Preprint
Article

Correlation between the Fluctuations in Worldwide Seismicity and Atmospheric Carbon Pollution

Altmetrics

Downloads

919

Views

2052

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

10 September 2018

Posted:

28 September 2018

You are already at the latest version

Alerts
Abstract
The crucial stages in the geochemical evolution of the Earth’s crust, ocean, and atmosphere could be explained by the assumed low-energy nuclear reactions (LENR) that are triggered by seismic activity. LENR result in the fission of medium-weight elements accompanied by neutron emissions, involving Fe and Ni as starting elements, and C, N, O as resultants. Geochemical data and experimental evidences support the LENR hypothesis. A spectral analysis of the period 1955-2013 shows common cycles between interannual changes in atmospheric CO2 growth rate and global seismic-moment release, whereas the trending behavior of the atmospheric CO2 was in response to the anthropogenic emissions. Assuming a correlation between such seismic and atmospheric fluctuations, the latter could be explained by cycles of worldwide seismicity, which would trigger massively LENR in the Earth’s Crust. In this framework, LENR from active faults could be considered as a relevant cause of carbon formation and degassing of freshly-formed CO2 during seismic activity. However, further studies are necessary to validate the present hypothesis which, at the present time, mainly aims to stimulate debate on the models which regulates atmospheric CO2.
Keywords: 
Subject: Environmental and Earth Sciences  -   Geochemistry and Petrology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated