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Abstract: Tracking the kinematics of human movement usually requires the use of equipment that
constrains the user within a room (e.g., optical motion capture systems), or requires the use of a
conspicuous body-worn measurement system (e.g., inertial measurement units (IMUs) attached
to each body segment). This paper presents a novel Lie group constrained extended Kalman
filter to estimate lower limb kinematics using IMU and inter-IMU distance measurements in a
reduced sensor count configuration. The algorithm iterates through the prediction (kinematic
equations), measurement (pelvis height assumption/inter-IMU distance measurements, zero velocity
update for feet/ankles, flat-floor assumption for feet/ankles, and covariance limiter), and constraint
update (formulation of hinged knee joints and ball-and-socket hip joints). The knee and hip
joint angle root-mean-square errors in the sagittal plane for straight walking were 7.6± 2.6◦ and
6.6± 2.7◦, respectively, while the correlation coefficients were 0.95± 0.03 and 0.87± 0.16, respectively.
Furthermore, experiments using simulated inter-IMU distance measurements show that performance
improved substantially for dynamic movements, even at large noise levels (σ = 0.2 m). However,
further validation is recommended with actual distance measurement sensors, such as ultra-wideband
ranging sensors.

Keywords: Lie group; Constrained extended Kalman filter; Gait analysis; Motion capture; Pose
estimation; Wearable devices; IMU; Distance measurement

1. Introduction

Human pose estimation involves tracking the pose (i.e., position and orientation) of body
segments, from which joint angles can be calculated. Applications exist in robotics, virtual reality,
animation, and healthcare (e.g., gait analysis). Traditionally, human pose is captured within a laboratory
setting using optical motion capture (OMC) systems with up to millimeter position accuracy when
properly configured and calibrated. However, recent miniaturization of inertial measurements units
(IMUs) has paved the path toward inertial motion capture (IMC) systems suitable for prolonged use
outside of the laboratory. Furthermore, developing a comfortable IMC for routine daily use may
facilitate interactive rehabilitation [1,2], and allow the study of movement disorder progression to
enable predictive diagnostics.

Commercial IMCs attach one sensor per body segment (OSPS) [3], which may be considered too
cumbersome and expensive for routine daily use by a consumer due to the number of IMUs required.
Each IMU typically tracks the orientation of the attached body segment using an orientation estimation
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algorithm (e.g., [4,5]), which is then connected via linked kinematic chain, usually rooted at the pelvis.
A reduced-sensor-count (RSC) configuration, where IMUs are placed on a subset of body segments, can
improve user comfort, reduce setup time and system cost. However, using fewer wearable sensor units
necessarily reduces the kinematic information available, which must otherwise be inferred from (i)
our knowledge of human movement (e.g., enforcing mechanical joint constraints or making dynamic
balance assumptions), or (ii) by using additional sensing modalities within each wearable sensor unit.
Each approach will be described in the next subsections.

1.1. Leveraging Knowledge of Human Movement

RSC performance depends on how the algorithm (i) represents body pose and (ii) infers the
kinematic information of body segments which do not have sensor attached to them. The algorithm
may leverage our knowledge of human movement either through data obtained in the past (i.e.,
observed correlations between co-movement of different body segments) or by using a simplified
kinematic model of the human body. Data-driven approaches (e.g., nearest-neighbor search [6]
and bi-directional recurrent neural network [7]) are able to recreate realistic motion suitable for
animation-related applications. However, these approaches are normally biased toward motions
already contained in the database, which may limit their use in monitoring pathological gait.
Model-based approaches reconstruct body motion using kinematic and biomechanical models (e.g.,
linear regression [8], constrained Kalman filter (KF) [9], extended KF (EKF) [10], particle filter [11],
and window-based optimization [12]). Within model-based approaches, using optimization-based
estimators can be appealing due to its relative ease to setup and ease of understanding. However, it
can be very inefficient in higher dimensions (e.g., when tracking body pose over a wide time window).
When estimating the model state variables across time, a recursive estimator can take advantage of
the substructure and reduce the state dimension, making the estimator efficient and appropriate for
real-time use [13].

Traditionally, body poses have been represented using Euler angles or quaternions [10,11].
However, recent work on pose estimation has shown that using a Lie group to represent the states
of recursive estimator is a promising approach. Such algorithms typically represent the body pose
as a chain of linked segments using matrix Lie groups to represent the orientation or pose of each
body segment; specifically the special orthogonal group, SO(n), and special Euclidean group, SE(n),
where n = 2, 3, are the spatial dimensions for humam body kinematics problems. Some early work in
the field ([14] and [15]) investigated representations and propagation of pose uncertainty, the former
in the context of manipulator kinematics and the latter focused on SE(3). This was followed by the
formulation of Lie group-based recursive estimators (e.g., EKF [16] and unscented KF (UKF) [17]).
Recently, Lie group based recursive estimators were used to solve the pose estimation problem. Cesic
et al. estimated pose from marker measurements and achieved significant improvements compared
to an Euler angle representation [18]; and even supplemented the approach with an observability
analysis [19]. Joukov et al. represented pose using SO(n) with measurements from IMUs under an
OSPS configuration. Results also improved because the Lie group representation is singularity free
[20].

1.2. Additional Sensor Measurements

Another approach is to supplement kinematic information from the IMU with another kind
of sensor, which inherently increases cost and reduces battery life. Note that we will focus on
systems that supplement pose estimation, not on the global position estimation of the subject (e.g.,
[21]). For example, IMCs can be supplemented with standard video cameras (e.g., fused using
an optimization-based algorithm [22], and deep neural networks [23]) or depth cameras [24] at
fixed locations in the capture environment, external to the subject. The combination of IMCs and
portable cameras solves a weakness of OMCs (i.e., marker or body segment occlusion) and a weakness
of IMCs (i.e., global position drift). However, the system still requires an external sensor that is
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carried by another person or requires some quick setup. IMCs can also be supplemented by distance
measurements (using ultrasonic devices and KF in OSPS configuration [25], using constrained KF in
RSC configuration [26]), removing dependence on any external non-body-worn sensor.

1.3. Novelty

This paper describes a novel human pose estimator that uses a Lie group representation,
propagated iteratively using a constrained EKF (CEKF) to estimate lower body kinematics for an RSC
configuration of IMUs and inter-IMU distance measurements; the Lie group framework and inclusion
of inter-IMU distance measurements, along with the exploration of its effect on pose estimation
accuracy, are the major advancements made in this paper. It extends the work of [27] and builds on prior
work of [9] and [26], but instead represents the state variables as elements of Lie groups, specifically
SE(3), to track both position and orientation (whereas [9] only tracks position and assumes orientation
measurements are noise-free). Furthermore, this paper describes a novel Lie group formulation for
assumptions specific to pose estimation, such as zero velocity update, and biomechanical constraints
(e.g., constant thigh length and a hinged knee joint). Note that this algorithm is different from [20]
in that the state (i.e., body pose) is represented as SE(3) instead of SO(n). While not our focus
here, this representation allows for tracking of the global position of the body, incorporating IMU
measurements in the prediction step, and a simpler implementation of measurement assumptions, at
the cost of requiring an additional constraint step to ensure biomechanical constraints are satisfied. The
design was motivated by the need for a better state variable representation which would potentially
more closely model the biomechanical system to infer the missing kinematic information from
uninstrumented body segments. The contributions of this paper advance the development of gait
assessment tools for comfortable and long-term monitoring of lower body movement.

2. Mathematical Background: Lie Group and Lie Algebra

The matrix Lie group G is a group of n× n matrices that is also a smooth manifold (e.g., SE(3)).
Group composition and inversion (i.e., matrix multiplication and inversion) are smooth operations.
The Lie algebra g represents a tangent space of a group at the identity element [28]. The elegance of
Lie theory lies in it being able to represent pose using a vector space (e.g., Lie group G is represented
by g) without additional constraints (e.g., without requiring RTR = I which is using a rotation matrix
representation of orientation, or || q|| = 1 which is using a quaternion representation of orientation)
[29].

The matrix exponential exp G : g→G (Eq. (1)) and matrix logarithm log G : G→g establish a local
diffeomorphism between the Lie group G and its Lie algebra g. The Lie algebra g is a n× n matrix that
can be represented compactly in an n-dimensional vector space. A linear isomorphism between g and
Rn is given by operators [ ]∨G : g→Rn and [ ]∧G : Rn→g, which map between the compact and matrix
representation of the Lie algebra g. Fig. 1 shows an illustration of the said mappings. Furthermore, the
adjoint operator of a Lie group, AdG (X), the adjoint operator of a Lie algebra, adG (v), and the right
jacobian, ΦG (v) (Eq. (2)), where X ∈ G and [v]∧G ∈ g will be used in later sections. Multiplying an
n-dimensional vector representation of a Lie algebra with AdG(X) ∈ Rn×n (i.e., the product AdG(X)v)
transforms the vector from one coordinate frame to another, similar to how rotation matrices transform
points from one frame to another. adG(v) is the Lie algebra of AdG(X). A summary of the operators for
Lie groups SO(3), SE(3), and Rn will be explained in the next subsections. They will serve as building
blocks to implement the algorithm being described by this paper. For a more detailed introduction to
Lie groups refer to [13,29,30].

exp([v]∧G) = ∑∞
n=0

1
n! ([v]

∧
G)

n (1)

ΦG(v) = ∑∞
i=0

(−1)i

(i+1)! adG(v)i , v ∈ Rn (2)
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Lie group G Lie algebra g

Rn

log G

exp G

[ ]∨G

[ ]∧G

(a) Mapping between Lie group G, Lie algebra
g, and a n-dimensional vector space.

