Preprint
Article

Transport Properties of Nanostructured Li<sub>2</sub>TiO<sub>3</sub> Anode Material Synthesized by Hydrothermal Method

Altmetrics

Downloads

1347

Views

1153

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 June 2019

Posted:

10 July 2019

You are already at the latest version

Alerts
Abstract
Li2TiO3 nanopowders were synthesized by hydrothermal process using anatase TiO2 and LiOH H2O as raw materials. Li2TiO3 crystallizes in the layered monoclinic structure (space group C2/c) with average crystallite size of 34 nm. Morphology, elemental composition and local structure of products were carried out using HRTEM, FESEM, EDS, Raman and FTIR spectroscopy. Transport properties investigated by d.c. (4-probe measurements) and a.c. (complex impedance spectroscopy) show the activation energy of 0.71 and 0.65 eV, respectively. The ionic transport properties of Li+ ions in nanocrystalline Li2TiO3 characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) validate the good electrochemical properties of this anode material for lithium-ion batteries.
Keywords: 
Subject: Chemistry and Materials Science  -   Electrochemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated