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Abstract 

In some species of salmon, reproductive maturity triggers the development of massive pathology 

resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive 

death, which occurs in many semelparous organisms (with a single bout of reproduction), can be 

prevented by blocking reproductive maturation, and this can increase lifespan dramatically. 

Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with 

multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive 

death occurs in C. elegans and discuss what this means for its use as a model organism to study 

aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and 

greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous 

organisms. We argue that mechanisms of senescence operative in reproductive death exist in a 

less catastrophic form in iteroparous organisms, particularly those involving costly resource 

reallocation, and exhibiting endocrine-regulated plasticity. Thus, mechanisms of senescence in 

semelparous organisms (including plants) and iteroparous ones form an etiological continuum. 

Therefore understanding mechanisms of reproductive death in C. elegans can teach us about 

some mechanisms of senescence that are operative in iteroparous organisms.  
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1. Introduction: C. elegans as a model for understanding human aging  

  In its later stages, aging (senescence) manifests as an array of pathologies whose large 

number and complexity makes understanding its causes difficult. For this reason, simple animal 

models with the possibility of fully understanding senescence, such as the microbiverous 

nematode worm Caenorhabditis elegans, are invaluable. Since Michael Klass and Thomas E. 

Johnson pioneered work on the genetics of aging in this species (Friedman and Johnson, 1988; 

Johnson and Wood, 1982; Klass, 1977, 1983), its use has yielded many insights into biological 

mechanisms of aging. These include acceleration of aging by insulin/IGF-1 signaling (IIS), 

germline signaling, mitochondrial function, loss of protein folding homeostasis, but not oxidative 

damage, and modulation of aging by steroid hormones and epigenetic changes (Antebi, 2013; 

Greer et al., 2010; Kenyon, 2010; Labbadia and Morimoto, 2014; Munkácsy and Rea, 2014; Van 

Raamsdonk and Hekimi, 2010). 

  The extent to which the primary causes of aging in C. elegans are the same or different 

to those in humans will only become clear once both are fully understood. However, it is already 
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evident that C. elegans and mammals share some but not all senescent etiologies. For example, in 

mammals stem cell exhaustion (Conboy and Rando, 2012; Shaw et al., 2010) and accumulation of 

senescent cells (van Deursen, 2014) (sensu Hayflick; note that there are two distinct meanings of 

the word senescence) contribute to senescence in the broad sense. By contrast, in adult C. 

elegans somatic cells are post-mitotic, and cellular senescence (sensu Hayflick) does not seem to 

occur. By contrast, interventions reducing insulin/IGF-1 or mTOR (mechanistic target of rapamycin) 

signaling or supporting protein folding homeostasis protect against aging in C. elegans and 

mammals (Kenyon, 2010; Labbadia and Morimoto, 2014; Zhang and Cuervo, 2008). Moreover, 

interventions causing loss of antioxidant defense or mitochondrial impairment which cause death in 

mammals can increase lifespan in C. elegans (Rea, 2005; Van Raamsdonk and Hekimi, 2009). 

  We have recently proposed that two forms of programmatic aging are major 

determinants of C. elegans lifespan: adaptive death, which promotes fitness in a manner similar to 

apoptosis (Galimov and Gems, 2020a, b; Lohr et al., 2019), and reproductive death (Kern et al., 

2020a; Kern et al., 2020b). In this essay, we explore further the possibility that C. elegans undergo 

semelparous reproductive death by comparing it with other organisms known to undergo 

reproductive death. We then discuss the implications of reproductive death in C. elegans, and 

argue that some mechanisms of senescence operative in semelparous and iteroparous organisms 

contribute to aging in both. 

 

2. Antagonistic pleiotropy and programmatic mechanisms as conserved causes of aging 

  The predominant causes of aging are the ultimate, evolutionary processes that generate  

proximate biological mechanisms that engender senescent pathology (Flatt and Schmidt, 2009). 

One ultimate cause of aging that is shared between C. elegans and humans is antagonistic 

pleiotropy (AP). Here gene variants that increase fitness in early life may be favored by natural 

selection, even where as a side effect they promote pathology in later life (Williams, 1957). How 

AP acts in terms of proximate mechanisms remains unclear, but one broad cause of AP effects is 

certainly biological constraint leading to trade-offs, such that a change in one trait that increases 

fitness leads to a coupled change in another that reduces fitness.  

  A traditional interpretation is that trade-offs promoting senescence involve physiological 

costs in terms of reduced allocation of resources to somatic maintenance (Acerenza, 2016; 

Kirkwood and Rose, 1991; Partridge and Sibly, 1991), but there are also other possibilities. For 

example, a different type of AP mechanism altogether, suggested in a hypothetical example by 

George Williams himself, is continued wild-type gene action in late life with pathogenic effects 

(Williams, 1957). A more recent elaboration of this idea, drawn in particular from the behavior of 

mTOR, is that late-life action of regulators of growth and reproduction results in futile and 

pathogenic execution of complex biological programs (Blagosklonny, 2006; de Magalhães and 

Church, 2005). Because the term program implies the presence of a function, while such late-life 

activation is futile, Blagosklonny introduced the term quasi-program; in other words, programmed 
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in the mechanistic sense but not the adaptive sense (Galimov et al., 2019). More broadly, one may 

accurately describe proximate mechanisms of this type as programmatic (de Magalhães and 

Church, 2005; Maklakov and Chapman, 2019). As a primary mechanism of aging, this form of AP 

is distinct from damage accumulation and, in the case of IIS/mTOR for example, results not from a 

passive loss of function (or wearing out), but rather active gene function, or hyperfunction 

(Blagosklonny, 2008) (see Glossary for definition of key terms).  

  Our recent studies of several major C. elegans senescent pathologies imply that they 

originate predominantly from hyperfunction rather than molecular damage (de la Guardia et al., 

2016; Ezcurra et al., 2018; Gems and de la Guardia, 2013; Sornda et al., 2019; Wang et al., 

2018b). For example, physiological apoptosis (PA) in the hermaphrodite germline supports 

nascent oocyte growth, and apparently futile run-on of PA contributes to gonad atrophy and 

fragmentation (Fig. 1A) (de la Guardia et al., 2016). In another example, activation of 

embryogenetic functions in unfertilized oocytes in the uterus leads to extreme polyploidy, cellular 

hypertrophy and teratoma-like tumors (Fig. 1A) (McGee et al., 2012; Wang et al., 2018a; Wang et 

al., 2018b). In both cases, quasi-programs promoted by wild-type gene action contribute to the 

development of major senescent pathology. 

  As a further example, during hermaphrodite aging large pools of material that appears 

oily when viewed using Nomarski microscopy accumulate in the body cavity (Fig. 1B), and contain 

vitellogenin (yolk protein) and lipid (Chen et al., 2016; Ezcurra et al., 2018; Garigan et al., 2002; 

Herndon et al., 2002; McGee et al., 2011; Yi et al., 2014). Such pseudocoelomic lipoprotein pools 

(PLPs) represent a form of senescent steatosis (Ezcurra et al., 2018; Palikaras et al., 2017). 

Moreover, levels of vitellogenins increase dramatically, reaching up to 7-fold of that seen in young 

adults (Depina et al., 2011; Ezcurra et al., 2018; Sornda et al., 2019). Given that this accumulation 

occurs in post-reproductive hermaphrodites, it appears to be the result of futile, open faucet-type 

run-on of yolk synthesis, or a vitellogenic quasi-program (Ezcurra et al., 2018; Gems and de la 

Guardia, 2013; Herndon et al., 2002). 

  The C. elegans intestine is the largest somatic organ and serves multiple functions, 

including those played by the liver and adipose tissue in vertebrates (McGhee, 2007). It is a site of 

action of genes affecting lifespan (Libina et al., 2003; Lin et al., 2001). During aging in C. elegans 

hermaphrodites, the intestine undergoes major atrophy, losing most of its volume (Fig. 1C) 

(Ezcurra et al., 2018; Garigan et al., 2002; McGee et al., 2011). The intestine is the site of yolk 

synthesis for oocyte provision (Kimble, 1983), and consumption of intestinal biomass to support 

continued yolk export is a cause of intestinal atrophy (Ezcurra et al., 2018; Sornda et al., 2019). 

Loss of function of genes supporting autophagy inhibits both intestinal atrophy and PLP 

accumulation, suggesting that autophagy facilitates gut-to-yolk biomass conversion, and that futile 

run-on of vitellogenesis promotes intestinal atrophy (Ezcurra et al., 2018; Sornda et al., 2019).  
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  These proximate, pathogenetic mechanisms are distinct from molecular damage 

accumulation, traditionally viewed as the predominant cause of aging; however, this does not 

argue against a contributory role for molecular damage in aging.  

 

3. Yolk venting suggests that C. elegans could be semelparous 

  The interpretation of late-life yolk production as quasi-programmed is based on the 

assumption that it is futile, but is it really? Could later yolk accumulation somehow promote fitness? 

One possibility is a benefit to mated hermaphrodites where egg production is not curtailed by self-

sperm depletion; however, although the egg laying period is extended by mating, fecundity drops 

dramatically with age in mated hermaphrodites (Hughes et al., 2007); moreover, males are 

extremely rare in the wild (Schulenburg and Félix, 2017). Another possibility is that internally 

hatched larvae feed on internal yolk pools in live mothers. When cultured with some bacterial 

strains (especially where pathogenic), C. elegans hermaphrodites withhold eggs that hatch 

internally, and larvae then exit via the vulva (viviparous reproduction) (Mosser et al., 2011).  