[v]∧G ∈ g

ad (v)

X ∈ G

Ad (X)

exp

exp

ad Ad

Lie Algebra Lie Group

(b) Mapping with adjoint
space

Figure 1. Overview of Lie group theory mappings. When G = SE(3), Lie group X = T is a 4× 4
transformation matrix representing pose (i.e., 3D rotation and translation). Similarly, v = ξ where Lie
algebra [ξ]∧SE(3) ∈ se(3) and the vector ξ ∈ Rn with n = 6.

2.1. Special Orthogonal Group SO(3)

The special orthogonal group, SO(3) :=
{

R ∈ R3×3|RRT = 1, det R = 1
}

, represents orientation,
where R is the typical 3× 3 rotation matrix whose column vectors represent the x, y, and z basis vectors.
The operations for SO(3) are listed below, and will serve as building blocks for SE(3), which will be
described in the next subsection. Note that [x]∧SO(3)y is equivalent to the cross product of x and y. See
[13, Ch. 7] for details.

[φ]∧SO(3) =

φ1

φ2

φ3


∧

SO(3)

=

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 ,

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0


∨

SO(3)

=

φ1

φ2

φ3

 = φ (3)

If φ/|φ| represents a unit vector axis we wish to rotate around, and |φ| is the angle by which we wish
to rotate, then the rotation matrix, R, which will implement this rotation is given by Eq. (4), which is
also known as the Rodrigues’ axis-angle rotation formula. When φ is very small, R ≈ I3×3 + [φ]∧SO(3).

R = exp
(
[φ]∧SO(3)

)
= cos (|φ|) I3×3 + (1− cos (|φ|))φφT

|φ|2 + sin (|φ|)
[

φ
|φ|

]∧
SO(3)

(4)

Furthermore, the Lie algebra adjoint, Lie group adjoint, and inverse operators are listed in Eq. (5).

adSO(3) (φ) = [φ]∧SO(3) , AdSO(3) (R) = R, R−1 = RT (5)

Lastly, to approximate the compound rotations, R1R2, in the Lie algebra space where R1 =

exp([φ1]
∧
SO(3)) and R2 = exp([φ2]

∧
SO(3)), we can use Eq. (6). The right Jacobian, ΦSO(3)(φ) ∈ R3×3, is

obtained using Eq. (7).

[log(R1R2)]
∨
SO(3) ≈ φ1 + ΦSO(3)(φ1)

−1φ2 ∈ so(3) (6)

ΦSO(3)(φ) = sin(|φ|)
|φ| I3×3 +

(
1− sin(|φ|)

|φ|

)
φφT

|φ|2 −
1−cos(|φ|)
|φ|

[
φ
|φ|

]∧
SO(3)

∈ R3×3 (7)

2.2. Special Euclidean Group, SE(3)

The special Euclidean group, SE(3) :=
{

T =
[

R t
0T 1

]
∈ R4×4| {R, t} ∈ SO(3)×R3

}
, represents

orientation and translation, where T is the typical 4× 4 transformation matrix, R is the rotation matrix,
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and t represents a coordinate point in Euclidean space. The operations for SE(3) are listed below. Ii×i
and 0i×j denote i× i identity and i× j zero matrices. See [13, Ch. 7] for details.

[ξ]∧SE(3) =

[
ρ

φ

]∧
SE(3)

=

[
[φ]∧SO(3) ρ

01×3 0

]
,

[
[φ]∧SO(3) ρ

01×3 0

]∨
SE(3)

=

[
ρ

φ

]
(8)

T = exp([ξ]∧SE(3)) =

[
exp([φ]∧SO(3)) ΦSO(3)(−φ)ρ

01×3 1

]
=

[
R t

01×3 1

]
(9)

adSE(3) (ξ) =

[
[φ]∧SO(3) [ρ]∧SO(3)

03×3 [φ]∧SO(3)

]
, AdSE(3) (T) =

[
R [ρ]∧SO(3)R

03×3 R

]
, T−1 =

[
RT −RTρ

01×3 1

]
(10)

Lastly, we note the useful identity defined in Eq. (11) where [a]∧SE(3), [b]
∧
SE(3) ∈ se(3) which is the

Lie algebra of the Lie Group SE(3) [13, Eq. (72)], which will be used to compute the Jacobians of our
model later.

[a]∧SE(3) b = [b]�SE(3) a, where b =

[
ε

η

]
, [b]� =

[
ηI3×3 − [ε]∧SO(3)
01×3 01×3

]
, ε ∈ R3, η ∈ R (11)

2.3. Real Numbers Rn

In order to represent vector state variables (e.g., translation, velocity, and acceleration) and be
consistent with how we used SE(3) to represent pose, we represented the real numbers s ∈ Rn as
SE(n) poses with position and no rotation. The operations for Rn are listed below.

[s]∧Rn =

[
0n×n s
01×n 0

]
,

[
0n×n s
01×n 0

]∨
Rn

= s (12)

S = exp([s]∧Rn) =

[
In×n s
01×n 1

]
,

[
log

([
In×n s
01×n 1

])]∨
Rn

= s, exp([s]∧Rn)−1 =

[
In×n −s
01×n 1

]
(13)

adRn (s) = 0n×n, AdRn (S) = In×n, ΦRn(s) = 0n×n (14)

Note that the multiplication of two elements of the Lie group (i.e., the exponential of s1 and s2) is
equivalent to the vector addition of two elements of the Lie algebra (i.e., s1 + s2).[

log
(
exp([s1]

∧
Rn) exp([s2]

∧
Rn)
)]∨

Rn = s1 + s2 (15)

3. Algorithm Description

The proposed algorithm, L5S-3IMU, uses a similar model and assumptions to our prior works
in [9] and [26], denoted as CKF-3IMU, albeit expressed in Lie group representation, to estimate the
orientation of the pelvis, thighs, and shanks with respect the world frame, W, using three IMUs
attached at the sacrum and shanks, just above the ankles, and inter-IMU distance measurements (Fig.
2). Using a Lie group representation enables the tracking of not just position but also of orientation
(note that CKF-3IMU only tracked position and assumed orientation measurements were noise-free).
Fig. 3 shows an overview of the proposed algorithm. L5S-3IMU predicts the shank and pelvis positions
through double integration of their linear 3D acceleration (obtained after a pre-processing step of
IMU measurements), and predicts the shank and pelvis orientation through integration of their linear
3D angular velocity. Orientation is also further updated using a third party orientation estimation
algorithm. Positional drift due to sensor noise that accumulates in the double integration of acceleration
was mitigated through the following assumptions: (1) the ankle 3D velocity and height above the floor
are zeroed whenever a footstep is detected; (2) the pelvis position is approximated as the length of the
unbent leg(s) above the floor or as informed by inter-IMU distance measurements, when available.
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Furthermore, to contain the ever-growing error covariance for the pelvis and ankle global positions,
a pseudo-measurement equal to the current pose estimate with a fixed covariance is made. Lastly,
biomechanical constraints enforce constant body segment lengths; and hinged knee joints (one degree
of freedom (DOF)) with limited range of motion (ROM). The pre- and post-processing parts remain
exactly the same as the CKF-3IMU algorithm.

Symbol Description

Po
in

ts
/J

oi
nt

s

mp mid-pelvis
lh left hip
rh right hip
lk left knee
rk right knee
la left ankle
ra right ankle

Se
gm

en
ts

p pelvis
lt left thigh
rt right thigh
ls left shank
rs right shank

D
is

t. pla pelvis to left ankle
pra pelvis to right ankle
lra left to right ankle

Figure 2. Model of the lower body used by LGKF-3IMU. The circles denote joint positions, the solid
lines denote instrumented body segments, whilst the dashed lines denote segments without IMUs
attached (i.e., thighs). Dotted lines denote inter-IMU measurements.

Figure 3. Algorithm overview which consists of pre-processing, CEKF, and post-processing.
Pre-processing calculates the body segment orientation, inertial body acceleration, and step detection
from raw acceleration, ăk, angular velocity, ω̆k, and magnetic north heading, η̆k, measured
by the IMU. The CEKF-based state estimation consists of a prediction (kinematic equation),
measurement (orientation, pelvis height/inter-IMU distance measurement, covariance limiter,
intermittent zero-velocity update, and flat-floor assumption), and constraint update (thigh length, hinge
knee joint, and knee range of motion). Post-processing calculates the left and right thigh orientations,
RRRlt

k and RRRrt
k .

3.1. System, Measurement, and Constraint Models

The system, measurement, and constraint models are presented below

Xk = f (Xk−1, nk−1) = Xk−1 exp([Ω(Xk−1, uk−1)+nk−1]
∧
G) (16)
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Zk = h(Xk) exp([mk]
∧
G), Dk = c(Xk) (17)

where k is the time step. Xk ∈ G is the system state, an element of state Lie group G. Ω
(
Xk, uk−1

)
:

G→Rp is a non-linear function which describes how the model acts on the state and input, uk−1,
where p is the number of dimensions of the compact vector representation for Lie algebra g. nk
is a zero-mean process noise vector with covariance matrix Q (i.e., nk ∼ NRp(0p×1,Q)). Zk ∈ Gm

is the system measurement, an element of the measurement Lie group Gm. h (Xk) : G→Gm is the
measurement function. mk is a zero-mean measurement noise vector with covariance matrixRk (i.e.,
mk ∼ NRq(0q×1,Rk) where q is the number of dimensions of available measurements). Dk ∈ Gc is
the constraint state, an element of constraint Lie group Gc. c (Xk) : G→Gc is the equality constraint
function the state Xk must satisfy (i.e., c (Xk) = Dk). Similar to [18,31], the state distribution of Xk is
assumed to be a concentrated Gaussian distribution on Lie groups (i.e., Xk = µk expG [ε]∧G, where µk is
the mean of Xk and Lie algebra error ε ∼ NRp(0p×1, P)) [14].

The Lie group state variables Xk model the position, orientation, and velocity
of the three instrumented body segments (i.e., pelvis and shanks) as Xk =

diag(T p, T ls, Trs, exp([[(vp)T (vls)T (vrs)T ]T ]∧R9)) ∈ G = SE(3)3 ×R9 where Tb ∈ SE(3) represents
the pose (i.e., orientation and position) of body segment b relative to world frame W, and Avb is the
velocity of body segment b relative to frame A. If frame A is not specified, assume reference to the
world frame, W. The Lie algebra error is denoted as ε = [(ε

p
T)

T (εls
T )

T (εrs
T )

T (ε
mp
v )T (εla

v )
T (εra

v )T ]T

where the first three variables correspond to the Lie group in SE(3) while the latter three
are for R9. [ ]∨G, exp([ ]∧G), [log( )]∨G, AdG(Xk), and ΦG( ) are constructed similarly as Xk (e.g.,
AdG(Xk) = diag(AdSE(3)(T p), AdSE(3)(T ls), AdSE(3)(Trs), AdR9(exp([[(vp)T (vls)T (vrs)T ]T ]∧R9))).
Refer to Sec. 2.2 and 2.3 for definition of SE(3) and Rn operators.

3.2. Lie Group Constrained EKF (LG-CEKF)

The a priori, a posteriori, and constrained state estimate (i.e., estimated mean of Xk) for time step k
are denoted by µ̂−k , µ̂+

k , and µ̃+
k , respectively. Note that the true state Xk can be expressed as µk exp([ε]∧G)

where µk is one of the state means just mentioned with error, [ε]∧G. The a priori and a posteriori error
covariance matrices are denoted as P−k and P+

k , respectively. Note the error covariance is not updated
at the constrain update step. The KF is based on the Lie group EKF, as defined in [31], where the state
means (µ̂−k , µ̂+

k , and µ̃+
k ) and state error covariance matrices (P−k and P+

k ) are propagated by the KF at
each time step.

3.2.1. Prediction Step

Prediction step estimates the a priori state µ̂−k at the next time step and may not necessarily respect
the kinematic constraints of the body, so joints may become dislocated after this step. The mean
propagation of the three instrumented body segments is governed by Eq. (18) where Ω(µ̃+

k−1, uk) (Eqs.
(19)) is the motion model for the three instrumented body segments. The input uk is defined in Eq.
(20), where the orientation and acceleration as obtained by the IMU attached to segment b with respect
world frame W are denoted as R̆b

k and ăb
k for b ∈ {p, ls, rs}, while the angular velocity as obtained by

the IMU attached to segment b expressed in frame b is denoted as bω̆k.

µ̂−k = µ̃+
k−1 exp([Ω(µ̃+

k−1, uk)]
∧
G) (18)

Ω(µ̃+
k−1, uk) =

[︸ ︷︷ ︸
1× 3

(∆t ṽmp+
k−1 + ∆t2

2 ăp
k )

T R̆p
k ︸ ︷︷ ︸

1× 3

∆t pω̆T
k ︸ ︷︷ ︸

1× 3

(∆t ṽla+
k−1 +

∆t2

2 ăls
k )

T R̆ls
k ︸ ︷︷ ︸

1× 3

∆t lsω̆T
k

︸ ︷︷ ︸
1× 3

(∆t ṽra+
k−1 +

∆t2

2 ărs
k )

T R̆rs
k ︸ ︷︷ ︸

1× 3

∆t rsω̆T
k ︸ ︷︷ ︸

1× 9

∆t( ămp
k )T ∆t( ăla

k )
T ∆t( ăra

k )T]T
(19)

uk =
[

R̆p
k R̆ls

k R̆rs
k ăp

k ăls
k ărs

k
pω̆k

lsω̆k
rsω̆k

]
(20)
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The state error covariance matrix propagation is governed by Eq. (21), where Fk represents
the matrix Lie group equivalent to the Jacobian of f (Xk−1, nk−1), Q is the covariance matrix of the
process noise, and Ck =

∂
∂ε Ω(µ̃+

k−1 exp([ε]∧G), uk)|ε=0 represents the linearization of the motion model
with an infinitesimal perturbation ε. The process noise covariance matrix, Q, is calculated from the
input-to-state matrix G and the noise variances of the measured acceleration and angular velocity, σ2

a
and σ2

ω, respectively.

P−k = FkP+
k−1F

T
k + ΦG(Ω(µ̃+

k−1, uk))QΦG(Ω(µ̃+
k−1, uk))

T (21)

Fk = AdG(expG(−[Ω(µ̃+
k−1, uk)]

∧
G)) + ΦG(Ω(µ̃+

k−1, uk))Ck (22)

Q = G diag(σ2
a, σ2

ω) GT (23)

Ck =
∂

∂ε Ω(µ̃+
k−1 exp([ε]∧G), uk)|ε=0

= ∂
∂ε

[
(∆t(ṽmp+

k−1 + ε
mp
v ) + ∆t2

2 ăp
k )

T R̆p
k ∆t pω̆T

k (∆t(ṽla+
k−1 + εla

v ) +
∆t2

2 ăls
k )

T R̆ls
k ∆t lsω̆T

k

(∆t(ṽra+
k−1 + εra

v ) + ∆t2

2 ărs
k )

T R̆rs
k ∆t rsω̆T

k ∆t( ămp
k )T ∆t( ăla

k )
T ∆t( ăra

k )T
]T |ε=0

Ck =


018×18

∆t(R̆p
k )

T 03×3 03×3

03×3 03×3 03×3

03×3 ∆t(R̆ls
k )

T 03×3

03×3 03×3 03×3

03×3 03×3 ∆t(R̆rs
k )

T

03×3 03×3 03×3

09×27



(24)

G =



∆t2/2 I3×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 ∆tI3×3 03×3 03×3

03×3 ∆t2/2 I3×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 ∆tI3×3 03×3

03×3 03×3 ∆t2/2 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 ∆tI3×3

∆tI9×9 09×9


(25)

3.2.2. Measurement Update

Measurement update estimates the state at the next time step by: (i) updating the orientation
state using new orientation measurements of body segments from IMUs; by (ii) encouraging pelvis
position to be above the feet, as informed by either some pseudo-measurement or inter-IMU distance
measurements; and by (iii) enforcing ankle velocity to reach zero, and the ankle z position to be
near the floor level, z f when step is detected. When only IMU measurements are available, (iia)
pelvis z position is encouraged to be close to initial standing height, zp. When inter-IMU distance
measurements are available, (iia) is not used. Instead, (iib) ankle distance is directly incorporated
while pelvis position is inferred from inter-IMU distance measurements assuming hinged knee joints
and constant body segment lengths. The a posteriori state mean µ̂+

k is calculated following the Lie
EKF equations below. Note that [log(h(µ̂−k )

−1Zk)]
∨
Gm

in Eq. (27) is akin to the KF innovation/residual,
where h(µ̂−k )

−1Zk (derived from Eq. (17) assuming mk = 0 and Xk = µ̂−k , i.e., Zk = h(µ̂−k )) is the
innovation/residual in Lie group Gm brought to the vector representation of the Lie algebra space
using the inverse exponential (i.e., logarithm) mapping.

µ̂+
k = µ̂−k expG([νk]

∧
G) (26)

νk = Kk([log(h(µ̂−k )
−1Zk)]

∨
Gm

) (27)

Kk = P−k H
T
k (HkP−k H

T
k +Rk)

−1 (28)
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Hk can be seen as the matrix Lie group equivalent to the Jacobian of h(Xk), and is defined as the
concatenation of Hori and Hmp,k when inter-IMU distance measurement is not available. When
inter-IMU distance measurement is available,Hmp,k is replaced byHdist,k = [HT

pla,k HT
pra,k HT

lra,k]
T .

Hls,k and/orHrs,k are also concatenated toHk when the left and/or right foot contact (FC) is detected
(See [9, Eq. (9)]). Each component matrix will be described later. The measurement matrix Zk ∈ Gm,
measurement function h(Xk) ∈ Gm, and measurement covariance noiseRk are constructed similarly
toHk, but combined using diag instead of concatenation (e.g.,Rk = diag(σ2

ori, σ2
mp)).

Hk =
∂

∂ε

[
log
(

h(µ̂−k )
−1h(µ̂−k exp([ε]∧G))

)]∨
Gm
|ε=0

=



[HT
ori HT

mp/dist]
T no FC

[HT
ori HT

mp/dist H
T
ls,k]

T left FC

[HT
ori HT

mp/dist H
T
rs,k]

T right FC

[HT
ori HT

mp/dist H
T
ls,k HT

rs,k]
T both FC

(29)

Orientation Update

The orientation update utilizes the orientation measurement to update the state estimate as
defined by Eq. (30), with measurement noise variance σ2

ori (9× 1 vector).

hori(Xk) = diag(Rp
k , Rls

k , Rrs
k ) ∈ SO(3)3, Zori = diag(R̆p

k , R̆ls
k , R̆rs

k ) (30)

Hori along with other components of Hk are calculated by applying Eq. (29) to their corresponding
measurement functions, followed by tedious algebraic manipulation and first order linearization
(i.e., exp([ε]∧) ≈ I + [ε]∧). The derivation for Hori (Eq. (31)) can be solved trivially as
[log(hori(µ̂

−
k )
−1hori(µ̂

−
k exp([ε]∧G)))]

∨ = [(ε
p
φ)

T (εls
φ)

T (εrs
φ)

T ]T , where εb
T = [(εb

ρ)
T (εb

φ)
T ]T for body

segment b ∈ {p, ls, rs}.

Hori =

 03×3 I3×3

03×3 I3×3 09×9

03×3 I3×3

 (31)

Pelvis Height Assumption

The pelvis height assumption softly constrains the pelvis z position to be close to initial standing
height zp as defined by Eq. (32) (represented in vector space of its Lie algebra) and Eq. (33), with
measurement noise variance σ2

mp (1× 1 vector). This assumption is used only when inter-IMU distance
measurement is not available. ix, iy, iz, and i0 denote 4× 1 vectors whose 1st to 4th rows, respectively,
are 1, while the rest are 0; they are used below to select rows, columns, or elements from matrices.

[log(hmp(Xk))]
∨ = iT

z T p
k i0 =

[
0 0 1 0

] [ Rp
k pp

k
01×3 1

] 
0
0
0
1

 =
[
0 0 1 0

] [pp
k

1

]
= pp

z,k ∈ R (32)

[log(Zmp)]
∨ = zp ∈ R (33)

The derivation of Hmp,k = ∂
∂ε [log(hmp(µ̂

−
k )
−1hmp(µ̂

−
k exp([ε]∧G)))]

∨|ε=0 is shown in Eqs. (34)-(36).
Taking best estimate Xk = µ̂−k gives us Eq. (34).

[log(hmp(µ̂
−
k ))]

∨ = iT
z T̂ p–

k i0 (34)
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[log(hmp(µ̂
−
k exp([ε]∧G)))]

∨ = iT
z T̂ p–

k exp([εp
T]
∧)i0

≈ iT
z T̂ p–

k i0 + iT
z T̂ p–

k [ε
p
T]
∧i0, 1st order linearization

Use Eq. (11), [a]∧ b = [b]� a, to bring ε
p
T to right of i0

= [log(hmp(µ̂
−
k ))]

∨ + iT
z T̂ p–

k [i0]
� ε

p
T

(35)

Remember ε
p
T is a subvector of ε as defined in Sec. 3.1 and is the Lie algebra error of the state

in its compact vector representation. Note that if measurement function ha(Xk) ∈ Lie group
Rb, then [log(ha(µ̂

−
k )
−1ha(Xk))]

∨ = [log(ha(Xk))]
∨ − [log(ha(µ̂

−
k ))]

∨ = [log(ha(µ̂
−
k exp([ε]∧G)))]

∨ −
[log(ha(µ̂

−
k ))]

∨ by applying Eqs. (15) and (13) (inverse of Lie group Rn). Finally,Hmp,k is calculated as
shown in Eq. (36).

Hmp,k =
∂

∂ε [log(hmp(µ̂
−
k )
−1hmp(µ̂

−
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(hmp(µ̂

−
k exp([ε]∧G)))]

∨ − [log(hmp(µ̂
−
k ))]

∨
)
|ε=0

=
[
︸ ︷︷ ︸

1× 6

iT
z T̂ p–

k [i0]
� 01×6 01×6 01×9

] (36)

Zero Velocity Update and Flat Floor Assumption

When step is detected, the ankle velocity is enforced to be zero and the ankle z position is brought
to near the floor level, z f (i.e., flat floor assumptions). The corresponding measurement function is
defined by Eq. (37), with measurement noise variance σ2

ls (4× 1 vector).

[log(hls(Xk))]
∨ =

[
vls

iT
z T ls

k i0

]
=

[
vls

pls
z,k

]
∈ R4, [log(Zls)]

∨ =

[
03×1

z f

]
(37)

The zero velocity part ofHls,k (Eq. (38)) andHrs,k can also be calculated trivially, while the flat floor
assumption can be calculated similarly asHmp,k but the z position set to floor height, z f , instead of the
pelvis standing height, zp.

