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Abstract

We provide a detailed analysis of the electronic properties of graphene-like materials with
charge carriers living on a curved substrate, focusing in particular on constant negative-
curvature spacetime. An explicit parametrization is also worked out in the remarkable case
of Beltrami geometry, with an analytic solution for the pseudoparticles modes living on
the curved bidimensional surface. We will then exploit the correspondent massless Dirac
description, to determine how it affects the sample local density of states.

1 Introduction

The recent developments in material science provide a new connection between condensed matter
and quantum electrodynamics models. In particular, the study of the physics of carbon-based
materials like graphene opens a window on the possibility of a direct observation of quantum
behaviour in the curved background of a solid state system [1-3]. A graphene sheet is a bidimen-
sional system of carbon atoms arranged in a honeycomb lattice of one-atom thickness, one of the
closest possible real two-dimensional objects. In 1984 Semenoff formulated the hypothesis that
graphene could realize the physics of two dimensional massless Dirac fermions [4], this property
discriminating graphene from other 2D system. Graphene crystals were then produced in 2004
as single carbon atom layers [5, 6].

As we will discuss in detail, graphene and other 2D materials realize the physics of spinorial
fields, whose Dirac properties emerge due to the structure of the space (lattice) with which the
charge carriers interact. The peculiar sheet structure then determines a natural description of its
electronic properties in terms of massless pseudoparticles, giving the possibility to study quasi-
relativistic particle behaviour at sub-light speed regime' [3,7,8]. A natural suggestion turns out
to be that the geometric curvature of the two-dimensional sample, combined with the mentioned
special relativistic-like behaviour, naturally leads to a general relativistic-like description for
our pseudoparticles, which will then be regarded as Dirac fields in a 142 dimensional curved
spacetime background [9-14]. This gives us a real framework to study what is believed to be
(as close as possible) a quantum field in a curved spacetime, with measurable effects pertaining
to the electronic structure of the sample itself [12,13,15,16], so that the understanding of 2D
Dirac materials properties is important in condensed matter as well as in theoretical high energy
physics [1, 2].

The massless formulation is in general robust, since it emerges at the level of non-interacting
system, the vanishing quasiparticle mass (gapless spectrum) protected by the combination of

! our framework turns out to be the analog of a relativistic system, with characteristic limiting velocity given

by the Fermi velocity v rather than the speed of light ¢ (for graphene vi ~ 555)
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parity and time-reversal symmetries. In general, interactions are not very efficient in introducing
a gap and/or modifying the quasiparticle behavior [3,17].

In the context of high energy physics, the emergence of intrinsic and extrinsic curvature
in graphene-like materials can be used to investigate the fundamental physics of the quantum
Dirac dynamics in curved, torsion-free spacetimes, as well as to probe certain quantum gravity
scenarios [18,19]. There are also some theoretical results that conjecture the use of graphene to
have alternative realizations of Supersymmetry [20-22].

Continuum limit and spacetime geometry. The detailed study of suitable curved config-
urations can highlight the peculiar properties of the charge carriers, derived from the discussed
massless Dirac description in a curved background [23-26]: the choice of the geometry, the
corresponding parametrization and the quantization of some physical quantities, can lead to
characteristic observable effects.

In general, we can state that Dirac physics can be realized for our quasiparticles consid-
ering low-lying energy excitations: if we consider energy ranges below Ey ~ v/l ~ 4.6eV,
the electrons wavelength is large compared to the lattice spacing ¢ ~ 0.142nm, so that these
charge carriers see the graphene sheet as a continuum, justifying the quantum description in
142 spacetime. Moreover, quasiparticles with large wavelength are sensitive to sheet curvature
effects, claiming for a quantum field formulation in curved spacetime. In particular, this means
that, in the continuum field approximation, we have to demand the charge carrier wavelengths
to be bigger than the lattice typical dimension, A\ > 27vp/E; ~ 27l

With the above prescriptions in mind, the challenge is now to find a suitable curved space-
time where it can be easier to probe and study the relativistic-like quasiparticles quantum
behaviour. As we will see in Section 3, the Beltrami pseudosphere [27] is a promising candi-
date where Dirac’s equation in curved space can be solved analytically, providing an explicit
expression for the Dirac spectrum and its effects on the electronic local density of states (LDOS).

From an historical point of view, the Beltrami surface has been conjectured to provide a
promising spacetime framework where to observe an Hawking—Unruh effect [28,29], one of the
most interesting predicted phenomena of a quantum field theory in curved background [30, 31].
The possible formation of a Rindler-type horizon in a Beltrami geometry could then lead to a
characteristic thermal behaviour, related to the specific nature of quantum vacua and relativistic
process of measurement [32-34]. In Section 4 we will provide an analytic expression for the Dirac
modes of the charge carriers living in a Beltrami spacetime, so that experimental predictions
related to the electronic structure of the corresponding graphene-like sample can be explicitly
worked out.

Finally, we point out that, although we have primarily graphene in mind, many of the
following considerations can be extended to other two-dimensional Dirac materials, includ-
ing silicene, germanene, graphynes, several boron and carbon sheets, transition-metal oxides
(TiO2/VOs), organic and organometallic crystals (MoSs), artificial lattices (electron gases and
ultracold atoms) [35-43].

2 Dirac formalism

The quantum Dirac formulation introduced above emerges from the graphene lattice structure,
where a unit cell is made of two adjacent atoms belonging to the two inequivalent, interpene-
trating triangular sublattices. This means that we have two inequivalent sites per unit cell, the
distinction related to their topological inequivalence. The single-electron wave function can be
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then conveniently arranged in a two-component Dirac spinor, so that the description of its elec-
tronic properties can be given in terms of massless Dirac pseudoparticles [3], the characterization
being resistent to changes of the lattice preserving the topological structure.

In the reciprocal lattice space, the first Brillouin zone (FBZ) results in a structure with the
same hexagonal form of the honeycomb lattice, rotated by a w/2 angle. The relativistic behavior
of the charge carriers can be inferred, in the momentum space, from the linear dispersion relation
between energy and quasimomentum at the corners of the FBZ. The latter can be divided into
two topological inequivalent classes, since only two of the six vertices can be chosen to be
independent, the remaining four connected to them by a reciprocal lattice vector; this means
we can consider only two inequivalent corners, labeled K, K’ (Dirac points).

Substrate deformations and energy scales. If we consider a graphene layer with hexagonal
lattice, every carbon atom has four electrons available for covalent bonds. Three of them form
the o-bonds with three different nearest neighbors (merging of atomic 2s orbitals); these bonds
define the elastic properties of the sheet. The fourth electron forms a covalent w-bond with one
of the three neighbors (merging of atomic 2p orbitals): being the latter m-bond much weaker
than the former o, the involved m-electrons become charge carriers that are much more free to
hop, determining then the electronic properties of the sample.

If we want to construct the action that captures the physics of the m-electrons in the curved
sheet, we need to study the possible deformations that can be encoded in the Dirac description.
In the large wavelength regime [12,13,44], we can find three kinds of deformation at work [3]:
extrinsic curvature, intrinsic curvature and strain. The first deformation is an elastic effect that
can be expressed, at first order, using derivatives of the strain tensor [3,45]; the second is an
inelastic effect coming from the formation of disclination-type defects [46,47]; the third is again
an elastic deformation that takes into account effects that are proportional to the strain tensor
(not to its derivatives), that turn out to work as potentials for a pseudo-magnetic field B,, and
a scalar potential ® [3,45,48-51].

Since we are primarily interested in investigating the effects of curvature on the substrate
quantum (electronic) properties, we shall focus on inelastic deformations, since elastic deforma-
tions cannot induce intrinsic sheet curvature [3]. This means that we will have to introduce also
the energy scale Er ~ vs/R < E;, with R > ¢ and where 1/R? is a measure of the intrinsic
curvature. In fact, we want the curvature to be small if compared to the limiting value 1/¢2:
this, in turn, means that we can formulate our theory using a smooth metric, ruling also out the
difficult bending of the strong o-bonds. The previously introduced E, energy now corresponds
to the high-energy regime for our formulation and, when we are within the Er energy range,
the charge carriers are still sensitive to the global effects of curvature.

The above considerations suggest we should focus on electrons with longer wavelengths than
the corresponding ones for the simple continuum approximation, A > Ag > A; (with A\, ~ 27,
Ar ~ 2mR), so that our energies range is valid up to Eg: in this situation, the elastic properties
of the sample (involving much larger energies, of the order of tens of eV) are decoupled from
the m-electrons dynamics, governed by inelastic effects, and in our mathematical formulation we
will neglect the contributions from B,, and ® [52, 53].

Topological defects. The formation of topological defects in 2D materials is the natural
way in which the sample layer heals vacancies and other analogous lattice damages. Among
those, disclinations, dislocations and Stone-Wales defects (special dislocation dipoles) were
found to have the least formation energy and activation barrier, so that they result energet-
ically favourable phenomenons [54, 55]. If we consider graphene-like materials, disclinations and
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dislocations are the most important topological sample defects?, related, in the continuum limit,
to curvature and torsion, respectively [46, 56].

A disclination is a crystallographic defect associated with the violation of the (discrete)
rotational symmetry. Positive (negative) disclinations are topological defects obtained by re-
moving (adding) a semi-infinite wedge of material to an otherwise perfect lattice. If we consider
a bidimensional hexagonal lattice, a disclination consists in the substitution of an hexagon with
other polygons: it therefore manifests itself by the presence of an n-sided polygon, with n # 6.
If 3 < n < 6, the associated singularity carries a positive intrinsic curvature, while, in the n > 6
case, it carries a negative intrinsic curvature . A dislocation defect appears in graphene-like lat-
tices as a disclination pair (dipole of disclinations, usually pentagon—heptagon pairs); its effects
manifest themselves in forms similar to those arising from curvature or elastic strain.

Inelastic phenomenons due to geometric curvature can be then generated by the presence of
suitable sample topological defects [12,13,46,56-58]. In the following sections, we will deal in
detail with the case of negative-curvature surfaces; the latter usually carry one of the described
topological defects (for example, heptagon-disclination defects in hexagonal lattice). However,
we will not have to face in detail the local microscopical substrate deformations since, as we
already stated, we are working in continuum limit.

2.1 Dirac equation

Graphene-like flat substrates can be considered as 2D analogs of pseudorelativistic systems with
characteristic velocity vy . The dynamics of the charge carriers ¢ in the 142 dimensional flat
spacetime can be then described, in the long wavelength continuum limit, by a massless Dirac
action of the form

So = ihoy [ o500, 1)

where a = 1, 2,3 is the flat spacetime index and where, for the sake of notational simplicity, we
have omitted spinorial indices. A set of three-dimensional (flat) ¥-matrices can be written in
terms of the Pauli matrices as

Yo = (i03a01702)~ (2)
One can easily verify that the 5% = 7%+, matrices satisfy the standard Clifford algebra

{W“,'?b} = 21® 1, where n® is the inverse of the flat 142 dimensional Minkowski metric
in the mostly plus convention, 74, = diag(—1,1,1).

Curved space. Since we now want to include non-trivial intrinsic curvature effects, we are
naturally led to the customary generalization in a curved spacetime of the action for massless
Dirac spinors in 1+2 dimensions [9, 11]

S = ith/d%\/gz/?mep, (3)

where pr = 0,1,2 is now an index referring to the new curved spacetime with metric g,,, and
the factor \/g = \/—det(g,,) comes from the request of a diffeomorphic-covariant form of the
action in the presence of curvature. The curved «y, matrices are obtained from the constant ¥,

2 we do not consider here impurities, Coulomb and resonant scattering or other issues mixing the Fermi points,
with a corresponding chiral term in the action: we can assume that charge carriers mobility is not affected by the
mentioned effects at these energy scales [44]. The local lattice aspects can be then disregarded and the inelastic
effects will dominate, so that only intrinsic curvature must be taken into account (contributions from B, and ®
can be neglected) [52, 53]
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matrices of the flat frame by the action of the vielbein e,* (see App. A):
Y = €’ Va s (4)

while the inverse vielbein e,* performs the transformation in the other direction. The gamma
matrices with upper indices y* = g"” =y, satisfy the correspondent Clifford algebra relation in
curved background, {v*,v*} = 2¢g*" 1.

The diffeomorphic covariant derivative is written as
1
4

where My, = 3 [¥4,7;] are the Lorentz generators and w,(® defines the spin connection, that

D, =0, +Q = 0+~ w® My, (5)

can be seen as the gauge field of the local Lorentz group. Since we are working in a torsionless
framework, w,fb and e, are not independent [59, 60] and the former can be expressed in terms
of the latter as

wﬂab _ eya (9H6Vb 4 eya F,u)\y e)\b , (6)

where ]."W’\ is the affine connection

1 o
F;w)\ = 92 g A (8M9V<7 + 6Vgu<7 - 6‘79””) ) (M

If we consider the above (5), 2, acts as a gauge field able to take into account all deformations
of the geometric kind.
The equations of motion for the pseudorelativistic Dirac spinors coming from action (3)
read® [9,10, 12-14]
Z"YH Dlﬂ/] =0 5 (8)

that is, the generalized form of the massless Dirac equation in flat Minkowski spacetime obtained
through the substitutions

xa

Y _)7#7 aa_>,Du- (9)

Summarizing, we have constructed the large wavelength continuum description of the Dirac
quasiparticles living on a graphene-like sheet, modelling curvature effects through the coupling
of the Dirac fields to a curved spatial metric, thus obtaining the physical description of the charge
carriers dynamics [12-16, 53]. If we consider a topologically trivial, purely strained configuration
(elastic membrane deformations), there are no relevant physical effects coming from the spin-
connection. If instead the sample features a nontrivial intrinsic curvature, spin connection
dictates most of the physics for the Dirac fields. In particular, in our large wavelength continuum
limit for the charge carriers, the spin connection can be associated with disclination-type defects
inducing curvature, encoding the physics imposed by the geometric sheet deformation.

In the following sections we will consider an explicit parametrization of the curved mem-
brane, working out an analytic solution of the Dirac equation in the corresponding curved
background.

3 Constant negative-curvature spaces

Among the class of negative-curvature surfaces, an important role is played by the subset of
surfaces having constant negative Gaussian curvature. When embedded into R?, those surfaces
feature essential singularities [61]: as a consequence of this, we find that it is impossible to

3 from now on we work in (pseudo)natural units: i = vp = 1
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represent the whole Lobachevskian geometry on a real bidimensional surface, so that we are
forced to restrict to mapping only a suitable stripe of the hyperbolic space [27].

Another relevant point will concern explicit parametrization, so that hyperbolic (abstract)
geometry can be expressed, together with the above singular boundaries, in terms of well defined
coordinates. In this regard, we notice that the line element of any surface of constant negative
Gaussian curvature can be reduced to the one of the Beltrami or the hyperbolic or the elliptic
pseudospheres [62]. The advantages of the Beltrami surface are that an embedding parametriza-
tion can be given in terms of smooth, well-behaving single-valued functions and that it has only
one well-defined singular boundary, corresponding to the maximal circle.

Below, we provide an embedding for the Beltrami pseudosphere in three spatial dimensions,
the explicit parametrization given in terms of surface coordinates.

3.1 Beltrami spacetime

The Beltrami pseudosphere is a bidimensional surface that we here choose to parameterize as

x = L exp (%) cosp;
y = L exp (%) sing; (10)
R (arctanh f(u) — f(u)), flu) = \/1 - (% exp (%) ) .

w
I

As we can see by direct inspection, the parameterized Beltrami trumpet exists, in general, for
u € [—oo, R log (%)] The surface can be suitably embedded in R? and it is well-defined over
the whole non-singular part of the surface, the singular boundary being the maximal circle of
radius R corresponding to the limit value u, = R log (%)

Figure1: Beltrami trumpet parametric plot, with u € [0, u,] and v € [0, 27].
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We can also notice that the above equations for the embedding are expressed in terms of
the analogs of polar (or maybe better cylindrical) coordinates u, ¢, so that we can easily move
along the “meridian” and the “parallel” of the trumpet. Every coordinate is in fact expressed
as a smooth, well-behaving, single-valued function (taking a full turn on a parallel has no effects
on the values of z, y).

Graphene-like substrate. Even if the u—coordinate is unbounded from below (u — —o0
corresponding to z — 00), when we consider a graphene-like membrane we have to take into
account the considerations we made in Section 1 about the range of validity of the proposed
charge carriers dynamics (not holding for too small radii), the continuum limit approximation
and the difficulties in bending the surface beyond certain limits. All these aspects le%d to the
physical assumption of posing a limiting value for the surface (parallel) radius r = LeR. Then,
we should decide to make the natural assumption of minimum radius » > L, being L much larger
than the lattice length ¢ (r > L > ¢). This, in turn, means that the u—coordinate is restricted
to the interval u € [0, u,], with u, = R log (£).

The metric on the pseudosphere (10) has the form

-1 0 0
Guv = 0 1 Ozu , (]_]_)
0 0 L?eR

so that the 142 spacetime line element reads

2u
ds* = —dt? + du® + L? e R dy?, (12)

the resulting Ricci scalar R = f% being twice the Gaussian curvature K.

The vielbein can be easily found to be

0
0 , (13)

o = O

1
et = 0
0

e

Le

and it correctly satisfies the relation g,, = e,* e, Nap . The curved gamma matrices explicitly
read: .
Vo = el Yy = (iag,al,Leﬁag), (14)

and the reader can verify that upper-indexed * satisfy the Clifford algebra {y*,7"} =2¢*" 1.

Finally, the spin connection w;‘b has non vanishing components
L
w? = —wi® = ZeR (15)
so that now we are able to explicitly express the Dirac equation (8) in terms of the covariant
derivative (5).
4 Analytic solutions in Beltrami geometry

Our challenge now is to obtain explicit ¥—solutions for the curved space Dirac fields satisfying
(8), the corresponding relativistic pseudoparticles moving on a Beltrami surface.
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The analytic solution of Dirac equation (8) for charge carriers living on the Beltrami space-
time described in previous Subsect. 3.1 has the explicit form

1/} _ efi)\Et <f;:> , (16)

by = Celfduf(u) ez’kcp % e—%

with

) (a7)
¢y = C eifdug(“) etke z% e R Bu),

where A\ = +1 labels states having positive/negative energy E, and C is a normalization constant
that can be determined from the condition

[asvawe =1, (18)
being /g = \/—det(gu,) . The functions {(u) and %(u) are defined as

£(u) = (1_’“@—1‘% _1) “\E B(u),

u L 2
(19)
) +)
I "+1
PB(u) = 7O [
expressed in terms of the modified Bessel function of the first kind*
1 kR _u
I(i)_l(i2+i)\ER, Le_R> . (20)

4.1 Experimental effects: local density of states

We are now going to consider a simple experimental application for the above solution for
pseudorelativistic charge carriers living in a 1+2 dimensional curved background.

Since we have obtained the explicit Dirac solution v, we can consider the probability density
P=.9 [4|?, in terms of which the normalization condition (18) in Beltrami geometry can be
explicitly written as

/dE P(u,p) = QW/duLe% lp(u, ©)|* = 1. (21)

Using now our new solutions (16), (17) for the Beltrami surface, it is possible to obtain the
properly normalized probability density, as shown in Figures figs. 2 to 4. We should use the
appropriate precautions discussed in Sections 1 and 3.1, that is considering the proper interval of
variation for the u—coordinate in order to satisfy the correct continuum limit for the membrane.

4 the modified Bessel function of first kind I(n, Z) =Y is the function that satisfies the differential equation
Z2Y"+2Y — (22 +n2)Y = 0; for certain arguments it has an explicit analytic expression, while it can always
be evaluated to arbitrary numerical precision
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Figure 2: Normalized probability density as a function of u for a Beltrami-shaped sample surface with
parameters £ =4-10"* A=+1, R=5, L =0.001, C = 1415.
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Figure 3: Normalized probability density as a function of u for a Beltrami-shaped sample surface with
parameters £ =0.002, A\=+1, R=1, L =0.001, C =3.174.
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Figure4: Normalized probability density as a function of u for a Beltrami-shaped sample surface with
parameters £ =5-10"% A=41, R=10, L =0.002, C = 0.455.

As we can appreciate, for the chosen parameters, the peak is localized in correspondence of
small values for u, the charge carriers being then mainly localized on the throat of the trumpet.

For a given a location X on the layer surface and energy value E, the local density of states
(LDOS) of the sample can be defined as [63]

pS(E,X,O) =

M | =

> Px), (22)

E—¢

for sufficiently small values of €, where the O—coordinate means that we are considering pseu-
doparticles on the sample surface (i.e. zero distance from the substrate surface). The physical
meaning of the LDOS for our bidimensional sample is the number of charge carriers per unit
surface and unit energy range of size €, at a given surface location X and energy E. The sample
LDOS is not only an interesting direct observable for the predicted quantum behaviour, but also
a substrate feature of immense importance for electronic applications, being the availability of
empty valence and conduction states (states below and above the Fermi level) crucial for the
transition rates.