  A better supported fitness benefit of post-reproductive vitellogenesis is that conferred by 

the recently discovered phenomenon of yolk venting (Kern et al., 2020a). Beginning at the end of 

egg laying, hermaphrodites vent substantial amounts of liquid rich in vitellogenins and lipid through 

the vulva and into their local vicinity. Notably, consumption by larvae of this vented yolky 

substance, present either as free pools or within unfertilized oocytes, can promote larval growth 

(Kern et al., 2020a). This suggests a later function for vented yolky fluid similar to that of milk (we 

suggest the term yolk milk). Feeding of milk-like fluid by mothers to offspring has been observed 

before in various other invertebrates, such as the Pacific beetle cockroach, Diploptera punctata 

(Marchal et al., 2013) and the tsetse fly (Glossina spp.) (Benoit et al., 2015). Such behavior 

exemplifies the wider phenomenon of trophallaxis, the social transfer of nutrient fluids between 

individuals, particularly in the context of parental care. Trophallaxis also encompasses fluid 

exchanges between social insects and mammalian nursing (LeBoeuf, 2017). In C. elegans, 

mutation of the daf-2 insulin/IGF-1 receptor, which greatly extends lifespan, also suppresses 

venting of both yolk and unfertilized oocytes (Gems et al., 1998; Kenyon et al., 1993; Kern et al., 

2020a). Function as a vector for trophallactic fluid could provide an answer to the long-standing 

mystery of why adult hermaphrodites lay more than their own volume in unfertilized oocytes (Ward 

and Carrel, 1979). Thus, one could say that C. elegans mothers provide milk and cookies for their 

larval kin (Fig. 2A). 

  If late-life yolk production promotes fitness, then yolk steatosis and intestinal atrophy are 

not the result of a vitellogenic quasi-program. Instead, intestinal atrophy results from a life history 

trade-off involving physiological costs (Fig. 2B). As previously defined, physiological costs can be 

either direct (e.g. the energy or nutrient requirements of reproduction) or indirect (Speakman, 

2008; Zera and Harshman, 2001). Indirect costs include consequential costs, where harm occurs 

unavoidably as a consequence of the reproductive event, for example bone loss in mammals due 
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to calcium remobilization during lactation (Speakman, 2008). In that example and in intestinal 

involution to support yolk milk production in C. elegans (Ezcurra et al., 2018), an active, 

programmed process of resource reallocation promotes fitness; however, intestinal atrophy itself is 

a pathological side effect and does not promote fitness. 

  The existence of yolk milk venting as a means of resource transfer from post-

reproductive mothers to larval kin could also resolve another puzzle, relating to the overall pattern 

of senescent pathogenesis in C. elegans. In humans, age-related diseases appear late in life after 

an extended period of optimal health (Niccoli and Partridge, 2012). However, in C. elegans 

hermaphrodites, development of senescent pathologies begins within days of reproductive maturity 

(Ezcurra et al., 2018), and involves a level of destructive severity (including massive organ 

hypertrophy, atrophy and disintegration) that is not typical of senescence in higher animals (de la 

Guardia et al., 2016; Garigan et al., 2002; Herndon et al., 2002; McGee et al., 2012; McGee et al., 

2011). By contrast, in wild-type males, these pathologies are not seen (de la Guardia et al., 2016; 

Ezcurra et al., 2018). This pattern of rapid and severe pathological change affecting organs linked 

to reproduction (the nervous system is relatively well preserved in aging C. elegans (Herndon et 

al., 2002)) is reminiscent of semelparous organisms that undergo programmed reproductive death. 

Previously, the apparent absence of any fitness benefit to which these destructive changes could 

be linked as a cost argued against the idea that C. elegans is semelparous. However, with the 

discovery of "lactation" in C. elegans, it now appears more likely that this organism is semelparous. 

To explore this possibility, let us next consider semelparity in more detail.  

 

4. Semelparity and reproductive death 

  Comparer, c'est comprendre. Charles de Gaulle 

  Life histories may be broadly classified according to reproductive schedule, where 

semelparous species reproduce once and iteroparous species more than once (Cole, 1954; Finch, 

1990b); but more precisely, semelparity and iteroparity represent two ends of a continuum of parity 

(Hughes, 2017). Reproduction in semelparous species can lead to rapid, post-reproductive death 

(reproductive death) by various mechanisms, usually coupled to very high levels of reproductive 

effort and investment which leads rapidly to severe pathology (Finch, 1990b). Though semelparous 

organisms do not necessarily undergo reproductive death, the term semelparous is sometimes 

used to denote semelparity with reproductive death; for convenience, we will often follow that 

usage here. In many semelparous organisms, rapid senescence is triggered by sexual maturation 

and under hormonal control. This form of reproductive death can be prevented, for example by 

surgical removal of organs that direct physiological changes that lead to death or by removing 

environmental cues, and this can result in increases in lifespan of a large magnitude (as detailed in 

section 6.1).  

  The biology of animal semelparity has been explored in more detail in vertebrates than 

invertebrates. Semelparity in vertebrates is rare, but found in some fish (e.g. salmon, lampreys, 
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eels), and a few reptiles (e.g. the aspic viper) (Bonnet, 2011) and marsupial mammals. 

Semelparity in Pacific salmon such as Oncorhynchus nerka has been studied in some detail. 

Semelparous salmon are usually anadromous, migrating from the sea to spawn in fresh water. 

When swimming up river they undergo marked anatomical changes where testes and ovaries grow 

dramatically, plasma vitellogenin levels rise (von der Decken, 1992), and males develop secondary 

sexual characteristics, including growth of the beak to form the hook, and hump development 

(Quinn and Foote, 1994)(Fig. 3A). These changes are triggered by gonadal steroids, leading to 

increased corticosteroid production (Hane and Robertson, 1959; Mcquillan et al., 2003), which 

mobilizes energy to support reproduction but also impairs immune defense mechanisms, in a 

manner that resembles Cushing's disease in humans (hyper-adrenocorticism). As in C. elegans 

hermaphrodites, a range of severe, deteriorative pathologies rapidly develop, here affecting the 

liver, kidney, spleen, heart, thymus and digestive tract (Finch, 1990b; Robertson et al., 1961). 

Death occurs a week or two after spawning (Carruth et al., 2002). 

  Reproductive death is also seen in lampreys, jawless fish of the class Agnatha, such as 

the European river lamprey Lampetra fluviatilis (Fig. 3B). Lampreys pass through larval and non-

reproductive juvenile stages of variable duration before undergoing sexual maturation and 

spawning, usually after around 4-8 years. Prior to spawning in fresh water they cease feeding 

(synchony) and before and during sexual maturation undergo major anatomical changes including 

atrophy of many somatic organs, such as the body wall (including muscle), intestine and liver (but 

not the heart), and organism-wide loss of protein, glycogen and fat, which supports both gonadal 

growth (including vitellogenesis by the liver) and swimming (Bentley and Follett, 1965; Larsen, 

1969; Larsen, 1980; Mewes et al., 2002). Atrophy of the intestine is particularly marked (Higashi et 

al., 2005; Larsen, 1965, 1969) (Fig. 3B), reminiscent of C. elegans hermaphrodites (Ezcurra et al., 

2018), but this occurs prior to sexual maturation, where the main source of remobilized resources 

is the body wall (Larsen, 1980). Death occurs shortly after spawning (a few days or weeks) 

(Larsen, 1980). 

  A number of dasyurid marsupials of the genera Antechinus, Phascogale and Dasykaluta 

exhibit reproductive death (Braithwaite and Lee, 1979; Hayes et al., 2019). For example, males of 

the mouse-like brown antechinus A. stuartii enter the breeding season at around the end of their 

first year of life, and most die within 2-3 weeks of reproductive maturity (Woolley, 1966). As in 

semelparous salmon, a major driver of pathology is hypercorticism associated with adrenal 

hyperplasia, which causes the males to become ill and die, e.g. due to infection and 

gastrointestinal haemorrhage (Barker et al., 1978; Bradley et al., 1980).  

  A common feature of semelparous species is an extended pre-reproductive stage, with 

death following rapidly after reproductive maturation. For example, eels of the genus Anguilla 

typically spawn and die at 6-12 years of age (Tesch, 1977), and the bamboo Phyllostachys 

bambusoides flowers and dies after as much as 120 years (Janzen, 1976; Soderstrom and 

Calderon, 1979). As previously noted (Finch, 1990b)(p.118), C. elegans shows this pattern: 
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diapausal dauer larvae can survive for up to 90 days, whereas after recovery from dauer and 

attainment of adulthood, death occurs within 2-3 weeks (Klass, 1977; Klass and Hirsh, 1976). 

  In conclusion, the pattern of pathological anatomical change seen C. elegans 

hermaphrodites resembles that seen in reproductive death, particularly in semelparous fish. Next 

we explore the similarities between C. elegans and semelparous organisms in terms of the 

possible proximate mechanisms of aging involved.  

    

5. Destructive resource reallocation in reproductive death 

  Our working hypothesis is that C. elegans reproductive death results, at least partly, 

from the costs of consequential indirect physiological trade-offs, including one in which intestinal 

biomass is consumed to generate trophallactic fluid (yolk milk) that nourishes larval kin (Ezcurra et 

al., 2018; Kern et al., 2020a; Speakman, 2008). Broadly, this is a type of process where biological 

structures at one site (the source) are broken down and converted into structures at another 

location, or into activity (the sink). As has been said: "The massive translocation of resources at 

the time of reproduction is fundamental to the biology of semelparous species" (Young and 

Augspurger, 1991). While supporting fitness at the sink, source organs can be impaired, e.g. due 

to atrophy (Fig. 4A). The nature of reproductive effort supported at the sink can involve  increased 

gonadal development, gamete production (including vitellogenesis) or lactation, or enhanced 

performance (e.g. courtship, mating). For example, in semelparous salmon, muscle catabolism to 

generate nutrients supports gonadal and gamete development, and the effort of swimming 

upstream, but also causes muscle atrophy (von der Decken, 1992). Similarly in lampreys atrophy 

of muscle and intestine is coupled to gonad growth and sustained swimming (Larsen, 1980). 

Again, during their brief breeding season male A. stuartii cease feeding, and glucose availability is 

increased by gluconeogenesis promoted by elevated plasma corticosteroid levels, which both 

provides energy to support their extended copulatory exertions (increased performance; A. stuartii 

will copulate for up to 8 hours continuously) and causes lethal immune deficiency (Naylor et al., 

2008). 

 

5.1 The role of autophagy in source-to-sink biomass conversion  

  Source-to-sink biomass conversion implies the occurrence of bulk autolysis of biomass 

in the source tissue. This suggests a role of enzymatic degradation, which usually occurs within 

acidic compartments within the cell, including lysosomes in animals, and the vacuole in fungi and 

plants (Fig. 4A). In animals, the major, regulated intracellular mechanism of bulk autolysis is 

autophagy (specifically macroautophagy). In C. elegans, inhibition of autophagy inhibits both 

intestinal atrophy and yolk steatosis (Ezcurra et al., 2018). The implied role of autophagy as a 

promoter of senescent pathology is somewhat unexpected given previous evidence that autophagy 

is important in maintaining homeostasis and protecting against senescent decline (Gelino and 

Hansen, 2012). Plausibly, physiological costs due to biomass conversion are more severe in 
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semelparous than iteroparous organisms, such that a major role for autophagic processes in 

pathogenesis is a special feature of semelparity. Very little is known about the role of autophagy in 

reproductive death in animals. In lampreys, breakdown of intestinal biomass occurs in part in the 

stellate cells beneath the intestinal epithelium. In L. japonica there is evidence that biomass 

breakdown (visible as loss of collagen fibrils) occurs by a process of phagocytosis and lysosomal 

proteolysis (Higashi et al., 2005). Intestinal atrophy in lampreys occurs largely prior to 

vitellogenesis, which occurs in the liver (Larsen, 1980), so lampreys differ from C. elegans here. 

 

5.2 Destructive resource reallocation and senescence in plants 

  Much more is known about the biology of source-to-sink biomass conversion in plants, in 

the context of semelparity (in plants, monocarpy), and also leaf senescence (Avila-Ospina et al., 

2014; Davies and Gan, 2012; Young and Augspurger, 1991). One reason is that semelparity is 

much more common among plants than animals. Another is that understanding the biology of 

biomass conversion is useful for crop improvement. This knowledge includes a detailed 

understanding of the proteolytic machinery involved in autolysis (including autophagy) in source 

tissues that provides useful insight into semelparous pathophysiology. 

  In deciduous trees in autumn, leaf senescence occurs during which leaf biomass is 

broken down and remobilized (particularly nitrogen), and transported via the phloem to support 

tree survival, resulting in leaf death. In many monocarpic angiosperms, the entire soma is broken 

down during flowering and fruiting, largely to support seed production (Diaz-Mendoza et al., 2016; 

Schippers et al., 2015). In perennial polycarps the entire plant above ground may die off to support 

growth and survival of the subterranean bulb. In each case, somatic biomass is transferred from 

source to sink organs (Davies and Gan, 2012). For example, in wheat and rice grains up to 90% of 

the nitrogen content is derived from the senescence of somatic tissues (Diaz-Mendoza et al., 

2016). 

  Senescence-associated biomass conversion in plants is driven by action of a variety of 

proteases acting in different cellular compartments, but the final destination is mainly the large, 

acidic central vacuole (Avila-Ospina et al., 2014). This is functionally related to the lysosome of 

animal cells, e.g. as a major site of proteolysis by acid proteases. Material from other organelles, 

particularly chloroplasts, is transported to the vacuole in several ways, including autophagosomes 

(Fig. 4B). Thus, in plants as in C. elegans gut-to-yolk biomass conversion, autophagy and 

autophagy-related processes promote senescence. 

  If autophagy promotes plant senescence, then inhibiting autophagy should retard 

senescence, as seen in C. elegans intestinal senescence (Benedetto and Gems, 2019; Ezcurra et 

al., 2018). The effects of inhibition of autophagy on plant senescence are complex but, 

interestingly, support the view that autophagy promotes the earlier stages of senescence but 

protects against its later stages. For example, in Arabidopsis thaliana loss of expression of genes 

encoding proteins involved in autophagy (atg5, atg-9 or atg18a) inhibits the age decline in amino 
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acid, protein and RNA content in plant rosettes (Guiboileau et al., 2013; Havé et al., 2018). Loss of 

atg-5 in plants subjected to mild (but not severe) stress suppresses leaf senescence (Sakuraba et 

al., 2014). Moreover, atg mutants are hypersensitive to N and C starvation, and deficient in N 

redistribution into seeds, not only in A. thaliana but also in maize and rice (Tang and Bassham, 

2018). Furthermore, global expression of atg genes increases in the later stages of leaf 

senescence in many plant species, though in A. thaliana leaf senescence this occurs after N 

mobilization is well underway (Avila-Ospina et al., 2014; Tang and Bassham, 2018). Overall, this 

supports the view that autophagy promotes resource remobilization during senescence leading to 

loss of somatic biomass. 

  On the other hand, leaf yellowing characteristic of leaf senescence occurs prematurely 

upon mutation of apg7-1 and atg12 in A. thaliana (Doelling et al., 2002; Phillips et al., 2008), atg7 

in rice (Wada et al., 2015), and atg12 in maize (Li et al., 2015). This happens because loss of 

autophagy reduces flavonoid synthesis which causes oxidative stress, which in turn triggers 

salicylic acid (SA) accumulation that causes the yellowing (Masclaux-Daubresse et al., 2014; 

Yoshimoto et al., 2009). In A. thaliana, blocking SA synthesis in atg mutants by mutation of sid2 

suppresses the premature leaf senescence (Yoshimoto et al., 2009) but, in atg5-1 mutants, not the 

N redistribution deficiency. Notably, under non-stressed conditions, leaf yellowing in atg-5-1 sid2 

mutants on low N appears similar to wild type (Avila-Ospina et al., 2014; Guiboileau et al., 2012). 

This suggests that impaired autophagy disturbs cellular homeostasis but does not accelerate 

senescence.  

 

5.3 Autophagic processes maintain homeostasis while they destroy the cell  

  The aforementioned studies of autophagy in plant senescence provide insight into its 

double-edged role in resource reallocation processes that lead to death. They support the view 

that autophagy contributes to nutrient recycling and remobilization during leaf senescence, but also 

helps maintain homeostasis in the cell while it is being dismantled (Avila-Ospina et al., 2014). 

Thus, in the absence of the classic autophagy pathway, the destructive action of other autophagy-

related processes (Fig. 4B) would lead more rapidly to leaf dyshomeostasis and death. In other 

words, autophagy promotes senescence by facilitating resource reallocation, but also protects 

against it by maintaining homeostasis. However, given that sustaining homeostasis aids resource 

reallocation, this protective role of autophagy is ultimately destructive (Fig. 4C), and analogous to 

the action of demolition engineers preparing a building for destruction, who work to maintain its 

structural integrity while stripping out reusable materials. Thus, in this context, autophagy protects 

in order to destroy. 

  Leaf senescence provides a lucid illustration of the relationship between the ordered, 

programmed process by which the plant cell is dismantled, and the resulting homeostatic collapse 

leading to death. The entire senescence process is pathological (at least with respect to the leaf). 

Though the leaf loses functionality from the outset of senescence (e.g. photosynthetic), only in its 
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later stages does loss of homeostasis contribute to pathogenesis. The same is the case for many 

diseases, where the initial impact of etiology may not cause dyshomeostasis, as in early stages of 

cancer development, or viral infections.  

  According to the demolition engineer principle outlined above, a general feature of 

source and sink biomass conversion processes that lead eventually to death is that cells, tissues, 

and organisms need to remain alive and functioning to be able to efficiently dismantle themselves. 

For example, during leaf senescence, chloroplasts are broken down early on but mitochondria 

remain intact and functional until the final stages of senescence (Diaz-Mendoza et al., 2016; 

Peterson and Huffaker, 1975). Similarly, in C. elegans, the intestine and distal gonad undergo 

atrophy in early adulthood but the nervous system remains intact into late life (Ezcurra et al., 2018; 

Herndon et al., 2002). Again, in sexually mature lampreys multiple organs (including the intestine 

and liver) undergo severe atrophy, but the heart is protected (Bentley and Follett, 1965; Larsen, 

1980). 

  The ordered sequential nature of the destruction of organelles, cells and organs in 

semelparous organisms contrasts with aging in iteroparous organisms, such as mice or humans, 

where incidence of aging-related diseases varies greatly between individuals (Austad, 2004; Finch, 

1990b). For example while mammalian cancers vary in type and incidence, all aging C. elegans 

hermaphrodites develop teratoma-like uterine tumors (Wang et al., 2018b).  

 

5.4 Source-to-sink biomass conversion is not disposable soma 

  There is a superficial resemblance between biomass conversion and another 

mechanism proposed to underlie trade-offs between reproduction and lifespan, but they are not the 

same. The disposable soma theory proposes that stochastic molecular damage causes aging, and 

that aging rate is determined by the level of resource investment into somatic maintenance 

mechanisms that prevent that damage (Kirkwood, 2005; Kirkwood, 1977). By contrast, in biomass 

conversion mechanisms source tissues and organs are actively dismantled in the process of 

promoting function at the sink. While it is true that this can involve utilization of somatic tissues in a 

disposable fashion, this is not the same as the disposable soma theory as set out. The primary 

etiology is programmatic, not stochastic damage. 

 

6. Prevention of reproductive death can greatly extend lifespan 

  In C. elegans hermaphrodites, removal of the germline leaving the somatic gonad intact 

increases mean lifespan by some 60% (Hsin and Kenyon, 1999). One possibility is that this is due 

to suppression of reproductive death, which in other semelparous organisms increases lifespan 

substantially. 

 

6.1 Life extension by suppression of reproductive death 
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  Reproductive death in semelparous species is actively promoted by hormonal factors, 

for example corticosteroids in A. stuartii and salmon of the genus Oncorhynchus, and abscisic acid 

in monocarpic plants. Blocking production of such factors, e.g. by surgical removal of their source 

or by behavioral manipulation, can suppress reproductive death. As one would expect, this can 

cause large increases in lifespan. For example, in the salmon O. nerka castration before spawning 

prevented hypercorticism and increased maximum lifespan from 4.8 years to 8.5 years (Robertson, 

1961). Moreover, gonadectomy or hypophysectomy (removal of the pituitary gland equivalent) in 

the lamprey L. fluviatilis prior to sexual maturation inhibited body wall mobilization and intestinal 

atrophy (Larsen, 1974, 1980; Pickering, 1976) and instead of dying shortly after spawning, 

hypophysectomized animals survived for up to 11 months (Larsen, 1965); reviewed in (Larsen, 

1980).  

  In the eel Anguila anguila the bulk of pre-adult growth occurs in rivers, and after 6-12 

years sexually mature adults make sea runs to spawn and die in the Sargasso Sea (Finch, 1990b). 

Prevention of the sea run and spawning can increase eel lifespan substantially. For example, one 

eel kept in a well in Denmark lived for 55 years (at least a 3.5-fold increase in lifespan) (Tesch, 

1977), while another maintained in an aquarium in a Swedish museum lived for 88 years (at least a 

7-fold increase in lifespan) (Vladykov, 1956). 

  Looking beyond fish, in the octopus O. hummelincki removal of the optic gland just after 

spawning in females increased lifespan measured from onset of egg-laying by up to 5.4-fold 

(maximum lifespan, from 51 to 277 days)(Wodinsky, 1977). Reproductive death in A. stuartii can 

be prevented either by capture and cage maintenance prior to mating or by castration. If males are 

captured prior to mating and maintained in the lab they can survive for 3 years or more (Bradley et 

al., 1980; Olsen, 1971; Woolley, 1966). Removal of reproductive structures can also inhibit 

senescence in monocarpic plants; for example, removal of flowers prior to pollination increased 

mean lifespan in soybean plants (Glycine max) from 119 to 179 days after sowing (+50.4%) 

(Leopold et al., 1959). A traditional view is that, in these instances, extension of lifespan results not 

from retardation of aging but from prevention of reproductive death (but see section 7 below). 

  Removal of the germline can also increase lifespan in iteroparous species. For example, 

in in Drosophila subobscura the grandchildless mutation, which causes germline loss, increased 

life expectancy (from day 10) by 15.1% (Maynard Smith, 1958). In Drosophila melanogaster  

loss of germ cells from late development or early adulthood extended median lifespan in both 

sexes by 21.0-50.0% (Flatt et al., 2008), but absence of the germline throughout life shortened 

female lifespan (Barnes et al., 2006). Ovariectomy also increased median lifespan in grasshoppers 

by 16.3% or 22.7% (Drewry et al., 2011; Hatle et al., 2008).  

  In many mammals castration increases male lifespan while ovariectomy decreases 

female lifespan. For example, in rats, castration increased male lifespan (Asdell et al., 1967; Drori 

and Folman, 1976; Talbert and Hamilton, 1965), but ovariectomy reduced it (Asdell et al., 1967) 

(though in some of these studies effects did not reach statistical significance). Ovariectomy also 
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reduced survival in mice (Benedusi et al., 2015; Cargill et al., 2003). Castration also extended 

lifespan in male bank voles (Gipps and Jewell, 1979) and in male feral sheep (Jewell, 1997). 

Similarly, in humans there is some limited evidence of castration increasing lifespan in men 

(Hamilton and Mestler, 1969; Min et al., 2012), and more robust evidence that ovariectomy 

shortens lifespan in women (Parker et al., 2009; Rocca et al., 2006; Shoupe et al., 2007). By 

contrast gonadectomy increased lifespan in both sexes of domestic cats (Hamilton, 1965; Hamilton 

et al., 1969; O’Neill et al., 2015) and dogs (particularly in bitches) (Hoffman et al., 2018; Hoffman et 

al., 2013; Michell, 1999; O’Neill et al., 2013).  

  Thus, although germline removal can increase lifespan in both semelparous and 

iteroparous species, the effects on lifespan are typically larger and less condition dependent in the 

former (Table 1), consistent with prevention of reproductive death rather than more modest 

reproductive costs.   

 

6.2 Suppression of reproductive death by germline ablation in C. elegans 

  Could germline ablation in C. elegans hermaphrodites extend lifespan by preventing 

reproductive death? Several lines of evidence support this possibility. First, intestinal atrophy is 

suppressed by germline removal (Ezcurra et al., 2018; Kern et al., 2020b). Moreover, the DAF-

16/FOXO transcription factor is required for both life extension by germline removal (Hsin and 

Kenyon, 1999) and suppression of intestinal atrophy (Ezcurra et al., 2018). 

  The striking senescent changes in anatomy seen in hermaphrodites are largely absent 

from males (de la Guardia et al., 2016; Ezcurra et al., 2018), suggesting that they do not undergo 

reproductive death. Consistent with this, a study of individually cultured nematodes in monoxenic 

liquid culture found that germline ablation by laser microsurgery increased lifespan in wild-type 

hermaphrodites but not males (McCulloch, 2003). Moreover, individually cultured wild-type males 

are longer lived than hermaphrodites (Gems and Riddle, 2000; McCulloch and Gems, 2007). 

  We recently examined the pattern of senescent pathology in two additional 

Caenorhabditis species that are, like C. elegans, androdiecious (with hermaphrodites and males), 

C. briggsae and C. tropicalis, and found them to be similar to C. elegans, suggesting the 

occurrence of reproductive death in these species too (Kern et al., 2020b). The majority of 

Caenorhabditis species are gonochoristic (with females and males), and C. elegans, C. briggsae 

and C. tropicalis represent three independent occurrences of the evolution of androdioecy (Kiontke 

et al., 2011). Gonochoristic sibling species of these three androdioecious species are, respectively, 

C. inopinata, C. nigoni and C. wallacei. Notably, in females (unmated) of these three species the 

senescent degeneration seen in hermaphrodites does not occur. Moreover, for all three species 

hermaphrodites vent yolk and lay unfertilized oocytes, while females do not. However, senescent 

degeneration was seen in females after mating. Similar results were obtained in a comparison of 

an androdioecious-gonochoristic sibling species pair from the nematode genus Pristionchus (P. 

pacificus and P. exspectatus) (Kern et al., 2020b). Taken together, these results suggest that after 
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the appearance of hermaphroditism in each case, reproductive death evolved from being 

facultative (mating induced) to constitutive. A possible adaptive significance of this change is that 

females but not hermaphrodites need to await an encounter with a male before commencing 

reproduction.  

  Semelparity in C. elegans implies a cost of reproduction. It was previously noted that 

prevention of self-fertilization by means of mutations that impair sperm function does not increase 

lifespan (Kenyon et al., 1993; Klass, 1977); i.e. the effort of egg production, fertilization and egg 

laying does not shorten life. This implies that the costly lactational program is active and generates 

life-shortening pathology whether or not fertilization takes place.   

  The occurrence of constitutive reproductive death in Caenorhabditis hermaphrodites but 

not females is supported by several further observations. First, for all four sibling species pairs, the 

females (unmated) are longer lived than the hermaphrodites (Amrit et al., 2010; Kern et al., 

2020b). In the case of C. elegans and its sibling species C. inopinata, the latter is longer lived only 

when the two species are compared in the presence of antibiotics, suggesting greater susceptibility 

of C. inopinata to life-shortening infection by the bacterial food source (Kern et al., 2020b; 

Woodruff et al., 2018). 

  Combining several of these observations suggests the following scenario: that 

hermaphrodites but not females undergo reproductive death constitutively, triggered by signals 

from the germline, leading to shorter lifespan in hermaphrodites. Consistent with this model, 

germline ablation causes large increases in lifespan in hermaphrodites but not females (Table 1), 

and abrogates the greater lifespan of females. Moreover, germline ablation suppresses intestinal 

atrophy in all four hermaphroditic species (Kern et al., 2020b) (see Fig. 5 for schematic summary).   

  Taken together, these observations provide strong support for the view that extension of 

lifespan by germline ablation in C. elegans is due to suppression of semelparous reproductive 

death. 

 

6.3 Does reduced insulin/IGF-1 signaling suppress reproductive death? 

  While the discovery of single gene mutations that alter lifespan in C. elegans was 

important, what generated particular excitement was the large magnitude of increases in lifespan 

observed, particularly from reductions in insulin/IGF-1 signaling (IIS). The largest effects have 

been observed in mutants defective in the daf-2 insulin/IGF-1 receptor and the age-1 

phosphatidyinositol 3-kinase (PI3K) catalytic subunit (Kenyon, 2010) with up to 10-fold increases in 

mean and maximum lifespan recorded (Ayyadevara et al., 2008). Could these large effects on 

lifespan reflect suppression of reproductive death, at least in part? 

  There is some evidence that IIS promotes reproductive death. Mutation of daf-2 can 

suppress the dramatic morphological changes accompanying C. elegans hermaphrodite 

senescence (Ezcurra et al., 2018; Garigan et al., 2002; Luo et al., 2010; McGee et al., 2012). IIS 

also promotes vitellogenesis (Depina et al., 2011; Ezcurra et al., 2018; McElwee et al., 2003; 
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Murphy et al., 2003) and venting of yolk milk and laying of yolk rich oocytes (Gems et al., 1998; 

Kern et al., 2020b). Effects on lifespan of both daf-2 and germline removal require the DAF-16 

FOXO transcription factor (Hsin and Kenyon, 1999; Kenyon et al., 1993) and in both cases its 

action in the intestine is important (Libina et al., 2003; Lin et al., 2001).  

  But other observations argue against the idea that reduced IIS extends lifespan simply 

by blocking reproductive death. First, germline ablation increases lifespan in daf-2 mutants, 

seemingly more so than in wild type (+~140% vs +~60%) (Arantes-Oliveira et al., 2002; Hsin and 

Kenyon, 1999). Second, mutation of daf-2 increases lifespan in males (Gems and Riddle, 2000; 

Hotzi et al., 2018; McCulloch and Gems, 2007), though they appear not to exhibit reproductive 

death. Thus, the relationship of IIS to germline signaling on the one hand and reproductive death 

on the other remains to be resolved. One possibility is that the two pathways act to some extent in 

parallel to promote reproductive death, while IIS also impacts lifespan via additional pathway-

specific mechanisms, e.g. related to its role in dauer diapause (Kenyon et al., 1993). 

 

7. A continuum between semelparous and iteroparous aging 

  In this review, we have made the case that C. elegans undergo semelparous 

reproductive death; 12 items of evidence supporting this hypothesis are listed in Table 2.  

 

7.1 Is C. elegans a bad model organism for understanding aging? 

  Caleb Finch said of semelparous dasyurid marsupials: "Their escape from 'natural death' 

under optimum conditions and their capacity to more than double their natural lifespan caution 

against overemphasizing lifespan and mortality rates as a basic index of cellular 'aging'." (Finch, 

1990b) (p. 95). Is this warning also applicable to C. elegans? If C. elegans is semelparous, such 

that the mechanisms controlling its lifespan are more akin to those in monocarpic plants than in 

humans, what does this mean for its use as a model organism for studying aging? A great deal of 

research has been carried out on C. elegans aging during the last 40 years; a PubMed search 

conducted on 29th October 2020 for articles including the terms "elegans" and "aging" identified 

4,074 items. Are these studies in fact largely about reproductive death rather than aging?  

  For C. elegans researchers: don't panic. In the remainder of this essay, we propose a 

new perspective on C. elegans and aging that implies that C. elegans is a good model system for 

studying aging, despite its semelparity. Our key points are as follows. We have argued that C. 

elegans exhibits rapid senescence triggered by sexual maturation and coupled to reproductive 

effort, as seen in many other semelparous organisms. We postulate (1) that this form of 

senescence involves exaggerated versions of mechanisms that are operative in iteroparous 

organisms, from which they evolved. (2) That such regulated mechanisms of senescence have a 

much larger effect on lifespan in semelparous organisms than iteroparous organisms. (3) That if 

such regulated mechanisms are blocked, pathologies that then become life limiting involve a wider 

spectrum of etiologies - both programmatic (e.g. involving antagonistic pleiotropy [AP] enacted in 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2020                   doi:10.20944/preprints202011.0019.v1

https://doi.org/10.20944/preprints202011.0019.v1


 17 

diverse ways) and stochastic (e.g. molecular damage accumulation, mechanical senescence). 

According to this view, a virtue of C. elegans is that one major form of senescent etiology 

(programmatic) plays a predominant role in aging, making it more experimentally tractable. This is 

also an argument for the potential value to understanding animal aging of studying senescence in 

other semelparous species, including plant models such as A. thaliana. 

 

7.2 A continuum of semelparity and iteroparity 

  Mechanisms in sexual maturation-triggered reproductive death are likely to be related to 

the subtler mechanisms operative in iteroparous species, consistent with the existing continuum 

between iteroparity and semelparity (Hughes, 2017). A plausible scenario is that semelparous 

etiologies evolved by amplification of mechanisms operative in iteroparous ancestors. This resulted 

in exaggerated and life-limiting senescent pathologies resulting from relatively simple causes. If 

this were true then semelparous vertebrates should show age-related diseases similar to those 

seen in iteroparous ones. In fact, this is the case in Pacific salmon, one of the few semelparous 

vertebrates in which senescent pathologies have been studied. For example in spawning O. 

tshawytscha the coronary arteries, among others, exhibit endothelial cell hyper-proliferation (Fig. 

3A) (Farrell, 2002; Robertson et al., 1961), reminiscent of human coronary artery disease, though 

lipid and calcium deposits typical of mammalian atheromas are not seen (House and Benditt, 

1981; Robertson et al., 1961). Furthermore, starting at sexual maturity kokanee salmon develop 

amyloid deposits in multiple regions of the brain, similar to those occurring in Alzheimer's disease 

in humans (Fig. 3A) (Maldonado et al., 2002; Maldonado et al., 2000). This is one of the few 

examples of Alzheimer-like cytopathology found in wild vertebrates under natural conditions. The 

pathology includes extracellular amyloid plaques that are immunoreactive with anti-A�1-42 

antibodies. The distribution of amyloid deposition is similar to that of glucocorticoid receptors, 

suggesting that elevated glucocorticoids may cause this Alzheimer-like pathology (Maldonado et 

al., 2000). Similarly, thymic involution is promoted by sex steroid-induced glucocorticoid production 

in both spawning salmon and in mammals (Chen et al., 2010). It is also possible that IGF-1 (cf IIS) 

promotes reproductive death in salmon, e.g. through effects on gonadal development (Allard and 

Duan, 2011). Notably, many of the pathological changes that occur rapidly in spawning salmon 

also occur in later life in castrated salmon, i.e. reproductive death resembles accelerated aging 

(Robertson and Wexler, 1962). 

  One broad difference between semelparous etiologies and the iteroparous etiologies 

from which they evolved is that while the former are irreversible the latter can be reversible. For 

example, intestinal atrophy in adult C. elegans hermaphrodites or spawning lampreys appears to 

be irreversible, whereas loss of muscle during starvation or bone during lactation is reversible 

(Speakman, 2008). In summary, the nature of the diseases of aging in Pacific salmon supports the 

existence of a continuum between semelparous and iteroparous species in terms of senescent 

pathophysiology.  
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7.3 Quasi-programs vs costly programs as ubiquitous causes of senescence 

  As a broad approximation, in terms of primary mechanisms, senescence has been 

viewed either as a passive process of stochastic damage and breakdown (loss of function), or as 

an active process driven by late-life effects of gene action (hyperfunction) (Blagosklonny, 2006; 

Gems and Partridge, 2013; Gladyshev, 2013; Harman, 1956; Kirkwood, 1977; López-Otín et al., 

2013; Shore and Ruvkun, 2013; Williams, 1957). In semelparous organisms, the mechanisms that 

give rise to senescent pathogenesis (such as those involving resource reallocation) are clearly 

active, programmed processes; here pathology is generated as a by-product of functions that 

promote fitness, but is not itself advantageous (Williams, 1957). In iteroparous organisms 

(including most mammals) senescent pathologies can result, at least in part, from programmatic 

mechanisms such as quasi-programs, i.e. non-adaptive reactivation or run-on of biological 

programs that promote fitness earlier in life (Blagosklonny, 2006, 2008; de Magalhães and Church, 

2005; Maklakov and Chapman, 2019). 

   To understand the relevance of aging in C. elegans to that in iteroparous organisms we 

need to ask: What is the relationship between reproductive death and the Williams Blagosklonny 

de Magalhães theory (i.e. AP involving quasi-programs)? Here our recently altered view of 

senescent pathophysiology in C. elegans provides is instructive. Several major senescent 

pathologies, including intestinal atrophy, yolk accumulation and teratoma-like uterine tumors, have 

been interpreted as resulting from hyperfunction rather than molecular damage, and from run-on 

type quasi-programs (Ezcurra et al., 2018; Herndon et al., 2002; Wang et al., 2018b). However, the 

recent discovery of larval growth promoted by yolk venting suggests that yolk synthesis in sperm-

depleted mothers is not, in fact, futile at all, but instead promotes fitness through resource 

reallocation from mothers to larval kin (Kern et al., 2020a).  

  Thus, late-life yolk production and the intestinal atrophy to which it is coupled does not 

conform to Blagosklonny's definition of a quasi-program (futile program continuation). By contrast, 

it does involve a physiological trade-off where intestinal atrophy is a consequential indirect cost (as 

described above). Yet this account is, in broad terms, closer to the Williams Blagosklonny de 

Magalhães model than to the traditional damage/maintenance paradigm. In both cases 

programmatic processes are involved, i.e. involving action of complex wild-type functions (e.g. 

anabolic, catabolic), leading to pathology. Here use of the term programmatic is intended to 

indicate complex biological functions, but to leave open the question of whether such functions 

promote fitness or not. In one case (Williams Blagosklonny) their action is quasi-programmed, i.e. 

wholly futile in fitness terms. In the other (trade-off with physiological costs), programmatic 

processes generate both fitness benefits and pathology costs.  

  Another difference between these two cases is the relative timing of benefits and costs. 

In the Williams Blagosklonny de Magalhães account, a program that promotes fitness in early life 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2020                   doi:10.20944/preprints202011.0019.v1

https://doi.org/10.20944/preprints202011.0019.v1


 19 

becomes a harmful quasi-program in later life. By contrast, in the case of intestinal atrophy coupled 

to yolk production, benefit and harm are generated simultaneously.  

  Insofar as the term program implies complex function and promotion of fitness (Lohr et 

al., 2019), C. elegans intestinal resource reallocation may be referred to as a costly program. By 

contrast, development of uterine teratomas is the result of a quasi-program (Wang et al., 2018a; 

Wang et al., 2018b) (Fig. 6A), since a fitness benefit from having tumors is difficult to envisage. To 

create an integrated conceptual framework we propose the following new account: that in both 

cases, pathology results primarily from hyperfunction rather than loss of function. In costly 

programs hyperfunction exists with respect to the pathology (e.g. intestinal atrophy) but not the 

benefit (yolk milk production) (Fig. 6A). Similarly, the process of N remobilization from leaves is 

hyperfunction as far as leaf health is concerned, but not seed provisioning. Thus, precise use of 

the term hyperfunction requires reference to the entity that it affects (cell, tissue, organ, organism). 

  According to this account, in iteroparous organisms resource reallocation can involve 

costly programs where the debts can be repaid, as in lactation-associated bone loss or starvation-

induced muscle atrophy. Thus, C. elegans reproductive death, like mammalian aging, involves 

both quasi-programs and costly programs (Fig. 6A). Understanding C. elegans aging should 

therefore provide fundamental insights into the pathophysiology of human senescence.  

 

7.4 Neuroendocrine promotion of semelparous and iteroparous aging 

  Further evidence of conservation of mechanisms of aging between C. elegans and 

iteroparous species (e.g. Drosophila, rodents) is that insulin/IGF-1 and mTOR signaling promote 

aging in both (Kenyon, 2010; Weichhart, 2018). However, in C. elegans the magnitude (in relative 

terms) of life extension resulting from reduced IIS is typically far greater than in iteroparous 

species; for example, mutational reduction of PI3K increases median lifespan by up to ~10-fold in 

C. elegans but only ~1.07-fold and ~1.02-fold in Drosophila and mice, respectively (Ayyadevara et 

al., 2008; Foukas et al., 2013; Slack et al., 2011). This is consistent with the idea that 

programmatic etiologies occur in both semelparous and iteroparous species, are amplified in the 

former, and promoted by IIS in both. According to this view, although the large magnitude of the 

effect of IIS on lifespan in C. elegans reflects suppression of reproductive death, the etiology of 

senescent pathology in reproductive death is fundamentally similar to that of some senescent 

pathologies that contribute to late-life mortality in iteroparous species (including humans) (Fig. 6B). 

  Such effects of IIS on aging are part of a broader neuroendocrine and steroid hormone 

signaling network affecting growth, reproduction and lifespan in both semelparous and iteroparous 

organisms (Bartke, 2019; Finch, 1990a; Gáliková et al., 2011; Partridge and Gems, 2002). For 

example, in C. elegans sensory neurons exert IIS-mediated effects on lifespan (Apfeld and 

Kenyon, 1999), and germline effects on lifespan are mediated by steroid signaling (Antebi, 2013). 

In octopus the optic gland, equivalent to the pituitary gland, promotes vitellogenesis and 

reproductive death (Wodinsky, 1977). Reproductive death in salmon and Antechinus is driven by 
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adrenohypercorticism (Barker et al., 1978; Mcquillan et al., 2003). In amphibians, reptiles and 

birds, vitellogenesis is promoted by growth hormone (GH) and estrogen (Dolphin et al., 1971; 

Wallace, 1985). In mammals pituitary GH acts through IGF-1 to promote gonadal growth and 

reproduction (Chandrashekar et al., 2004) and of course female reproductive function is regulated 

by estrogen. Taken together this, again, supports the view that reproductive death evolves by 

exaggeration of mechanisms (here endocrine) operative in iteroparous species. 

 

7.5 Regulated and non-regulated aging 

  By emphasizing the continuum between mechanisms of semelparous and iteroparous 

aging, we hope to reassert the continued value of C. elegans as a model for human aging. 

However, this reconception creates challenges for other, earlier views about aging, as follows. We 

have proposed that the proximate mechanisms regulated by IIS, mTOR and GH in iteroparous 

organisms are similar to those in semelparous organisms, and involve programmatic etiologies 

(e.g. costly programs and quasi-programs)(Fig. 6C). This is distinct from a traditional view of 

biogerontologists of aging as a passive, damage accumulation-type process rather than a 

programmatic one. Caleb Finch once noted that "Many botanists emphasize that plant senescence 

is an orderly and active process, which is a very different view than that held by most investigators 

of animal senescence" (p.98). But we argue here that programmatic pathophysiologies are a 

cause of senescence in animals and plants, both semelparous and iteroparous. 

  One view of semelparous organisms is that they die from reproductive death, not aging; 

thus, male A. stuartii in the wild do not die of aging, but longer-lived A. stuartii in the laboratory do. 

From this one could argue not only that semelparous plants (or leaves on deciduous trees) do not 

die of aging, but also that organisms dying from IIS-, mTOR- or GH-mediated pathologies do not 

die from aging either, insofar as they involve programmatic mechanisms. This is surely not tenable. 

We argue instead that it is more helpful to view pathologies caused by programmatic mechanisms 

as part of aging. By this view not only is reproductive death in C. elegans aging, but also leaf 

senescence.  

  But the reproductive death vs aging distinction does have useful explanatory power, for 

example as follows. If death due to programmatic pathophysiologies is prevented, lifespan is 

extended, yet not indefinitely. Why not? For organisms with reproductive death, for example 

semelparous salmon, one explanation is that intact individuals die from reproductive death while 

long-lived individuals (after gonadectomy) die of aging (Robertson, 1961). This illustrates a general 

rule about aging which is that when one life-limiting pathology is removed, other pathologies 

become life-limiting (de Magalhães, 2012). But then the critical question arises: what limits lifespan 

when programmatic causes of senescence are prevented in iteroparous organisms? 

  To answer this question, we suggest a new view of aging which retains this one element 

of the reproductive death vs aging distinction. Here etiologies of senescence are divided into two 

broad classes. First, there is a relatively plastic component (regulated aging), which is under 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2020                   doi:10.20944/preprints202011.0019.v1

https://doi.org/10.20944/preprints202011.0019.v1


 21 

hormonal control (e.g. GH/IIS/mTOR and steroid hormones in animals, abscisic acid and 

gibberellins in plants), and largely involving hyperfunction and programmatic mechanisms (such as 

costly programs and quasi-programs). Second, a relatively unalterable component (non-regulated 

aging), involving a wider range of etiologies, including AP affecting many genes through various 

mechanisms, mechanical senescence, and molecular damage (Fig. 6C). Non-regulated aging is 

relatively immutable (non plastic), except through evolutionary change.  

 

7.6 Reproductive death and adaptive death 

  Besides semelparous reproductive death and iteroparous senescence, another mode of 

life-limiting mechanism is programmed adaptive death. Here genetically-determined mechanisms 

that actively cause death have evolved by natural selection because earlier death increases 

inclusive fitness, in a manner analogous programmed cell death to metazoan organisms. Adaptive 

death is not expected to evolve in organisms with outbred, dispersed populations (e.g. most animal 

species), but can occur in those existing as compact (viscous) colonies of clonal individuals, such 

as the yeast Saccharomyces cerevisiae and possibly C. elegans too (Galimov and Gems, 2020a; 

Galimov et al., 2019; Lohr et al., 2019).  

  A recent study of simulations of an in silico model of C. elegans on limited food patches 

used yield per colony of dauer dispersal forms as a measure of colony fitness. The behavior of this 

model supported the view that under certain conditions shorter adult lifespan can enhance colony 

fitness by reducing non-productive adult food consumption and increasing food availability for 

larvae (Galimov and Gems, 2020b). Evolutionary theory predicts that adaptive death can more 

readily evolve in the presence of semelparity, which could explain the apparent presence of both in 

C. elegans and Pacific salmon (Galimov and Gems, 2020a) (Fig. 7).  

  A further theoretical possibility is that evolution of costly programs promotes the 

subsequent appearance of quasi-programs. For example, it is theoretically possible that gut-to-yolk 

biomass conversion have evolved to support lactation, but then runs on after it has ceased to 

contribute to fitness. Another possibility is that life-shortening effects of costly programs might 

create a selection shadow allowing quasi-programs to evolve.  

  The presence of both reproductive and adaptive death lend support to the view that the 

natural state of C. elegans is as a colonial entity with superorganism-like features (Galimov and 

Gems, 2020b; Lohr et al., 2019). That trophallaxis is often more pronounced in eusocial species 

(LeBoeuf, 2017) further points to the character of C. elegans colonies as lactating superorganisms 

(we thank B.P. Braeckman for that description). 

 

8. Perspectives 

  This essay presents an altered picture both of C. elegans as a model for aging research, 

and of aging more broadly. These changes imply some gains to the field, but also one grievous 

loss. The gains include an understanding that C. elegans is semelparous, and that the 
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mechanisms involved in semelparous aging are a programmatic subset of those involved in 

iteroparous aging. This implies that C. elegans is an excellent model for studying programmatic 

mechanisms of senescence in a conveniently exaggerated and relatively pure form. Programmatic 

mechanisms potentially contribute to many diseases of human aging, for example those promoted 

by senescent cells, which are at least partly caused by quasi-programs (Blagosklonny, 2006). It 

also suggests that suppression of such mechanisms could unmask and bring into play more of the 

determinants of lifespan that are operative in iteroparous species. Recognition of the continuum 

between mechanisms of semelparous and iteroparous aging also removes a spurious separation 

between the biology of animal aging and plant senescence; from henceforth, scientists studying 

plant senescence ought to receive more invitations to biogerontology meetings. 

  Regarding the loss. Aging is now the main cause of disease and death worldwide, and 

yet its underlying mechanisms remain unclear. The discovery over three decades ago that single 

gene mutations can greatly increase lifespan in C. elegans (Friedman and Johnson, 1988; Kenyon 

et al., 1993; Klass, 1983) had extraordinary implications. First, the large increases in lifespan 

suggested the existence of core mechanisms underlying the entire aging process. Second, they 

implied that these mechanisms could be manipulated to slow down aging. Third, given that C. 

elegans is a highly tractable model organism, it suggested that it ought to be relatively easy to 

define these core mechanisms of aging. What is often exciting about studies in model organism 

biogerontology is the possibility that they bring us closer to a knowledge of these mysterious 

central mechanisms of aging, whose discovery promised to make possible extraordinary things in 

terms of slowing human aging and extending lifespan. The interpretations in this essay in some 

sense explain away the mystique of C. elegans life extension. We suggest that these large 

increases in lifespan could reflect suppression of reproductive death. This involves suppression of 

grossly exaggerated versions of programmatic mechanisms that are only one cause of aging in 

iteroparous organisms. More seriously, it also suggests that increases in lifespan achieved in 

iteroparous organisms may also reflect action on weaker programmatic determinants of 

senescence that are only a minor subset of the determinants of aging. This would imply relatively 

limited plasticity in aging in iteroparous organisms. Thus, the new picture that we present is, 

arguably, more realistic but less magical.  
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Glossary 
 
Adaptive death: Synonymous with programmed organismal death. Here death of an individual is a 
selected trait, providing a direct benefit in terms of inclusive or group fitness (Lohr et al., 2019). 
 
