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Abstract: Biosensors are measurement devices that can sense several biomolecules, and are widely 

used for the detection of relevant clinical pathogens such as bacteria and viruses, showing 

outstanding results. Because of the latent existing risk of facing another pandemic like the one we 

are living due to COVID-19, researchers are constantly looking forward to developing new 

technologies for diagnosis and treatment of infections caused by different bacteria and viruses. 

Regarding that, nanotechnology has improved biosensors design and performance through the 

development of materials and nanoparticles that enhance their affinity, selectivity, and efficacy in 

detecting these pathogens, such as employing nanoparticles, graphene quantum dots, and 

electrospun nanofibers. Therefore, this work aims to present a comprehensive review that exposes 

how biosensors work in terms of bacterial and viral detection, and the nanotechnological features 

that are contributing to achieving a faster yet still efficient COVID-19 diagnosis at the point-of-care. 

Keywords: Bacterial detection; Biosensors; Clinical pathogen; COVID-19; Electrospun nanofibers; 
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1. Introduction 

Biosensor’s concept was firstly addressed by Clark and Lyons around 1962 when they 

developed an oxidase enzyme electrode for glucose detection [1]. Since then, nanotechnological 

development has promoted biosensors evolution and specialization for different purposes [2]. 

Currently, nanotechnology is at the forefront of science, and its combination with biosensoring 

applications involves different fields such as medicine, biology, environmental, drug delivery, food 

safety, and others [3–7]. However, the detection of pathogens has become one of the most relevant 

objectives for these devices since bacterial and viral diseases currently represent an important thread 

for human health [8,9].  

Virus and bacteria detection commonly involves the use of several molecular techniques 

such as the reverse transcription-polymerase chain reaction (RT-PCR), which remains the gold 
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standard for pathogen detection [10]. The classical detection methods for these pathogens usually 

require isolation, culturing, and then, biochemical tests [11]. Additionally, serological tests like 

ELISA are used for the detection of antibodies and immunoglobulin needed for identification 

purposes [12]. However, some of these techniques take a long time for obtaining results and are 

usually laborious. Therefore, new approaches based on nanotechnological advances have emerged 

as suitable and easier options for detecting pathogens in faster and efficient ways [11,13]. 

On one hand, nanoparticles (NPs) have demonstrated outstanding properties against 

different pathogens used to develop novel devices and technologies that contribute to this public 

health issue [14,15]. The interest is not limited to human diseases, but also considers the ones 

affecting animals since zoonosis is an existent thread. Stringer et al. developed an optical biosensor 

using gold NPs (AuNPs) and quantum dots (QDs) for the detection of porcine reproductive and 

respiratory syndrome virus [16].   

On the other hand, international scientific community’s interest in using DNA biosensors or 

sequence-specific DNA detectors for clinical studies is increasingly growing. In 2007, Dell’Atti et al. 

developed a combined DNA-based piezoelectric biosensor for simultaneous detection and 

genotyping of high-risk Human Papilloma Virus (HPV) strains [17]. In addition to that, these 

biosensors have been employed for DNA damage research and specific gene sequences detection 

[18,19].   

Biosensors and nano-biosensors have been extensively used for the detection of viral and 

bacterial clinical pathogens. These devices are practical (e.g., enable point-of-care (POC) testing 

through smartphone-based nano-biosensor), fast, and are considered as innovative technologies that 

provide an alternative solution to the mentioned disadvantages presented by common detection 

methods [20–22]. The aforementioned have been employed for studying viruses affecting human 

health such as Ebola virus, Human Immunodeficiency Virus (HIV), and more recently the newly 

discovered acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as bacteria like 

Escherichia coli, Salmonella spp. and others [23–27]. 

Because of the latent existing risk of facing another pandemic like we are living due to 

Coronavirus disease (COVID-19), researchers are constantly looking forward to developing new 

technologies for diagnosis and treatment of infections caused by different bacteria and viruses. 

Therefore, this review aims to expose how biosensors work in terms of bacterial and viral detection, 

describing the nanotechnological features such as NPs, graphene QDs (GQDs), and electrospun 

nanofibers, which enhance their affinity, selectivity, and efficacy in detecting these pathogens, as 

well as highlighting current advances for the COVID-19 pandemic assessment at the POC. 

2. Biosensors 

Biosensors can be defined as a measurement system for analyte detection that combines a 

biological component with a physicochemical detector [28]. The analyte detection depends on the 

biosensor design and purpose. Some commonly used devices such as smartphones can be employed 

as a biosensor with the inclusion of simple accessories such as published by Soni et al., where they 

developed a non-invasive smartphone-based biosensor for urea using saliva as sample [29,30]. This 

allows fast and low-cost preliminary detection [31]. 
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Usually, biosensors detect biomolecules such as nucleic acids, proteins, and cells that are 

associated with diseases. This is possible because of their three major components: the biologically 

sensitive element, the detector element, and the reader device [32]. Enzymes, microorganisms, 

organelles, antibodies, and nucleic acids are used to detect the biomolecules [33]. In order to obtain a 

high-quality biosensor, researchers must identify the requirements to obtain a fully functional 

device. Hence, multidisciplinary studies are fundamental to select the proper material, transducing 

device, and biological element involved, before assembling the biosensor [34]. 

At a clinical level, biosensors are applied for detecting disease-associated biomolecules [32]. 

These devices can monitor several parameters like disease-causing bacteria, and several body fluids 

such as saliva, blood, or urine [35,36]. Zhang et al. developed a non-invasive method for glucose 

testing based on a disposable saliva nano-biosensor to improve patient compliance, reduce 

complications, and costs derived from diabetes management. In the clinical trials, they obtained 

outstanding results in terms of accuracy compared to the UV spectrophotometer. Thus, the 

disposable device can be presented as an alternative for real-time salivary glucose tracking [37]. 

Biosensors can be applied for many other clinical diagnostic purposes, such as cholesterol, 

markers related to cardiovascular diseases, biomarkers of cancer or tumors, allergic responses, 

disease-causing bacteria, viruses, and fungi infections [38–41]. Aside from that, biosensors can be 

employed for bacteria and virus detection in food and water, which are potential sources of diseases 

[42,43]. Zhao et al. fabricated a low-cost, portable microfluidic chemiresistive biosensor based on 

monolayer graphene, AuNPs, and streptavidin-antibody system for the rapid in-situ detection of E. 

coli. In this case, the bacteria are captured on the biosensor’s surface and detection is performed 

through electric readouts [44]. Another approach published by Samanman et al. describes the 

development of a glutathione-S-transferase tag for white spot binding protein (GST-WBP) 

immobilized onto a gold electrode through a self-assembled monolayer. This biosensor can detect 

white spot syndrome virus (WSSV) in shrimp pond water due to binding between WSSV and the 

immobilized GST-WBP [45]. 

2.1. Operating principles 

Biosensors are constituted by three components (Figure 1) [38,46]. In the first place, these 

devices have sensing elements, also called bioreceptor that emulates in vivo molecular recognition 

phenomena [47]. There is a wide range of sensing elements such as cells, microbes, cell receptors, 

antibodies, enzymes, or nucleic acids [48–52]. These biological sensitive elements recognize the 

analyte and interact with it in different ways according to the type of biosensor [53]. One of the main 

biorecognition strategies is based on bacterial or viral nucleic acid sequences [54,55]. Solanki et al. 

developed a DNA bioelectrode to detect Vibrio cholerae, which is stable for at least 15 weeks under 

4°C storage. The biosensor consisted of O1 gene-based 24‐mer single-stranded DNA probe 

immobilized onto sol‐gel derived nanostructured zirconium oxide (NanoZrO2) film [56]. 
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Figure 1. Biosensor’s basic design. Reprinted with permission from Huang, Y. et al. Disease-Related Detection 

with Electrochemical Biosensors: A Review. Sensors 17(10). Copyright (2017) MDPI [46]. 

 

The second element is the transductor or detector, which works by sensing a signal related 

to a physicochemical change caused by the interaction between the bioreceptor and the analyte. It 

transforms the signal into another one that can be evaluated and quantified [57–61]. The last part of a 

biosensor is the reader device. It usually involves a display that depends on software and hardware 

to generate the results [62]. 

Some important attributes define the performance of a biosensor. In the first place, 

selectivity is the capacity of a bioreceptor to detect a specific bio-entity when analyzing a sample 

composed of other components. This is probably the main feature and determines the needed 

bioreceptor. Second, reproducibility is the ability to produce the same response for a certain 

experimental set-up that is performed multiple times. Reproducible signals provide high reliability 

and robustness. Third, stability is the capacity to endure ambient disturbances around the system 

that can affect the precision and accuracy of the device. Fourth, sensitivity also known as the limit of 

detection (LOD) is the minimum amount of the analyte that can be detected by a biosensor. For 

clinical applications, it is required to detect the analyte in samples of low concentrations (ng/ml or 

fg/ml). Finally, linearity examines how accurate are the measurements within the analyte range of 

concentrations (i.e. linear range), and in response to the smallest variation in terms of concentration 

that can cause a change in the output (i.e. resolution) [63]. 

2.2. Types of biosensors 

Biosensors can be classified by the way they transduce signals into optical, electrochemical, 

and piezoelectric devices [57–61,64]. Optical biosensors are those that perform their analysis through 

the measure of photons, using optic fibers as transduction elements [58,59,65]. Several optic sensing 

mechanisms can be employed by this type of biosensor for analyte detection such as absorption, 

colorimetry, fluorescence, or luminescence [66]. This kind of biosensor presents a lower noise and 

immunity to electromagnetic interference, which gives it an advantage over electrochemical and 

piezoelectric biosensors [67].  

Vidal et al. developed a chromatic biosensor for quick bacterial detection based on polyvinyl 

butyrate-polydiacetylene non-woven fiber composites. The device shows promising potential to 

alert about possible infections caused by Staphylococcus aureus, Micrococcus luteus, and E.coli [68]. In 

another study, Jeong et al. constructed a fluorescent supramolecular biosensor for bacterial 

detection. The binding of these pathogens induces conformational changes in the supramolecular 

state, which causes a fluorescence emission that can selectively detect E.coli over other 
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microorganisms [69]. Regarding viral analysis, Ahmadi et al. evaluated single virus detection 

through an optical biosensor, where viral particles attached to a microsphere optical resonator’s 

surface caused a shift of resonance to longer wavelengths [70]. 

The second type, electrochemical biosensor, has been extensively applied to pathogen 

detection. These devices sense the analyte through electrodes by measuring electrical signals 

resulting from catalytic reactions or specific unions. The previous is derived from the capture of 

electrons as a result of redox reactions between the analyte and the bio-element [71]. In addition to 

that, the analysis of the desired element is determined by different readouts like potentiometry, 

amperometry, and conductometry [72]. This type of biosensor has been subjected to improvements 

due to bio-and nanomaterials development [72,73].  

Recently, Mathelié et al. employed non-cytotoxic silica NPs-assisted electrochemical 

biosensor for sensitive and specific detection of E. coli. The electrochemical immune-biosensor 

detects the bacteria in five minutes by cyclic voltammetry measurements, and also represents a 

potential device for targeting a variety of other microorganisms through little modifications within 

its features [74]. In another study, Baek et al. developed an electrochemical biosensor composed of 

eight novel peptides separately in a gold electrode for the detection of human norovirus. The 

peptides exhibited a high binding affinity towards the viruses, and a decrease in current signals 

explained by increasing concentration of the virus [75].  

Finally, yet importantly, there are piezoelectric biosensors. Piezoelectricity refers to the 

ability of a material to generate a voltage under mechanical stress [76]. These biosensors possess 

crystals that vibrate under the influence of an electric field. Besides, certain materials vibrate at 

characteristic resonant frequencies in response to interaction with other molecules. The relationship 

between the resonant frequency changes and the mass from the molecules adsorbed or desorbed 

from the crystal’s surface is conceived as the working principle of transduction in this type of 

biosensor. Therefore, vibration provides information on the phenomenon that is being measured 

[77,78].  

Fu et al. discuss the advances in piezoelectric thin films acoustic wave devices for bacterial 

and viral detection of pathogens adsorbed on surfaces through DNA interaction with 

complementary strands. The previous allows early detection of clinical pathogens, and thus, 

prevents the spreading of the infection [79]. In another approach, Guo et al. worked on sensitive E. 

coli O157:H7 detection system using a piezoelectric biosensor-quartz crystal microbalance with 

antibody-functionalized AuNPs to enhance changes in detection signals. It was demonstrated that 

the developed device can be used as a suitable real-time monitoring method for the mentioned 

pathogen [80]. 

3. Biosensors nanotechnological features for bacterial and viral detection 

Over time, many techniques and methods have been developed for detecting pathogens 

such as viruses and bacteria, including colorimetric methods, fluorescence polarization, and 

electrochemical analysis [81]. However, those are very expensive and possess limitations related to 

time-consumption, low precision of the results, poor stability, and short life span [82].  

Bacterial and viral outbreaks have caused many issues in biomedical, food and 

environmental context, making necessary the development of new strategies that allow faster 
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detection of these pathogens to effectively contain and control their impact on human health [83]. 

The combination of nanotechnologies and biosensors’ characteristics is currently being considered 

as a potential opportunity for speeding up the development of fast, highly sensitive, and specific 

devices for genuine bacterial and viral detection. As a consequence, nano-biosensors make use of 

chemical, electrical, optical, and magnetic properties of materials for detecting biomolecules and 

pathogens [84,85]. 

In order to satisfy the previous, nanotechnology has greatly contributed to the development 

of biosensors due to research in nanomaterials and nanostructures, such as carbon nanotubes, 

GQDs, metal oxide NPs, metal nanoclusters, plasmonic nanomaterials, polymer nanocomposites, 

nanogels, among others (Figure 2) [86–89]. These have been employed for modifying electrode 

surfaces to improve critical features, such as reproducibility, selectivity, and sensitivity, due to their 

biocompatible character, structural compatibility, and high adsorption capacity. Therefore, 

nanomaterials have demonstrated to be suitable for biosensing applications, enhancing the 

performance with increased sensitivities and lower detection limits [90]. 

 

 

Figure 2. Different nanomaterials and nanostructures used for the development of nano-biosensors. Reprinted 

with permission from Pirzada, M. et al. Nanomaterials for Healthcare Biosensing Applications. Sensors 19(23): 

5311. Copyright (2019) MDPI [91]. 

 

Additionally, nanomaterials have been used to increase the immobilized bioreceptor 

loadings. However, the strategy for immobilizing the bio-specific entity onto the nanomaterial is 

considered as the biggest challenge for developing high quality and reliable nano-biosensor. 

Non-covalent approaches such as electrostatic interactions, polymers entrapment, or van der Waals 

forces between the nanomaterial and the biomolecule do not alter their specific properties. On the 

other hand, covalent binding provides more stability and reproducibility of surface 

functionalization, as well as reducing the risk of unspecific physisorption. Although the previous 

techniques represent good strategies for binding biological species to surfaces, supramolecular 

interactions have recently been considered as superior since these are reversible, which enables the 

regeneration of the transducer element [91,92]. 
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Regarding other uses, nanomaterials can perform as nanocarriers for signaling elements, as 

well as signal amplification. Depending on the chemical composition, nanomaterials can be subject 

to direct functionalization during synthesis, or functionalized by coating using functional polymers 

[93]. Nanomaterials functionalization provides three important advantages: reproducible 

immobilization of bioreceptor units, increase the biocompatibility, and the development of label-free 

transduction techniques [92]. 

Moreover, nano-biosensor materials’ high surface area is considered a major advantage 

compared to conventional devices and plays an important role in the sensitivity, and fast response of 

the devices [94,95]. Therefore, these are conceived as excellent tools used for the detection, function, 

and interaction of proteins and nucleic acids, which improve the quality and performance of 

diagnosis for bacterial and viral diseases [96]. The following sections present an overview of some 

promising nanotechnological features in biosensors. 

3.1. NPs 

NPs are a wide range of materials with dimensions below 100 nm that have been used in 

various areas such as medical, pharmaceutical, manufacturing and materials, environmental, 

electronics, and mechanical industries due to their multiple properties [97–100]. Among the mostly 

employed are metal NPs such as AuNPs and silver NPs (AgNPs), which can be produced in 

different sizes and shapes (e.g., nanospheres, nanocylinders, nanowires, and nanocages). These NPs 

exhibit low toxicity, as well as multiple interesting chemical, biological, and physical properties, 

such as photo-thermal, optical, electrochemical, and biocompatibility based on their inert nature in 

biological fluids [101–103]. Additionally, these NPs can be synthesized with ease fulfilling relevant 

roles for diagnostic probes, and functionalized due to the presence of functional groups for 

achieving ligand-binding functions with a wide range of molecules, such as antibodies or genetic 

material [104,105]. 

An important application of nano-biosensors composed of metal NPs is related to 

waterborne diseases, where the infection is usually linked to microbial contamination due to several 

pathogens, including bacteria, where nanotechnological detection systems with optical sensing have 

been used for these pathogens [106]. Elahi et al. designed a highly sensitive fluorescence 

nano-biosensor for the detection of Shigella species. To achieve a satisfactory design, two DNA 

probes as sensing elements were immobilized on the surface of AuNPs synthesized for the 

development, forming a DNA-probe AuNPs-fluorescence system. The research group also 

synthesized iron NPs (MNPs) that were later modified with Sulfosuccinimidyl 4-Nmaleimidomethyl 

cyclohexane-1- carboxylate (SMCC), and a second system constituted by a third DNA probe 

immobilized on MNPs was formed for separating target DNA. The results exhibited an increasing 

fluorescence intensity with an increase of target DNA concentration [107]. 

In another study, carried out by Takemura et al., an ultrasensitive, rapid, and specific 

localized surface plasmon resonance (LSPR)-induced immunofluorescence nano-biosensor was 

developed for detecting influenza virus. Researchers employed AuNPs-induced QD fluorescence 

signal conjugated with antineuraminidase antibody (Anti-NA Ab) and conjugation of 

anti-hemaglutinin antibody (anti-HA Ab) to the QDs. The device successfully detected influenza 
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virus H1N1. However, due to its versatility, it was also possible to detect clinically isolated influenza 

virus H3N2 and norovirus-like particles [108]. 

3.2. GQDs  

GQDs are among the most fascinating carbon-based nanomaterials employed for the 

development of biosensors, mostly electrochemical. These materials present outstanding properties 

such as signal amplifying characteristics, biocompatibility, tunable size, electro-catalytic 

performance, and capacity to detect multiple biomolecules. Additionally, their inertness, 

non-toxicity, long-term chemical stability, and water stability make them very valuable for 

biomedical applications [90,93].  

GQDs obtained through different synthesis methods have been used for biosensing 

applications since their large surface area can be functionalized, allowing them to directly detect 

DNA, enzymes, proteins, antigens, antibodies, and other biomolecules by the oxide components 

formed on their surface during the synthesis process [109]. Safardoust et al. synthesized GQDs from 

citric acid and ethylene diamine for their use as a photoluminescence sensor for detecting S.aureus 

and E.coli. This biosensor demonstrated a linear relationship between the fluorescence intensity and 

the concentrations of the bacterias up to 9x107 CFU/ml [110]. 

In another approach, Hazani et al. fabricated a highly sensitive electrochemical peptide 

nucleic acid (PNA) biosensor based on functionalized graphene oxide composited with cadmium 

sulfide QDs (CdS QDs). The device was developed for detecting Mycobacterium tuberculosis and 

showed a LOD of 8.948x10-13 M [111]. Furthermore, GQDs integration into a biosensor can improve 

its performance in terms of reproducibility, selectivity, and sensitivity [112]. 

3.3. Electrospun nanofibers 

Electrospinning is a nanotechnological method in which an electrostatic field force applied 

to a polymer solution causes a charged liquid jet to moves downfield towards an oppositely charged 

collector, where the fine fibers are deposited [113]. Electrospun nanofibers have been the target of 

different applications like drug delivery systems or scaffolds for skin tissue engineering due to their 

structure and physicochemical properties such as a large surface area to volume ratio, small particle 

size, and high porosity, among others [113–116]. However, a novel application is their use for 

developing nano-biosensors focused on detecting viral and bacterial pathogens [117–120]. 

Nano-biosensors development using these nanostructures can be achieved by two 

approaches. On one hand, functional polymers are electrospun to obtain a nanofiber that is used 

directly as an inducing element of the corresponding biosensor, which will present fast response 

time, high sensitivity, and good biocompatibility. On the other hand, electrospun nanofibers are 

used as templates to which a sensitive material is deposited on their surface, and later the system is 

subjected to chemical modification in order to produce a composite film on an electrode, with 

nanostructures that have the intended sensing characteristics [121,122]. 

Although the manufacturing process is simpler, keeping bio-receptor functionality is 

considered a great challenge for the production of this type of device. The sensing element can be 

immobilized through different strategies according to its physicochemical characteristics, as well as 

the ones from the nanofiber scaffolds, and also, based on their interfacial interactions [123]. 
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Moreover, this type of nano-biosensor is based on various sensing principles such as optics, 

electric resistance, photoelectricity, vibration frequency, electric current, and others [124–128]. Luo et 

al. developed a nitrocellulose electrospun nanofibrous capture membrane for detecting 

E.coli O157:H7 and bovine viral diarrhea virus. The device’s design was based on capillary 

separation, and conductometric immunoassay using a silver electrode. Nanofiber antibody’s surface 

functionalization and sensor assembly process allowed retaining the unique fiber morphology, and 

displaying a linear response to both pathogens with a detection time of 8 minutes [129]. 

Quiros et al. prepared electrospun membranes composed of polyacrylonitrile (PAN) and 

poly(4-vinylphenylboronic acid-co-2-(dimethylamino)ethyl methacrylate-co-n-butyl 

methacrylate)(pVDB) for fast sensing of bacteria. The pVDB@PAN membranes were used as 

fluorescent bacterial biosensors, displaying maximum fluorescence intensity after 24 hours in 

contact with S. aureus or E. coli. Meanwhile, the membranes became non-responsive within 8 hours 

in contact with Pseudomonas putida due to the rapid formation of bacterial biofilm that blocked the 

membrane surface, disrupting fluorescence readings. This development can be useful for the early 

identification of pathogenic bacteria as an attempt to prevent their spreading [130].  

Some research groups have designed nano-biosensors based on electrospun nanofibers for 

viral detection as well. Tripathy et al. worked on an ultrasensitive electrochemical platform with 

electrospun semi-conducting Manganese (III) Oxide (Mn2O3) nanofibers for DNA hybridization 

detection. This biosensor makes use of electrochemical transduction techniques for zeptomolar (i.e., 

10-21 M) detection of Dengue primer, resulting in a limit of detection of 120×10–21 M [131]. 

Therefore, nanofiber-based biosensors present advantages over the conventional ones such 

as polymer diversity for its manufacture, high specific surface area with high responsiveness, as well 

as an outstanding sensibility [132–134]. 

4. Bacterial and viral pathogens detected through biosensors and nano-biosensors 

Conventional clinical analyses including an antibody or nucleic acid-based, biochemical, 

and enzymatic methods, are very reliable but take a long time to obtain a result. Health disciplines 

demand the acquisition of faster outcomes to speed up the appropriate treatment [135,136]. In this 

sense, biosensors and nano-biosensors are useful tools that offer an accurate diagnosis in shorter 

times due to their ability to provide real-time and faster clinical results [137]. Currently, there is an 

increasing interest in their use to detect pathogens in the human body (Table 1) [136].     

 

Table 1. Developed biosensors for detecting bacterial and viral pathogens in the human body. 

 

Device Target pathogen LOD 
Response 

time 
Ref 

Long-period fiber grating using 

bacteriophage T4 covalently 

immobilized on optical fiber 

surface. 

E.coli 103 CFU/ml 20 min [138] 

Label free polyaniline based 

impedimetric. 
E.coli O157:H7 102 CFU/ml - [139] 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2020                   doi:10.20944/preprints202011.0156.v1

https://doi.org/10.20944/preprints202011.0156.v1


 

Electrochemical biosensor using 

antibody-modified NPs 

(polymer-coated magnetic NPs 

and carbohydrate-capped 

AuNPs). 

E.coli O157:H7 101 CFU/ml 45 min [140] 

Surface plasmon resonance (SPR) 

biosensor based on ultra-low 

fouling and poly(carboxibetaine 

acrylamide). 

Salmonella sp. 7.4x103 CFU/ml 80 min [141] 

Graphene-based potentiometric. S. aureus 1 CFU/ml 10-15 min [142] 

Aptamer based biosensor and 

dual florescence resonance 

energy transfer from QDs to 

carbon NPs. 

Vibrio 

parahaemolyticus 

and Salmonella 

typhimurium 

25 CFU/ml and 35 

CFU/ml, 

respectively 

80 min [112] 

Impedimetric biosensor based on 

site specifically attached 

engineered antimicrobial 

peptides. 

Pseudomona 

aeruginosa 
102 CFU/ml 30 min [143] 

Electrochemical DNA biosensor 

based on flower-like ZnO 

nanostructures. 

Neisseria 

meningitides 
5 ng/μl - [144] 

Graphene-enabled biosensor 

with a highly specific 

immobilized monoclonal 

antibody. 

Zika virus 0.45 nM 4-8 min [145] 

Giant magnetoresistance 

biosensor. 
Influenza A virus 1.5x102 TCID50/mL - [146] 

Electrochemical biosensor based 

on DNA hybridization. 
Hepatitis A virus 6.94 fg/μl 15 min [147] 

Impedimetric electrochemical 

DNA biosensor for label free 

detection. 

Zika virus 25 nM 1.5 h [148] 

Two-dimensional molybdenum 

disulphide nanosheets based 

disposable biosensor. 

Chikungunya virus 3.4 nM 3 h [149] 

Electrochemical DNA biosensor 

using gold nanorods. 
Hepatitis B virus 2.0x10-12 mol/L 5 h [150] 

Intensity-modulated surface 

plasmon resonance (IM-SPR) 

biosensor 

Avian influenza A 

H7N9 virus 
144 copies/ml 10 min [151] 

Silicon nanowire biosensor. Dengue virus 2.0 fM - [152] 

E.coli: Escherichia coli; S.aureus: Staphylococcus aureus. 
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Molecular determination demands to improve the analytical performance of biosensors, 

which have enhanced their unique features to develop POC devices in order to run a rapid and 

cost-effective analysis of complex biological matrices [153]. Commercial versions of these devices are 

available to detect diseases and pathogens such as E. coli, Helicobacter pylori, influenza A and B 

viruses, HIV, tuberculosis, and malaria [154]. Advantages such as small samples and low energy 

required to avoid complications in terms of transportation and processing, make them suitable for 

easy and fast use in the identification of bacterial and viral pathogens [137]. Needless to say, 

nanomaterials advances have benefited biosensor performance to achieve the task [155].  

4.1. Bacterial pathogen detection 

Focusing on the human body, bacterial infections caused mainly by gram-negative 

microorganisms represent a particular challenge in human health worldwide because of multidrug 

resistance variants, greatly influenced by their indiscriminate exposure to antibiotics discharged in 

water, addition to food or more commonly, due to improper use of these drugs from patients [156].  

Since the previously mentioned is considered a major current health concern, different kinds 

of nanomaterials and biorecognition elements have been employed to develop biosensors for 

antibiotic detection, as well for bacteria [157]. Common pathogenic bacteria include E. coli, Salmonella 

typhi, Clostridium perfringens, and Shigella spp., which can cause different kinds of diseases in humans, 

animals, and plants [158]. However, S. aureus is recognized as one of the most fatal bacteria that can 

cause rapid mortal infections and is often resistant to multiple antibacterial active substances. Thus, 

it is necessary to develop new approaches for easier and faster detection since conventional culture 

methods require 3-5 days to obtain results, and other nucleic acid-based methods are expensive and 

imply trained personnel [159,160].   

Suaifan et al. developed a biosensor able to detect S. aureus in a few minutes. The sensing 

tool is based on the proteolytic activity of the pathogen proteases on a specific peptide substrate 

placed in the middle of two magnetic nanobeads. In this case, the dissociation of magnetic 

nanobeads-peptide moieties results in color change [161]. In another approach, Ahari et al. 

constructed a potentiometric nano-biosensor able to detect the bacteria through the identification of 

an exotoxin emitted by the microorganism. Particularly, the method is often used for contaminated 

food, but it can also be applied for clinical detection [162]. 

Another important bacteria, V. cholerae, is a gram-negative facultative anaerobe that causes 

Cholera disease. People would infect by consuming contaminated liquids or food, providing an 

ideal platform for the disease, which also spreads quickly due to its secretory nature. Therefore, its 

diagnosis plays an important role in the disease assessment because of its mortal rate rounds 

between 50-60% [163]. Recently, Narmani et al. developed an ultrasensitive and selective 

fluorescence DNA biosensor based on AuNPs and magnetic NPs for the determination of the 

bacteria’s O1 OmpW gene [164]. 

The gram-negative bacteria, Shigella, belongs to the Enterobacteriaceae family. Infected people 

develop diverse symptoms including diarrhea, cramps, fever, and vomit. According to the World 

Health Organization (WHO), the annual number of Shigella cases worldwide is approximately 164.7 

million with 1.1 million of those resulting in death, and the majority of them involve young children 

under the age of 5 years old [165]. Research performed by Elahi et al. discovered an early detection 
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method of infectious Shigella. In this study, AuNPs-DNA probes were hybridized with Spa gene 

sequence in order to create an optical genosensing system. This biosensor makes the sample solution 

turns to purple in the absence of the complementary target, whereas the solution remains red in the 

presence of the specific gene sequence [166]. On the other hand, Xiao et al. covalently immobilized a 

DNA probe onto fiber-optic biosensors able to hybridize with a fluorescently labeled 

complementary DNA. The obtained results were comparable to the ones obtained by PCR, which 

suggests considering this method as an alternative for Shigella detection [165].  

The different approaches for biosensoring detection of pathogenic bacteria have been 

successful and are currently being considered by many health governments and research 

institutions, mainly because of their fast response, high-quality performance, and reliable results 

[167–169]. 

4.2. Viral pathogen detection 

Viral pathogen diagnosis is important for early and effective treatment in patients in order 

to prevent outbreaks or pandemics. For that reason, biosensors are being widely employed for 

making diagnosis easier, avoiding hard proteins or DNA identification techniques in specific virus 

[170,171]. One of the most common and dangerous viral pathogens is the influenza virus because of 

its ability to spread easily and constantly mutation. Hence, detection at early stages can be difficult 

[172,173].  

Hassanpour et al. developed a novel optical biosensor composed of pDNA bioconjugated 

citrate capped AgNPs towards target sequences for ultrasensitive and selective Haemophilus influenza 

detection in human biofluids [174]. This pathogen has also been detected through other different 

biosensors, including the work reported by Jiang et al [148,174–176]. This paper describes the 

development of a polydiacetylene sensitive biosensor using antibody detection for H5N1 (avian 

influenza), in which the polydiacetylenes vesicles show a dramatic change in color from blue to red 

upon the detection of the virus [176].  

Other dangerous viruses that affect the population worldwide include ebolavirus, HIV, and 

Hantavirus [177–179]. The first one is a negative strand-RNA virus that belongs to the Filoviridae 

family and causes a deadly disease called Ebola. The infected people with this agent develop a series 

of symptoms, where hemorrhagic fever is considered as fatal [180–182]. Currently, there is no 

vaccine or specific treatment [183]. However, different studies have presented the development of 

biosensors for detecting this pathogen [184]. Ilkhani et al. fabricated a novel 

electrochemical-based-DNA biosensor through enzyme-amplified detection to improve the 

sensitivity and selectivity of the device for the pathogen [185]. In addition to that, Baca et al. 

developed a biosensor that can detect the virus within 10 minutes at the POC by using surface 

acoustic waves, showing potential to detect it before symptoms onset [186]. 

On the other hand, HIV is a retrovirus that attacks a patient’s immune system, causing an 

inability to resist many diseases, and culminating in death when the person is not under drug 

control. Clinical treatments for HIV are crucial for reducing mortality, but early diagnosis saves 

many lives as well and can decrease spread rates [187–189]. Shafiee et al. worked on a photonic 

crystal biosensor to detect multiple HIV-1 subtypes (A, B, and D) upon binding of the biological 

analyte with the biosensor [190]. In addition to that, Gong et al. prepared a nanocomposite of 
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polyaniline/graphene (PAN/GN) using reverse-phase polymerization for the development of an 

electrical DNA-biosensor that showed great selectivity, and sensitivity for the detection of HIV-1 

gene fragment [191]. 

Hantavirus is a cluster of viruses that are part of the Bunyaviridae family. The spread begins 

through contact with liquids, food, or particles contaminated with rodent excreta. It causes 

hemorrhagic fever, respiratory insufficiency, and heart failure within 2-7 days after getting infected 

[192,193]. Regarding its detection, Gogola et al. have performed important research for the 

development of biosensors [194,195]. In a first approach, they prepared an electrochemical 

immunosensor based on chemical modification of the gold surface with the virus antigen/protein 

[194]. In a second study, the research group designed a quick electrochemical biosensor based on 

biochar (BC) as a carbonaceous platform for immunoassay applications due to its highly 

functionalized surface for covalent binding with biomolecules [195]. Both studies developed devices 

as promising and suitable tools for hantavirus clinical detection [194,195].  

Furthermore, several bio-elements can be incorporated into a biosensor for virus detection 

including markers, RNA, structural proteins, and enzymes from the viral pathogens [196]. 

5. COVID-19 pandemic 

Currently, many viruses are being considered to have the capacity of causing future 

pandemics. Different factors such as fast dissemination, a high transmission rate of new variants, 

difficulties to develop efficient and sensible diagnostic techniques, as well as the lack of specific 

vaccines and safe drugs for treatment, make them one of the major threats for mankind [197,198]. 

The most recent case is the COVID-19 announced as pandemic on March 13th, which is an infectious 

disease with rapid human-to-human transmission caused by SARS-CoV-2. This pathogen belongs to 

the positive-strand RNA viruses [199,200]. 

Like any other viral outbreak, an early diagnosis is fundamental for preventing an 

uncontrollable spread of the disease. However, this pandemic has the particularity that more than 

30% of the confirmed cases are asymptomatic, thus making it harder to control [200–202]. RT-PCR is 

the most used suitable and reliable method for detecting SARS-CoV-2 infections until now. 

Nevertheless, the technique is time-consuming, labor-intensive, and unavailable in remote settings 

[203,204]. Although several other methods can be employed for that purpose, such as 

immunological assays, thoracic imaging, portable X-rays, or amplification techniques, the pandemic 

spread of COVID-19 demands to develop POC devices for rapid detection (Figure 3) [205–208]. 
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Figure 3. POC for COVID-19.Reprinted with permission from Choi, J. et al. Development of Point-of-Care 

Biosensors for COVID-19.Front Chem 8: 517. Copyright (2019) Frontiers in Chemistry [208]. 

 

Sheridan states that there are two types of rapid POC biosensors for COVID-19 detection. In 

the first place, there is a nucleic acid test, which consists of detecting the virus in the patient’s 

sputum, saliva, or nasal secretions [209,210]. The other type commonly employed is the antibody test 

that is done through the analysis of collected blood samples five days after the initial infection, 

which is when the immune response causes the production of IgM and IgG due to the presence of 

the virus [211–213].  

The industrial sector has developed some suitable POC biosensors for the qualitative 

detection of SARS-CoV-2 IgM and IgG antibodies using samples as low as 10 µl of human serum, 

whole blood, or finger prick, obtaining results within 10-15 minutes (Table 2) [214]. Many of these 

rapid serological tests are paper-based biosensors that perform a colorimetric lateral flow 

immunoassay. In this method, SARS-CoV-2 specific antigens are typically labeled with gold, and 

bind the corresponding host antibodies, which migrate across an adhesive pad. As can be seen in 

figure 4, anti-SARS-CoV-2 IgM antibodies interact with fixed anti-IgM secondary antibodies on the 

M line, while IgG antibodies interact with anti-IgG antibodies on the G line. Therefore, M or G lines 

only appear if the sample contains SARS-CoV-2 specific antibodies, otherwise, only the control line 

(C) will be shown [215]. Although the use of serological tests to detect SARS-CoV-2 is still under 

debate, these are foreseeing as crucial tools for the implementation or ceasing of lockdowns 

established worldwide [216]. 

 

Table 2. FDA commercially authorized biosensors for SARS-CoV-2 detection [214]. 
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Manufacturer Device Target 

Clinical 

combined 

specificity 

Clinical 

combined 

sensitivity 

Abbott 

SARS-CoV-2 IgG 

chemilumininescent 

microparticle immunoassay 

(CMIA) 

Nucleocapsid 99.9%  100%  

Access Bio, Inc. 
CareStart COVID-19 

IgM/IgG 

Spike and 

Nucleocapsid 
98.9% 98.4% 

Beijing Wantai 

Biological 

Pharmacy 

Enterprise Co. Ltd. 

Wantai SARS-CoV-2 Ab 

rapid test 
Spike 98.8% 100% 

Biohit Healthcare 

(Hefei) 

Biohit SARS-CoV-2 IgM/IgG 

antibody test kit 
Nucleocapsid 95.0% 96.7% 

Cellex 

Cellex Qsars-CoV-2 IgG/IgM 

rapid test lateral flow 

immunoassay 

Spike and 

nucleocapsid 
96.0% 93.8% 

DiaSorin 
LIAISON SARS-CoV-2 S1/S2 

IgG CMIA 
Spike 99.3% 97.6% 

Hangzhou Biotest 

Biotech 

COVID-19 IgG/IgM rapid 

test cassette 
Spike 100% 100% 

Hangzhou Laihe 

Biotech 

LYHER novel coronavirus 

(2019-nCoV) IgM/IgG 

antibody combo test kit 

(colloidal gold) 

Spike 98.8% 100% 

Healgen 
COVID-19 IgG/IgM rapid 

test cassette 
Spike 97.5% 100% 

Megna Health, Inc. 
Rapid COVID-19 IgM/IgG 

combo test kit 
Nucleocapsid 95% 100% 

Salofa Oy 

Siena-Clarity COVIBLOCK 

COVID-19 IgG/IgM Rapid 

test cassette 

Spike 98.8% 93.3% 

Xiamen Biotime 

Biotechnology Co., 

Ltd. 

BIOTIME SARS-CoV-2 

IgG/IgM rapid qualitative 

test 

Spike 96.2% 100% 

CMIA: chemilumininescent microparticle immunoassay; COVID-19: coronavirus disease 2019. 
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Figure 4. COVID-19 rapid serological IgM/IgG test. Reprinted with permission from Ghaffari, A. et al. 