Measurements. The sample LDOS can be detected using a scanning tunneling microscope
(STM). The latter is an experimental device based on quantum mechanical tunneling, in which
the wave-like properties of charge carries allow them to penetrate through a potential barrier,
into regions that are forbidden to them in the classical picture. STM spectroscopy provides in-
sight into the surface electronic properties of the substrate, being the tunneling current strongly
affected by the local density of states p.. The latter is in turn related to the probability density
P through definition (22).

A typical STM device consists of a very sharp conductive tip which is brought within tun-
neling distance (< nm) from a sample surface, using a three-dimensional piezoelectric scanner.
Let us imagine that electrons fill energy levels up to the Fermi level — which defines an upper
boundary similar to the sea level — above which we find activated charge carriers. The Fermi
level of a material can be raised /lowered with respect to a second material by applying an ap-

10
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propriate voltage. Thus, to obtain a tunneling current through the gap between the sample and
the tip, a suitable bias voltage % can be applied, causing charge carriers to tunnel across the
gap”. In particular, when a negative bias is applied to the sample, its Fermi level is raised and
the charge carriers of the filled occupied states can tunnel into the unoccupied state of the tip,
while the opposite occurs for a positive bias (filling of the sample empty states).

We are interested in the STM—map setup, where the density of states at some fixed energy,
is mapped as a function of the position (u, ) on the sample surface. Let us assume ¢ = eV
to be very small with respect to the work function ® (minimum energy required to extract an
electron from the surface), so that the sample states with energy lying between Ex —e % and Fr
are very close to the Fermi level and have non-zero probability of tunneling into the tip. The
resulting tunneling current Z is directly proportional to the number of states on the substrate
within our energy range of width e %/, this number depending on the local properties of the
surface. Including all the sample states in the chosen energy range, the measured tunneling
current can be modelled, in first approximation, as [63]

o
T Y Perd, (23)

Ey—ev

where k is some decay constant in the barrier separation depending on ®. The exponential
function gives the suppression for charge carriers tunneling in the classically forbidden region of
width d (sample-tip separation). The tunneling current can be then measured, for constant sep-
aration d, at different X positions and, for sufficiently small 9/, it can be conveniently expressed
in terms of the LDOS of the sample as [63]:

Z(x) o p(Ep,X,0)e 2 cq (24)

In summary, tunneling current measured by STM mapping, at small bias voltage ¥ and fixed tip-
sample separation d, is proportional to the local density of states of the sample. In particular,
we could scan our Beltrami surface at different positions varying the u—coordinate, mapping
inhomogeneities in the local density of states p,(Er,u,0), that in turn depend on the predicted
surface probability density P(u).

STM can operate in ambient atmosphere as well as in high vacuum; when a high-vacuum
configuration is employed, its purpose is not to improve the performance of the STM but rather
to ensure the cleanliness of the sample surface. We also remark that the LDOS obtained with a
STM is not limited by the position of the Fermi energy, since both occupied and empty states are
accessible [64]. For finite bias voltage and different Fermi levels for the sample and tip material,
the functional form of the tunneling current and its relation with the sample local density of
states can be easily obtained from Bardeen time-dependent perturbation approach [63].

5 Conclusions

A deeper intertwining of different scientific areas can really provide an important step forward
in our understanding of various, fundamental physical aspects of our world. In particular, it has
been shown that the considerable gap between high energy physics and condensed matter — due
to mutually independent mathematical formulation and developments — can be reduced using
a multidisciplinary approach (see e.g. [18,19,65-73]). In this article, we have used different

5 to simplify our discussion, we are assuming that both materials have the same Fermi level

11
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techniques from high energy physics, differential geometry and general relativity, applying them
to the study of pseudoparticles living in a curved, real bidimensional surface.

When dealing with graphene-like materials, one immediately realizes the need for a cor-
rect quantum relativistic field description, these special materials implementing the physics of
Dirac relativistic fermions in a real condensate system. We also gain the concrete possibility
to observe the analogues of gravity effects, driven by the specific curved spacetime, dictated in
turn by the chosen membrane structure. In this work, in particular, we have found an analytic,
explicit expression for the pseudorelativistic charge carriers modes in the notable framework
of the Beltrami geometry, being subsequently able to characterize a simple observable like the
pseudoparticles local density of states. Clearly, the same approach finds application also in dif-
ferent spacetime geometries; one example is given by the BTZ geometry [74], that under certain
conditions can mimic the background for low-energy electron excitations of a curved graphene
sheet [75].
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A Conventions

Dirac equation. The Dirac equation in Minkowski spacetime is the result of the construction
of a relativistic field equation, whose squared wave function modulus could be consistently
interpreted as a probability density. To satisfy these conditions, the equation is of first order
in time-derivative, while relativistic invariance requires the equation to be first order in space-
derivatives too. The final explicit form must fulfill the requests of Lorentz covariance and satisfy
the Klein-Gordon equation, and reads

(1940, —m1) Y(x) = 0, (A.1)

together with the condition
{7%. 4"} = 20’1, (A2)

that is usually referred to as Clifford algebra, the matrix 7*° being the inverse of the Minkowski
flat metric 7gp -

For the sake of notational simplicity, in eq. (A.1) we have omitted the spinorial indices of
Y =P and 4 = (%) - Spinors are objects that transform as scalars under general space-
time coordinate transformations, while they trasform in a spinor representation &% under the
local Lorentz group:

W (@) = 2[Aa)] , vP(). (A3)

Using the explicit form of the Lorentz generators to construct the Pauli-Lubanski operator, it

can be easily shown that the particle has spin s = % .

A.1 Curved spaces

Einstein’s theory of gravitation relies on the symmetry principle of invariance under general
coordinate transformations, that, in turn, can be viewed as local spacetime transformations
generated by the local translation generators. The gravitational force can be then geometrically
modelled in terms of the spacetime curvature.

In order to conveniently describe general relativity scenarios together with spinorial fields,
one should introduce some tools to describe transformation rules generalized to curved back-
grounds, leading to the so-called vielbein formalism.

Vielbein formalism. Let us consider a set of coordinates that is locally inertial, so that one
can apply the usual Lorentz spinor behaviour, and imagine to find a way to translate back to the
original coordinate frame. More precisely, let y*(xo) denote a coordinate frame that is inertial
at the space-time point zo: we shall call these the “Lorentz” coordinates. Then,
Iy (xo)
a —

el (z) = oy (A4)
gives the so-called vielbein: it defines a local set of tangent frames of the spacetime manifold
and, under general coordinate transformations, it transforms covariantly as

ox”
1ar N a
e (@) = 570 ef(2), (A.5)
while a Lorentz transformation leads to
e’ (x) = ANy el(x) . (A.6)
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The space-time metric, in particular, can be expressed as

g (x) = €, () el () Nap (A7)

in terms of the Minkowski flat metric 7,5 . The original constant 4, matrices of the inertial
frame can be converted into the new 7, matrices of the curved background by the action of the
vielbein:

() = e () Vo s (A.8)

while the inverse vielbein e,* performs the transformation in the other direction. The vielbein
thus takes Lorentz (flat) latin indices to coordinate basis (curved) greek indices. The gamma
matrices with upper indices

= 9", (A.9)

satisfy the relation:
{2 =291, (A.10)

that holds in curved backgrounds and is the equivalent form of the previous, flat Clifford algebra
(A.2).

Covariant derivative, spin connection. The choice of the locally inertial frame y is defined
up to Lorentz transformations given by the Lorentz generators M, . In order to couple fields,
we define the covariant derivatives:

1
D, = 9, + Z”"ab Moy , (A.11)
where 1
Mab = 5 H’avﬁ/b] . (A12)

The wuab object defines the spin connection, that can be seen as the gauge field of the local
Lorentz group, the corresponding field strength given by the Riemann curvature tensor, and is
determined through the vielbein postulate (tetrad covariantly constant) [46, 47]:

Due —Tultex = 0. (A.13)

The latter is written in terms of the affine connection I“WA

1 (o8
Fuu/\ = 5 g A (a,ugua + 81/9#0 - aag;w) . (A14)
while the explicitly expression for the spin connection is found to be
W = e, 9" + e TN e, (A.15)

Finally, the Dirac equation in curved spacetime can be written as:

(iv"D,—ml) ¢ = 0. (A.16)
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