Androdioecious: Where adults are male or hermaphrodites (as opposed, in the context of this 
essay, to male or female). 
 
Antagonistic pleiotropy (AP): Where action of a given gene is both beneficial and detrimental to 
fitness. If the latter occurs later in life and is therefore subject to weaker selection, such a gene 
may be favored by natural selection, and promote aging (Williams, 1957). 
 
Costly program (New term): A biological program that simultaneously promotes fitness and incurs 
a cost in terms of pathological changes to tissues or organs where the program is executed. One 
form of programmatic mechanism involving hyperfunction by which AP causes senescence (cf. 
quasi-program). 
 
Demolition engineer principle (New term): Dual function of autophagic processes during 
resource remobilization, to both effect destructive turnover of cellular components, and maintain 
cellular homeostasis. 
 
Disposable soma: Theory proposing that natural selection favors investment of limited resources 
into reproduction rather than somatic maintenance, accelerating damage accumulation and, 
therefore, senescence (Kirkwood, 1977). 
 
Gonochoristic: Where adults are male or female (as opposed, in the context of this essay, to male 
or hermaphrodite). 
 
Hyperfunction: Where wild-type gene function actively leads to senescent pathology, as opposed 
to passive random damage or wear and tear (Blagosklonny, 2006).   
 
Iteroparous: Where multiple reproductive cycles can occur over the course of a lifetime. 
 
Non-regulated aging (New term): That part of the process of senescence not involving plastic 
programmatic mechanisms and/or under global hormonal control (cf. regulated aging).   
 
Programmed aging: Senescence caused by a relatively ordered series of biological processes 
that promotes fitness via inclusive fitness or group fitness. 
 
Programmatic aging: Where complex biological processes contributes to senescence, but not 
necessarily to fitness (cf. quasi-programs, costly programs). 
 
Protandry: The form of gametogenesis in hermaphroditic organisms where male gametes are 
formed first and then female gametes. C. elegans hermaphrodites generate sperm and then 
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oocytes. Sperm are used for self-fertilization, and when self sperm stocks are depleted, 
reproduction ceases.  
 
Quasi-programmed aging: Senescence caused by a relatively ordered series of biological 
processes that does not promote fitness; may occur due to futile run-on of wild-type programs that 
promote fitness earlier in life (Blagosklonny, 2006). 
 
Regulated aging (New term): That part of the process of senescence that is under hormonal 
control (e.g. GH/IIS/mTOR and steroid hormones) and involving programmatic mechanisms (cf. 
non-regulated aging). 
 
Reproductive death: A form of suicidal reproductive effort found in some semelparous species 
(e.g. Pacific salmon, monocarpic plants). Here, reproductive maturity triggers the rapid 
development of lethal pathologies and fast senescence coupled to reproductive success (Finch, 
1990b). 
 
Run-on: Futile continuation of gene function or processes in later life, leading to pathology (de la 
Guardia et al., 2016) (cf. quasi-program). 
 
Semelparous: Organisms with a single reproductive episode before death. Also used to denote  
semelparity with reproductive death. 
 
Senescence: The overall process of deterioration with age or the resulting pathological condition 
(not to be confused with cellular senescence, which is a particular form of cell cycle arrest affecting 
some vertebrate cell types). Although aging has several meanings, in the biological context it is 
usually synonymous with senescence. 
 
Source-to-sink biomass conversion: Resource remobilization where autophagic processes 
break down cellular constituents in one tissue/organ to provide resources for another (cf. costly 
program).  
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Fig. 1. Quasi-programs as a cause of C. elegans hermaphrodite senescence.  
A. Distal gonad atrophy and teratoma-like uterine tumor formation. Left: appearance of pathologies 
under Nomarski microscopy; distal gonad marked in pink. Right: proposed pathophysiology 
involving quasi-programs. In the young adult oocytes are generated by proliferation of mitotic 
germline stem cells which then enter meiosis, and then in most cases undergo physiological apoptosis 
(PA) to generate cytoplasm to fill expanding oocytes (Gumienny et al., 1999; Jaramillo-Lambert et 
al., 2007; Wolke et al., 2007). Subsequently, declining stem cell division (conceivably adaptive) 
(Kocsisova et al., 2019) and run-on of PA promotes distal gonad atrophy and fragmentation (de la 
Guardia et al., 2016). Unfertilized oocytes fail to complete meiosis, enter the uterus and develop into 
teratoma-like tumors containing massively polyploid chromatin masses (Golden et al., 2007) which 
appears to result, as in mammalian ovarian teratomas, from embryonic quasi-programs (Wang et al., 
2018a; Wang et al., 2018b). 
B. Left, intestinal atrophy and yolk-rich visceral pool accumulation. Right, hypothesis for etiology of 
both pathologies: a vitellogenic quasi-program, where remobilization of intestinal biomass into yolk 
continues in a futile fashion (Benedetto and Gems, 2019; Ezcurra et al., 2018).  
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Fig. 2. Lactation by C. elegans hermaphrodites, and its implications. 
A. Trophallaxis (yolk milk provision) by C. elegans. Top left: schedule of production of eggs, 
unfertilized oocytes and vented yolk by wild-type C. elegans hermaphrodites (20˚C). Bottom left: L1 
larva with ingested yolk in intestinal lumen (reproduced from (Kern et al., 2020a)). Green: yolk 
marked with VIT-2::GFP (arrows); green dots are autofluorescent gut granules. Red, reflective 
confocal microscopy to highlight intestinal lumen (intestinal cell apices). Right: scheme showing 
transition from egg laying to yolk (milk) venting after hermaphrodite self-sperm depletion. 
B. Implications: two interpretations of origins of intestinal atrophy. Left: After sperm depletion the 
program for yolk synthesis runs on to become a futile quasi-program (Ezcurra et al., 2018). Right: 
After sperm depletion the program for yolk production becomes a costly program supporting lactation 
(Kern et al., 2020a).  
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Fig. 3. Examples of semelparous organisms and their senescent pathologies. 
A. Pacific salmon O. nerka. Top left: sexually mature adults (photo courtesy of Georgia Strait 
Alliance, www.georgiastrait.org, © Olga Vasik - Adobe Stock). Bottom left: Immunoreactivity to 
Ab1 – 42 antibody in the brain of spawning kokanee salmon (Maldonado et al., 2000), c.f. amyloid 
plaques associated with Alzheimer's disease. Bar, 20 µm. Right: Cross section of normal coronary 
artery (top); L, lumen, filled with nucleated red blood cells; MSM, medial layer of vascular smooth 
muscle; EM, elastic membrane; ISM; or (bottom) from mature adult with severe arteriosclerotic 
lesion, containing mainly intimal smooth muscle cells (ISM) (Farrell, 2002). Bars, 50 µm. 
B. Lamprey (genus Lampetra). Top, European river lamprey (L. fluviatilis) (photo by Tiit Hunt, 
distributed under a CC BY-SA 3.0 license). Bottom: Stages of intestinal atrophy during spawning in 
L. japonica. Diameters of (a) 3.9 mm, (b) 1.5 mm (b), and (c) 1 mm. Arrows, intestinal villi; 
arrowheads, typhosole (internal intestinal fold) (Higashi et al., 2005).  
C. Examples of reproductive death in semelparous plants. Left, Spinacia oleracea 45 days after full 
bloom; reproductive death (right) has been suppressed by flower removal (left) (Leopold et al., 1959) 
(© American Society of Plant Biologists, reprinted with permission). Right, Agave americana during 
and after flowering (photos by Gerhard Bock, reproduced with permission). Century plants typically 
live 10-30 years, and death follows rapidly after a single massive reproductive event. 
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Fig. 4. Source-to-sink biomass conversion and physiological costs that cause pathology. 
A. General form of source-to-sink biomass conversion (left) and three examples. In each case 
remobilization of resources promotes fitness by supporting reproductive processes, but leads to 
atrophy and eventual pathology in source organs.  
B. Autophagic processes and senescence in plants. Material from other organelles, particularly 
chloroplasts, is transported to the vacuole in several ways, including autophagosomes. First, via 
autophagosomes, double membrane-bound vesicles as found in animal and fungal autophagy 
pathways (Marshall and Vierstra, 2018). Second, via double membrane-bound rubisco-containing 
bodies (RCBs; rubisco is the most abundant stromal protein in chloroplasts) which contain fragments 
of chloroplast proteins (Chiba et al., 2003), and whose transport to the vacuole is dependent on genes 
of the autophagy pathway (Ishida et al., 2008; Wada et al., 2009). Third, via senescence-associated 
vacuoles (SAVs) which are single membrane bound and which, unlike autophagosomes, contain high 
levels of protease activity (Martinez et al., 2008). 
C. Autophagic processes protect in order to destroy (demolition engineer principle). A hypothesis 
based on recent progress in understanding the role of autophagy in plant leaf senescence (Avila-
Ospina et al., 2014)(with thanks to Prof. Céline Masclaux-Daubresse). Top: by maintaining 
homeostasis during the systematic destruction of the cell, autophagic processes aid in its destruction. 
Bottom: eventually the cell is dismantled to the point that even autophagic processes cannot be 
sustained, and homeostasis collapses, leading to death. 
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Fig. 5. Aging and death in Caenorhabditis females and hermaphrodites (simplified working model). 
In the absence of mating only hermaphrodites exhibit reproductive death, and this is triggered during 
reproductive maturation by signals from the germline. Removal of the germline by laser microsurgery 
blocks reproductive death, and markedly extends lifespan in hermaphrodites, removing the difference 
in lifespan between hermaphrodites and females. Germline ablation only modestly increases female 
lifespan (not depicted) (Kern et al., 2020b). 
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Fig. 6. Conceptual models of aging in semelparous and iteroparous organisms.  
A. Programmatic mechanisms of aging in semelparous and iteroparous organisms. These include 
costly programs and quasi-programs. A broad prediction is that costly programs contribute more to 
disease during reproductive death, and quasi-programs more in iteroparous aging. B. Difference in 
senescent pathogenesis in semelparous and iteroparous organisms. The figure shows the degree of 
harmfulness of a range of pathologies with different types of etiology (indicated by different colors). 
Top, reproductive death. Here exaggeration of programmatic mechanisms leads to rapid development 
of gross pathologies leading to death. Bottom, typical animal senescence (iteroparous species). Here 
many more types of etiology contribute to life-limiting pathology, to which programmatic etiologies 
contribute to some degree, and senescence is more multifactorial. Preventing programmatic 
pathophysiology that causes reproductive death causes very large increases in lifespan, giving a false 
impression that the entire aging process has been suppressed. C. Regulated and non-regulated aging. 
When regulated aging is suppressed, lifespan is limited by non-regulated aging, which is far less 
plastic. Interventions with conserved effects on lifespan (e.g. reduced IIS) in iteroparous organisms 
have larger effects in shorter-lived species, perhaps because shorter lived species tend to have higher 
levels of regulated aging. A-C, all images reproduced with permission. 
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Fig. 7. Double death: Reproductive death and adaptive death combine to promote fitness.   
In both cases there is evidence for the existence of adaptive death, but its existence has not 
been definitively proven (Galimov and Gems, 2020a). The two examples of double death 
differ in that adaptive death in C. elegans involves consumer sacrifice (removing a consumer 
to increase food availability for kin) while in O. nerka it involves biomass sacrifice (dying to 
facilitate resource remobilization) (Lohr et al., 2019). 
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Table 1 | Magnitude of increases in lifespan after gonadectomy or behavioral interventions that prevent reproductive death 
 
