covered
CpGs. To validate RRBS results we conducted pyrosequencing for 5 regions each including 5-12
CpGs. RRBS and pyrosequencing provided similar assessment of DNA methylation levels for

these selected sites.
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Figure 1. Age-induced changes in sperm DNA methylation is altered in BDE-47 exposed rats. A).
Summary of the experimental design. Pregnant rats were administered either BDE-47 or
tocopherol stripped corn oil (vehicle) starting at E8.0 and continuing through PND21. Weaned
male mice were allowed to grow to maturity without additional exposure. Sperm was collected
from PND65 and PND120 males for reduced representation bisulfite sequencing (RRBS). B).
Heatmap and hierarchical clustering based on all 5,319 significant age-dependent DMRs (= 10x
coverage depth, = 3 CpGs per cluster, = 5% methylation change, q < 0.05) in rat sperm identified

in control group or exposed group or both as a result of comparison PND65 and PND120
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animals. The heatmap color scale is based on the standard deviations (SD) from the mean of all
samples ranging from +2 SD (red) to -2 SD (blue). C). Violin plot of methylation percent of
significant DMRs with a total window length < 1kb (3,866). Circle represents the mean of all
DMRs within condition. D). Age-dependent changes in the average methylation across all
individual CpGs of epididymal sperm within intergenic regions, genes and promoters among

animals exposed to perinatally to vehicle or 0.2 mg/kg body weight BDE-47.

To better understand DNA methylation changes during aging, we first examined age-dependent
changes in sperm DNA methylation in young and mature control rats. When restricting DMRs
with = 10x coverage depth, = 5% methylation change and = 3 CpGs per cluster, we identified
5,319 age-dependent significant (q < 0.05) sperm DMRs (Figure 1B, Supplemental Table 2). For
control animals, 5,283 (99.3%) out of the 5,319 sperm DMRs displayed age-dependent
increases in DNA methylation, while only 36 (0.7%) DMRs had lower methylation in mature
animals compared to young. Of the 5,319 age-dependent DMRs, 3,866 DMRs had a total
window length less than 1kb. The distribution of percent methylation at the 3,866 DMRs
highlights the shift in methylation from PND65 to PND120 (Figure 1C). Majority of DMRs
undergoing age-dependent hypermethylation in control animals are found in regions with initially
low level of methylation. Consistent with age-dependent methylation increases in DMRs, average
methylation of individual CpGs also increased in an age-dependent manner across genomic

features: gene bodies (+3.5%), promoters (+2.5%) and intergenic regions (+1.1%) (Figure 1D).

In order to understand the biological relevance of the age-related DMRs, we conducted gene
ontology enrichment analysis on all 3,866 DMRs (= 10x coverage depth, = 5% methylation
change, = 3 CpGs per cluster, q < 0.05, window length < 1kb). These DMRs were associated
with 3,066 individual genes. Interestingly, ontology results from genes associated with age-

dependent sperm DMRs identified in control animals revealed an overall enrichment of terms

d0i:10.20944/preprints202010.0641.v1
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related to embryonic and early-life development, including neuron and brain development
(Supplemental Table 3). For example, genes undergoing age-dependent changes in methylation,
were enriched for the following GO terms: embryo development, sensory organ development,
pattern specification, cell differentiation and forebrain development (Figure 2 and Table 1).
Specifically, the top enriched molecular functions, biological processes, and cellular components
indicate enrichment of genes participating in DNA binding, transcription regulation, and
chromatin organization (Table 1). The top enriched domain was homeobox, which is found within
genes encoding transcription factors (including Hox transcription factors) involved in the
regulation of patterns of embryonic development. Top enriched pathways include pathways of
embryonic development (Figure 2A, B), such as Hippo and Wnt (Figure 3), and pathways

regulating pluripotency of stem cells (Table 1).
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Figure 2. Gene ontology enrichment analysis of age-related DMRs. A). Most significantly
enriched biological categories based on Metascape analysis of the list of genes associated with
5% altered DMRs (q < 0.05) with = 10x coverage depth, = 3 CpGs, and window length < 1kb
(3,866) undergoing age-dependent hypomethylation and hypermethylation in sperm. B). Network
of ontology terms enriched in the list of significant DMRs with window length < 1kb based on

Metascape analysis. Network colored by cluster ID. B’). Network colored by p-value.
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Figure 3. KEGG map of the Wnt signaling pathway (Kanehisa, Goto, 2000) as an example of
developmental pathway enriched with genes (red starts) associated with 5% altered DMRs (q <
0.05, = 10x coverage depth, = 3 CpGs, window length < 1kb (3,866)) undergoing age-dependent

hypermethylation or hypomethylation in rat sperm.

Table 1. Top biological categories enriched with genes associated with DMRs undergoing age-
dependent hypermethylation in sperm. Based on ToppGene analysis.

Source: ID Name g-value Hit Coun'g in _Hit Count
FDR B&Y | Query List | in Genome

Molecular Function
G0:0043565 sequence-specific DNA binding 1.19E-37 323 1096
G0:0000981 DNA-hinding TF activity, RNA polymerase Il-specific 9.10E-34 224 675
G0:0001067 regulatory region nucleic acid binding 1.04E-33 265 866
G0:0044212 transcription regulatory region DNA binding 4.72E-33 262 860
G0:1990837 sequence-specific double-stranded DNA binding 8.61E-30 228 735
Biological Process
G0:0006357 regulation of transcription by RNA polymerase Il 1.87E-51 523 1916
G0:0009790 embryo development 6.87E-43 345 1135
G0:0051254 positive regulation of RNA metabolic process 3.36E-39 428 1593
G0:1903508 positive regulation of nucleic acid-templated transcription | 3.92E-38 412 1528
G0:0045893 positive regulation of transcription, DNA-templated 3.92E-38 412 1528
Cellular Component
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G0:0005667 transcription factor complex 5.81E-11 107 368
G0:0045202 synapse 5.56E-09 195 870
G0:0043005 neuron projection 1.70E-07 244 1194
G0:0044456 synapse part 3.62E-07 158 708
G0:0060076 excitatory synapse 3.62E-07 72 252
Domain

Pfam: PF00046 Homeobox 1.08E-11 81 234
PROSITE: PS00027 | HOMEOBOX 1 1.08E-11 81 236
InterPro: IPR017970 | Homeobox CS 1.08E-11 69 186
SMART: SM00389 | HOX 1.08E-11 81 237
InterPro: IPR009057 | Homeodomain-like 1.08E-11 102 332
Pathway

KEGG: 83105 Pathways in cancer 2.12E-11 115 395
KEGG: 1026136 Signaling pathways regulating pluripotency of stem cells 1.58E-06 48 139
KEGG: 1435207 Breast cancer 1.58E-06 49 144
KEGG: 749777 Hippo signaling pathway 1.62E-06 51 154
KEGG: 83061 Whnit signaling pathway 7.19E-06 47 143

3.2. Exposure leads to altered age-related shift in DNA methylation levels

Additionally, we were interested in examining age-dependent changes in sperm DNA methylation
among animals that were perinatally exposed to BDE-47. Unexpectedly, we identified a
significantly lower amount of age-dependent sperm DNA methylation changes in exposed
animals (Figure 1B-D, Supplemental Table 2); whereby we identified only 189 sperm DMRs (52
DMRs (29%) hypomethylated; 137 DMRs (71%) hypermethylated) in BDE-47 exposed animals
at PND120 compared to PND65. The effect of age on the average methylation across all
individual CpGs genome-wide was minimal in exposed animals: gene bodies (+0.4%), promoters
(0%) and intergenic regions (-0.1%) (Figure 1D). Upon further investigation into the low number
of sperm DMRs in exposed animals, we found it was largely attributable to higher methylation at
DMRs of young exposed animals compared to young controls (Figure 1B,C). Similarly, average
methylation at individual CpGs at genes, promoters, and intergenic regions for the two time-
points show that sperm methylation levels were higher in young and lower in mature BDE-47

exposed animals compared to controls (Figure 1D).
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Of the 189 age-dependent DMRs in the BDE-47 exposed animals, 178 (94%) overlapped with
age-dependent DMRs in control animals, and out of these overlapping DMRs, 154 (86%) had the
same direction (e.g., hypo- or hypermethylated) and similar magnitudes of methylation change
(correlation coefficient = 0.8174, Figure 4A, Supplemental Table 4). Gene ontology enrichment
analysis revealed that both hyper- and hypomethylated DMRs are enriched for genes involved in
regulation of development (Figure 4B,C, respectively). Specifically, hypermethlyated DMRs were
associated with signaling pathways involved in pluripotency, which is important for embryonic
development, as well as histone modifications and endosome organization (Figure 4B); whereas,
hypomethylated DMRs were associated with regulation of developmental growth, regulation of

vesicle-mediated transport, and regulation of anatomical structure size (Figure 4C).
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Figure 4. Analysis of overlapping age-related differentially methylation regions significantly
altered in the same direction between control and BDE-47 exposed rats. A). Methylation
differences in age-dependent DMRs in control and BDE-47 exposed rats. B,C). Gene ontology
enrichment analysis of 154 overlapping age-related DMRs. Most significantly enriched biological
categories based on Metascape analysis of the list of genes associated with 5% altered DMRs (q
< 0.05) with = 10x coverage depth, = 3 CpGs, and window length < 1kb undergoing age-

dependent (B) hypermethylation and (C) hypomethylation in sperm.
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3.3.  Synergy of age-dependent epigenetic mechanisms

The rat model analyzed in the current study was previously used to dissect age-dependent
changes in sncRNA in sperm (Suvorov et al., 2020). This study identified sncRNA differentially
expressed in sperm of unexposed animals between PND65 and 120. Furthermore, it identified
4908 protein-coding genes — targets of differentially expressed miRNA and 42 genes — targets of
differentially expressed piRNA. We compared the list of 3,066 genes associated with age-
dependent DMRs (= 10x coverage depth, = 5% methylation change, = 3 CpGs per cluster, q <
0.05, window length < 1kb) with lists of gene-targets of differentially expressed age-dependent
sncRNA. We found 1052 genes overlapping between DMR-associated genes and gene-targets
of MiRNA (Supplemental Table 5), while 9 genes were common between DMR-associated genes
and gene-targets of piRNA. Using Fisher Exact test, we identified that DMR-associated genes
were significantly enriched with gene-targets of age-dependent miRNA (p < 0.00001) and piRNA
(p = 0.035). Metascape analysis of the 1052 overlapping genes from miRNA targets and DMR-
associated genes showed high enrichment for developmental categories (embryonic
morphogenesis, brain development, heart development, gland development and other) with high

statistical significance (-log 10(P) ranged 14-22) (Supplemental Figure 1).

4.0. Discussion
In this study, we identified >5,000 age-dependent DMRs in rat spermatozoa in which 99% of
DMRs underwent an increase in DNA methylation in older animals. Furthermore, we found that
DMRs were associated with genes significantly enriched for biological categories related to
embryonic development, morphogenesis and brain development. Finally, perinatal exposure of
rats to low dose of environmental flame retardant resulted in substantial decrease in age-
dependent sperm DMRs. This was largely due to higher genome-wide methylation levels in
younger rats (PND65) that were exposed to BDE-47, whereby sperm from younger exposed

animals more closely resembled sperm from mature (PND120) controls. Such results suggest
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that perinatal exposure resulted in sperm from young animals to harbor an advanced epigenetic

aging phenotype.

Enriched biological categories identified in our ontology analyses are largely related to embryonic
morphogenesis, development, and cell differentiation. Among enriched molecular functions the
most significant categories were related to DNA and chromatin binding. These enrichments were
due to the altered methylation in large number of transcription factors and histone and chromatin
remodeling genes. Among transcription factors, significant number of genes contain a homeobox
domain, the most conserved regulators of embryonic development (Holland et al., 2017). Among
the most enriched molecular pathway identified by our enrichment analysis were Hippo and Wnt
pathways. Wnt pathway is conserved mechanism that acts on multiple tissues and
developmental stages to specify cell fate and patterning in animal embryos (Sokol, 2015). Hippo
is also highly conserved mechanism, which controls organ size in animals through the regulation
of cell proliferation and apoptosis (Pan, 2010). Additionally, we identified 154 age-depended
sperm DMRs in which the direction and magnitude of methylation change was similar in exposed
and control animals. These age-dependent DMRs that are resistant to environmental exposures
may represent the most conserved group of DMRs responsive to aging. Remarkably, these

DMRs are enriched in biological pathways related to development and cell differentiation.

Interestingly, another study from our group using the same rat model has recently shown
recently that age-dependent changes in sncRNA in rat sperm target similar sets of
developmental genes (Suvorov et al., 2020) as we show here for age-dependent changes in
DNA-methylation. Thus, different age-dependent changes in the sperm epigenome (DNA-
methylation, expression of miRNA and piRNA) may have synergistic effects on the regulation of
the expression of genes essential for early embryo development. These results may be relevant
for reports of reduced embryo quality in association with increased paternal age (Frattarelli et al.,

2008). Other potentially relevant health outcomes include lower rates of fertilization (Aboulghar et
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al., 2007), implantation, pregnancy (Ferreira et al., 2010) and live birth (Frattarelli et al., 2008)

associated with advanced paternal age.