COVID-19 Serological Test: How Well Do They Actually Perform? Diagnostics 10(7): 453. Copyright (2020) 

MDPI [215]. 

 

Other research groups have developed Lab-on-a-Chip-based biosensors for SARS-CoV-2 

detection [208,217]. This technology avoids the need for specialized personnel through the 

integration of microfluidic components into a biosensor, allowing increasing their production, and 

reducing the costs of the assay [218]. POC commercialized instruments based on this microfluidic 

technology are having an important role in this pandemic, like ID NOW®, Filmarray®, GeneXpert®, 

and RTisochip®[219]. 

Cell-based biosensors have also contributed to COVID-19 diagnosis. Mavrikou et al. 

developed a biosensor based on membrane-engineered mammalian cells that possess the human 

chimeric spike S1 antibody. The device can detect SARS-CoV-2 S1 spike protein selectively, where 

the binding of the protein to the membrane-bound antibodies results in cellular bioelectric 

properties modification measured by Bioelectric Recognition Assay. The LOD is 1 fg/ml and the 

response time is about three minutes. In addition to that, the biosensor includes a portable read-out 

device that can be operated by a smartphone [220]. 

Moreover, nano-biosensors have shown an outstanding potential to contribute to the fight 

against COVID-19, providing holistic insights for developing ultrasensitive, cost-effective, and rapid 

detection devices for mass production [221]. Advanced materials are the basis of nano-enabled or 

integrated micro-and nano biosensing system technologies that can detect earlier the virus, and even 

show good binding properties allowing them to inactive or destroy the pathogen upon the 

application of an external stimulus [222]. 

Different research groups have developed carbon-based and graphene-based POC 

biosensors [208,217]. Graphene is foreseeing to have a leading role in the attempt of fighting against 

COVID-19. This low-cost material can be employed for virus detection since its sensitivity and 

selectivity can be enhanced by modifying its hybrid structure (e.g., antibody-conjugated graphene 
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sheets) that allows tuning its optical and electrical features. Some graphene-based sensors that can 

be explored for SARS-CoV-2 detection are photoluminescence, colorimetric, and SPR biosensors 

[223,224]. Seo et al. employed the material for the development of a field-effect transistor 

(FET)-based biosensor for detecting SARS-CoV-2 (Figure 5). In this case, graphene sheets from the 

FET were coated with a specific antibody against the virus spike protein, which was successfully 

detected at concentrations of 1 fg/ml in a phosphate-buffered saline medium. In addition, the device 

was able to detect the virus in clinical samples, exhibiting a LOD of 2.42 × 102 copies/ml. The 

fabricated biosensor is considered as a promising immunological diagnostic alternative for the 

disease [225]. 

 

 

 

Figure 5.Schematic diagram of COVID-19 FET sensor operation procedure. Reprinted with permission 

from Seo, G. et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal 

Swab Specimens Using Field-Effect Transistor-Based Biosensor.ACS Nano 14(4): 5135-5142. Copyright (2020) 

ACS [225]. 

 

Additionally to FET, a review published by Cui et al. considers potential electrochemical 

biosensor and surface-enhanced Raman scattering (SERS)-based biosensor as other suitable options 

for diagnosis of COVID-19 [226]. Also, Murugan et al. designed two field-deployable/portable 

plasmonic fiber-optic absorbance biosensor (P-FAB) device for rapid detection of the virus’ 

N-protein directly from saliva. One of them was a labeled immunoassay, and the other one was 

label-free. Both bioanalytical approaches using the highly sensitive P-FAB platform can be 

considered as ideal alternatives for COVID-19 diagnosis within 15 minutes [227]. More recently, Zhu 

et al. reported another diagnosis approach based on the development of a multiplex reverse 

transcription loop-mediated isothermal amplification combined with NP-based lateral flow 

biosensor. The method allowed the multiplex detection of the open reading frame 1a/b (ORF1ab) 

and the N-protein within an hour, ensuring the sufficient sensitivity for the virus [228]. 

In another approach, Qiu et al. developed a dual-functional plasmonic biosensor that 

combines the plasmonic photothermal (PPT) effect and LSPR sensing transduction. The device is 

constituted by a two-dimensional gold nano island functionalized with complementary DNA 

receptors that can selectively detect specific sequences from SARS-CoV-2 through nucleic acid 

hybridization. In addition to that, PPT can increase the in situ hybridization temperature, which 
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allows differentiating between two similar gene sequences. This biosensor showed high sensitivity 

with a lower LOD at 0.22 pM (i.e., 10-12 M) [229]. 

Although we have discussed several options for COVID-19 diagnosis, researchers are 

working on novel diagnostic techniques that combine different approaches based on 

nanotechnology and nanoscience, in order to obtain faster, reliable, and more accurate results that 

allow accelerating life-saving decisions, and isolation of positive patients in an early stage to 

down-regulate the virus spread [230,231]. 

6. Conclusions 

Last few decades, viral and bacterial pathogens have become a real menace to human safety. 

Their rapid identification must be considered as a priority task in order to prevent an outbreak that 

represents a high risk of disruption of the healthcare system, and a disastrous socio-economic 

impact. Scientists are performing intensive research for developing sensitive diagnostic techniques 

and effective therapeutics. Although for many viruses and bacteria there is no vaccine or 

pharmacological treatment, the development of a POC device for the rapid diagnosis of diseases 

such as COVID-19, allows accelerating life-saving decisions, and isolation of positive patients in an 

early stage. In this sense, biosensors and nano-biosensors are powerful measurement devices that 

can make the detection process of important clinical bacteria and virus to be easy, quick, and 

effective by sensing relevant parameter that can be related to infectious processes. 
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