             Lifespan1 
Species, genotype  Sex   Intervention    Conditions, strain  Control  Treated  % change Reference 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
C. elegans 
+    Hermaphrodite Germline ablation (laser)   20˚C, agar plates  19.4 d 31.8 d +63.9  (Hsin and Kenyon, 1999) 
daf-2(e1370)  Hermaphrodite Germline ablation (laser)   20˚C, agar plates  43.2 d 75.7 d +75.2  (Hsin and Kenyon, 1999) 
+    Hermaphrodite Germline ablation (laser)  20˚C, monoxenic liquid 16.8 d 35.0 d +108  (McCulloch, 2003)  
daf-2(e1368), daf-2 RNAi Hermaphrodite Germline ablation (laser)   20˚C, agar plates  51.0 d 124.1 d +143  (Arantes-Oliveira et al., 2003) 
 
Caenorhabditis species 
C. elegans   Hermaphrodite Germline ablation (laser)  20˚C, agar plates  16.7 d 35 d +109.4  (Kern et al., 2020b) 
C. inopinata  Female  Germline ablation (laser)  20˚C, agar plates  23.5 d 30.7 d +30.6  (Kern et al., 2020b) 
C. tropicalis  Hermaphrodite Germline ablation (laser)  20˚C, agar plates  18.8 d 35.9 d +91  (Kern et al., 2020b) 
C. wallacei   Female  Germline ablation (laser)  20˚C, agar plates  28.7 d 33.9 d +18.5  (Kern et al., 2020b) 
C. briggsae   Hermaphrodite Germline ablation (laser)  20˚C, agar plates  17.1 d 31 d +81.5  (Kern et al., 2020b) 
C. nigoni   Female  Germline ablation (laser)  20˚C, agar plates  29.7 d 34 d +14.5  (Kern et al., 2020b) 
 
Pristionchus species 
P. pacificus   Hermaphrodite Germline ablation (laser)  20˚C, agar plates  24.7 d 40.5 d +64  (Kern et al., 2020b) 
P. exspectatus   Female  Germline ablation (laser)  20˚C, agar plates  43.1 d 44.3 d +2.7  (Kern et al., 2020b) 
 
Semelparous (with reproductive death) 
Glycine max (soy bean) Monoecious Flower removal      119 d  179 d  +50.4  (Leopold et al., 1959) 
O. hummelincki (octopus)  Female  Optic gland removal     51 d 277 d +443  (Wodinsky, 1977) 
A. anguila (eel)    Unknown Prevention of sea run  Fresh water  9 y2 55 y +511  (Tesch, 1977) 
A. anguila (eel)   Unknown  Prevention of sea run   Fresh water  9 y2 88 y +877  (Vladykov, 1956) 
O. nerka (salmon)   Both sexes Castration      4.8 y 8.5 y +77.0  (Robertson, 1961) 
A. stuarti (marsupial) Male   Lab capture prior to mating    1 y 3 y +200  (Olsen, 1971) 
 
Iteroparous 
D. subobscura  Female  grandchildless mutation  20˚C, virgin  58.7 d3 67.6 d3  +15.14  (Maynard Smith, 1958) 
D. melanogaster   Female  germ cell-less mutation  25˚C, virgin  44 d 38 d -13.6  (Barnes et al., 2006) 
D. melanogaster   Female  tudor mutation   25˚C, virgin  71 d 57 d -19.7  (Barnes et al., 2006) 
D. melanogaster   Female  bag of marbles over-expression 25˚C   32,28 d 42 d +31.3, 50.0 (Flatt et al., 2008) 
D. melanogaster   Male  bag of marbles over-expression 25˚C   38,36 d 46 d +21.0, 27.8 (Flatt et al., 2008) 
R. microptera (grasshopper) Female  Ovariectomy   28˚C   167 d 205 d +22.7  (Hatle et al., 2008) 
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R. microptera (grasshopper) Female  Ovariectomy   32˚C, 24˚C  245 d 285 d  +16.3  (Drewry et al., 2011) 
M. musculus (mouse)   Female  Ovariectomy before puberty CBA/J   599 d 540 d -9.8  (Cargill et al., 2003) 
R. norwegicus (rat)    Male   Castration at birth  Inbred Lewis   454 d 521 d +14.7  (Talbert and Hamilton, 1965) 
R. norwegicus (rat)   Male  Castration just before puberty Osborne-Mendel Yale 615 d 651 d +5.8  (Asdell et al., 1967) 
R. norwegicus (rat)   Female  Ovariectomy just before puberty Osborne-Mendel Yale 742 d 669 d -9.8  (Asdell et al., 1967) 
R. norwegicus (rat)   Male   Castration just before puberty Norway albino  727 d 817 d +21.7  (Drori and Folman, 1976) 
F. catus (cat)   Male  Castration      4.9 y 8.2 y +67.3  (Hamilton et al., 1969) 
F. catus (cat)   Female  Spayed       6.8 y 8.4 y +23.5  (Hamilton et al., 1969) 
F. catus (cat)  Both sexes Gonadectomy      11.0 y 15.0 y +36.3  (O’Neill et al., 2015) 
C. lupus familiaris (dog)  Both sexes Gonadectomy      7.9 y  9.4 y +18.9  (Hoffman et al., 2013) 
H. sapiens    Male  Castration      55.7 y  69.3 y +24.4  (Hamilton and Mestler, 1969) 
H. sapiens    Female  Oophorectomy      65.2 y 65.2 y +0  (Hamilton and Mestler, 1969) 
H. sapiens    Male  Castration      50.9 y 70.0 y +37.5  (Min et al., 2012) 
H. sapiens    Male  Castration      55.6 y 70.0 y +25.8  (Min et al., 2012) 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
1 Mean lifespan (median lifespan, italics; maximum lifespan, underlined). d, days. y, years. 
2 Eels normally live 6-12 y; the median value is taken here.  
3 Life expectancy at age 10 days. 
4 It might be significant that the strain of D. subobscura used in this study mated only once, in contrast to D. melanogaster which can remate multiple times (Partridge and Sibly, 1991). 
 
Also included here are behavioral interventions that prevent reproductive death. It is notable that the magnitude of reported experimentally-induced increases in 
lifespan, expressed in terms of proportional increase in lifespan, are generally greater in semelparous than iteroparous organisms. 
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Table 2. 12 features of C. elegans consistent with semelparous reproductive death 
 
1) C. elegans hermaphrodites exhibit early, massive pathology affecting organs linked to 
reproduction. 
2) Gut-to-yolk biomass conversion appears to be part of a suicidal reproductive effort that promotes 
fitness by feeding trophallactic fluid to larval kin.   
3) Blocking hermaphrodite reproductive maturation (e.g. by germline ablation) suppresses 
development of such pathologies, and leads to increases in lifespan of a large magnitude. 
4) Germline removal in wild-type males, which do not exhibit semelparity-like pathology, does not 
increase lifespan. 
5) Caenorhabditis hermaphrodites, which exhibit senescent transformation, are shorter lived than 
(unmated) Caenorhabditis females, which do not, consistent with reproductive death in the former 
only. 
6) Caenorhabditis hermaphrodites vent yolk milk and lay unfertilized oocytes in large numbers, 
while Caenorhabditis females do not. 
7) Germline removal in unmated Caenorhabditis females, which do not exhibit semelparity-like 
pathology, produces much smaller increases in lifespan than in Caenorhabditis hermaphrodites. 
8) Germline removal removes the difference in lifespan between Caenorhabditis females and 
hermaphrodites. 
9) C. elegans senescent transformation involves source-to-sink type resource remobilization, as seen 
in semelparous animals and plants. 
10) Autophagic processes that enable biomass conversion and resource remobilization contribute to 
senescent pathogenesis in semelparous organisms (particularly plants). 
11) Semelparous senescence occurs earlier in cell compartments or organs that are non-essential for 
survival and behavior (gonad, intestine) than in essential organs (e.g. the nervous system).   
12) Semelparous species often have an extended pre-reproductive stage, followed by a very brief 
reproductive stage (c.f. the dauer stage in C. elegans).  
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