We analyzed age-dependent changes in DNA methylation by comparing sperm of young
pubertal (PND65) and mature rats (PND120). Between postnatal days 41 and 54 growth
hormone pulse amplitudes increase twofold (Gabriel, Roncancio & Ruiz, 1992). In Wistar rats,
spermatozoa are first registered in the epididymis tail by PND50 (Robb, Amann & Killian, 1978).
After that, reproductive system continues to undergo maturation until approximately PND100. It
fact, testis weight increases until PND100, sperm production increases until PND75, and blood
testosterone reaches its maximum by PND76 (Zanato et al., 1994), and then decreases
gradually till reaching its adult level by PND97. PND55 male rats are less successful in
insemination of female rats than 90-95-day old male rats (Zemunik et al., 2001). Thus, two age
groups in our study represent distinct stages of reproductive maturation in rats, which

corresponds to young pubertal and mid-life periods in humans.

In our study, 99% of age-dependent DMRs in control sperm underwent age-dependent increases
in methylation. Not surprisingly, different genomic elements, such as intergenic regions, genes
bodies and promoters also demonstrate age-dependent increases in methylation, indicating that
such changes are not restricted to specific genomic features. Age-dependent increases in
methylation in our study are in contrast to a loss of methylation previously reported in older mice
(12-14 months old) compared to younger mice (3 months old) in regions associated with
transcriptional regulation identified using Methyl-MAPS approach (Milekic et al., 2015). In
another study of total sperm DNA methylation, only slight increases in methylation levels in long
interspersed nuclear elements were found in sperm collected from 17-months old compared to
18-week-old mice (Kobayashi et al., 2016). Comparison of global methylation levels in sperm of
6- and 21-24-months old Brown Norway rats did not show any effect of age, while ribosomal
DNA was shown to undergo age-dependent hypermethylation (Oakes et al., 2003). Comparison

of these studies indicate that age-related changes in sperm DNA methylation may be species-
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and even strain-specific or may have more complex dynamics than just linear increase or
decrease in methylation. Other possibility is that different methods of DNA methylation
sequencing and analysis enrich for different genomic elements resulting in discrepancy across
studies. Detailed studies following standardized protocols are needed to further characterize

dynamics of sperm epigenetic aging across the lifespan in humans and laboratory rodents.

Changes in the dynamics of DNA methylation induced by BDE-47 were achieved using a dose
that approximates environmental exposures in the general population. Exposure of pregnant rats
to the same dose of BDE-47 in our previous study (Suvorov et al., 2009) resulted in
accumulation of 234.3 ng BDE-47/g lipid in adipose tissue of dams. This concentration is
comparable to PBDE concentrations in adipose tissue from American urban populations (New

York - 399 ng/g lipids, (Johnson-Restrepo et al., 2005)).

Additionally, we designed our exposure protocol to simulate exposures in the general population.
In human populations exposures to bioaccumulative flame retardants peak at early steps of
ontogenesis. PBDEs accumulate in maternal adipose tissue and during pregnancy and lactation
the developing organisms is exposed via cord blood and breast milk (Antignac et al., 2008,
Schecter et al., 2006, Shi et al., 2013). These findings are supported by the fact that PBDEs are
found in the majority of fetal samples in North America (Herbstman et al., 2007, Doucet et al.,
2009). Additionally, during early postnatal life exposure levels of kids is higher than of their
parents due to higher rates of dust ingestion (Wilford et al., 2005) and higher rates of food intake

(Schecter et al., 2006).

Both animal experiments and human studies show male reproductive toxicity of BDE-47 and
other PBDE congeners. Developmental (Kuriyama et al., 2005, Khalil et al., 2017) and adult
exposures (Zhang et al., 2013, van der Ven et al., 2008) to PBDE in rats were associated with
altered weight of testis, epididymis and seminal vesicles, abnormalities in sperm morphology,

decreased sperm count and percent of apoptotic sperm cells. In our recent published study,
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using same dosing paradigm as in the current study, significant changes in testes transcriptome
were observed in adult male rats, including suppression of genes, essential for spermatogenesis.
In particular, exposed animals had 4-fold decreased expression of protamine and transition
protein genes in testis, suggesting dysregulation of histone-protamine exchange in the course of
spermiogenesis (Khalil et al., 2017). In humans, blood BDE-47, BDE-100 and >BDEs were
negatively associated with sperm mobility (Abdelouahab, Ainmelk & Takser, 2011). In another
study men recruited in Michigan and Texas from 2005 to 2009 demonstrated decreased semen
quality, specifically increased percentages of abnormal morphology in relation to blood PBDEs

concentrations (Mumford et al., 2015).

Our results demonstrate that exposure to BDE-47 during perinatal period of development
significantly alters DNA methylation levels, such that we observed 5,319 age-dependent DMRs
in controls compared to 189 age-dependent DMRs in exposed rats. In our previous study, BDE-
47 exposure, compared to controls, resulted in the identification of only 21 and 9 sperm DMRs in
young pubertal and mature animals, respectively (Suvorov et al., 2018). It must be noted that
unsupervised hierarchical clustering of age-dependent DMRs (Figure 1B) revealed that sperm
methylations of young and mature BDE-47 exposed rats are more similar to sperm of mature
controls. Such results indicate that the methylation profiles of sperm from perinatal BDE-47
exposure resembles those of more “aged” PND120 control sperm. This notion is further
supported by our analyses showing that total CpG methylation within genomic regions
(intergenic, genes, promoters) is higher in young exposed rats compared to young controls
(Figure 1D). Moreover, between PND65 and PND120, sperm methylation increases across all
genomic regions in controls, whereas in exposed rats the slope between the two time points is
relatively flat, indicating little to no age-dependent changes in DNA methylation. Taken together,
our results suggest that perinatal exposure to BDE-47 alters age-dependent dynamics of DNA
methylation. In particular, perinatal BDE-47 exposure appears to accelerate sperm epigenetic
aging in younger animals (<PND65) and impedes the normal aging process in older animals

(between PND65 and PND120). Based on our recent findings, BDE-47 exposure had very
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similar effect on age-dependent sncRNA in spermatozoa (Suvorov et al., 2020). sncRNA profiles
of exposed animals undergo changes that may be interpreted as acceleration of age-dependent
changes in younger animals and their deceleration in older animals. This effect of exposure
makes sncRNA profiles of younger and older animals look much more alike and seemingly
decreases age-dependent changes. For example, in control animals 249 miRNA, 908 piRNA and
227 tRNA were significantly differentially expressed between PND65 and 120, while in exposed
animals the same numbers were 68, 44 and 53, respectively (Suvorov et al., 2020). Additionally
research is needed to identify the effects of environmental exposures on the sperm epigenome
as well as to understand interaction between exposures and sperm epigenetic changes that

occur during the natural aging process.

Our study compares sperm DNA methylation in young pubertal and mature rats. Although first
spermatozoa are registered in testis around 3 weeks before PND65 (Robb, Amann & Killian,
1978), there is a small but unlikely chance that some fraction of PND65 spermatozoa represent
the first wave of spermatogenesis, suggesting that some differences reported in our study may
be due to the comparison of spermatozoa resulting from different developmental phases of
spermatogenesis maturation. Thus, future research is needed to analyze changes in DNA

methylation over the whole reproductive lifespan.

5.0. Conclusions

In our rat model, paternal aging is associated with increase in methylation of over 5,000 DNA
regions in sperm, enriched with genes essential for embryonic development. Similar set of genes
and biological functions was associated with age-dependent changes in expression of miRNA
and piRNA in our previous study (Suvorov et al., 2020), suggesting synergy between age-
dependent changes in different epigenetic mechanisms in sperm. Exposure to BDE-47 increases
sperm DNA methylation in young animals, making their sperm methylation profiles similar to

those of older unexposed animals. Similarly, exposure to BDE-47 increased “epigenetic age” of
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sncRNA profile in sperm of young animals (Suvorov et al., 2020), suggesting, that response to
exposure is coordinated between the two epigenetic mechanisms. More research is needed to
understand inter- and transgenerational phenotypes associated with these changes and to
identify specific mechanisms and developmental windows responsible for epigenetic profiles

reprograming by chemical exposures.

6.0. Summary points

e Advanced paternal age at fertilization is a risk factor for many disorders in offspring,
however effect of age and environmental exposures on sperm epigenome are poorly
understood.

e Comparison of sperm DNA methylation between young pubertal and mature rats
identified 5,319 DMRs, with 99.3% DMRs hypermethylated in mature animals.

e Age-related DMRs were enriched for functional categories essential for embryonic
development.

e Comparison of age-dependent DMRs with age-dependent changes in sncRNA from
different study indicate that both target similar list of genes and biological categories.

e In BDE-47 exposed rats, sperm DNA methylation was higher in young pubertal and lower
in mature animals when compared to controls, which resulted in significantly smaller
number of age-dependent DMRs (N = 189).

e Similarly, BDE-47 decreases the difference in sperm expression of age-dependent
sncRNA betwen young and mature animals, suggesting common response of different
age-dependent epigenetic changes to environmental stressor.

e Our results indicate that the natural aging process has profound effects on sperm
methylation levels and this effect may be modified by environmental exposures.

e Our results support the role of epigenetic mechanisms as a likely link between paternal

age and offspring health and development.
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