Hls,k =
∂

∂ε [log(hls(µ̂
−
k )
−1hls(µ̂

−
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(hls(µ̂

−
k exp([ε]∧G)))]

∨ − [log(hls(µ̂
−
k ))]

∨) |ε=0

=

[
03×6 03×6 03×6 03×3 I3×3 03×3

︸ ︷︷ ︸
pose states in SE(3)

01×6 iT
z T̂ ls–

k [i0]
� 01×6 ︸ ︷︷ ︸

velocity states

01×3 01×3 01×3

] (38)

Left and Right Ankle Distance Measurement

When the inter-IMU distance between the ankles, d̆lra
k , is available, ankle distance measurement

is incorporated as a soft distance constraint. The measurement function is defined by Eq. (40), with
measurement noise variance σ2

lra (1× 1 vector). τlra(Xk) (Eq. (39)) is the vector that points from the
right ankle to the left ankle, where ls pla is the position of the left ankle expressed in left shank frame,
and rs pra is the position of the right ankle expressed in right shank frame. We have chosen that the
ankles are at the origin of their respective shank frames. Note that matrix E converts homogeneous
4× 1 coordinates to standard 3× 1 coordinates (i.e., drops the 1 from the end of the 4× 1 vector).

τlra(Xk) =

E︷ ︸︸ ︷[
I3×3 03×1

]
(

left ankle in W︷ ︸︸ ︷
T ls

k
ls pla −

right ankle in W︷ ︸︸ ︷
Trs

k
rs pra ), ls pla = rs pra =

origin of frame︷ ︸︸ ︷[
0 0 0 1

]T
(39)
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By taking the squared Euclidean distance of τlra(Xk) (i.e., || τlra(Xk)||2), we can get the ankle distance
measurement model.

[log(hlra(Xk))]
∨ = (τlra(Xk))

T τlra(Xk) ∈ R, [log(Zlra)]
∨ = (d̆lra

k )2 (40)

To solve forHlra,k (Eq. (44)), we first solved for [log(hlra(Xk))]
∨ at Xk = µ̂−k (Eq. (41)).

τlra(µ̂
−
k ) = E(T̂ ls–

k
ls pla − T̂rs–

k
rs pra), [log(hlra(µ̂

−
k ))]

∨ = (τlra(µ̂
−
k ))

T τlra(µ̂
−
k ) (41)

Then solve for τlra(µ̂
−
k exp([ε]∧G)) and [log(hlra(µ̂

−
k exp([ε]∧G)))]

∨ as shown in Eqs. (42) and (43).

τlra(µ̂
−
k exp([ε]∧G)) = E(T̂ ls–

k exp([εls
T ]
∧) ls pla − T̂rs–

k exp([εrs
T ]
∧) rs pra)

Take the 1st order approximation

≈ E(T̂ ls–
k

ls pla − T̂rs–
k

rs pra + T̂ ls–
k [εls

T ]
∧ ls pla − T̂rs–

k [εrs
T ]
∧ rs pra)

= τlra(µ̂
−
k ) +

Γlra︷ ︸︸ ︷
E
(

T̂ ls–
k [ls pla]� εls

T − T̂rs–
k [rs pra]� εrs

T
)

, Using Eq. (11)

(42)

[log(hlra(µ̂
−
k exp([ε]∧G)))]

∨ =
(

τlra(µ̂
−
k ) + Γlra

)T (
τlra(µ̂

−
k ) + Γlra

)
Assume 2nd order error ≈ 0
= τlra(µ̂

−
k )

T τlra(µ̂
−
k ) + 2 τlra(µ̂

−
k )

TΓlra +��
��:≈ 0

ΓT
lraΓlra

= [log(hlra(µ̂
−
k ))]

∨

+ 2 τlra(µ̂
−
k )

TE
(

T̂ ls–
k [ls pla]� εls

T − T̂rs–
k [rs pra]� εrs

T
)

(43)

Hlra,k =
∂

∂ε [log(hlra(µ̂
−
k )
−1hlra(µ̂

−
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(hlra(µ̂

−
k exp([ε]∧G)))]

∨ − [log(hlra(µ̂
−
k ))]

∨) |ε=0

= ∂
∂ε

(
2 τlra(µ̂−k )

TE
(

T̂ ls–
k [ls pla]� εls

T − T̂rs–
k [rs prs

0 ]
� εrs

T
))
|ε=0

=
[

01×6 ︸ ︷︷ ︸
1× 6

2 τlra(µ̂
−
k )

TE T̂ ls–
k [ls pla]� ︸ ︷︷ ︸

1× 6

−2 τlra(µ̂
−
k )

TE T̂rs–
k [rs pra]� 01×9

] (44)

Pelvis-to-Ankle Distance Measurement

In addition to the soft ankle distance constraint, the ankle to pelvis vector is inferred from the
ankle to pelvis distance measurements while assuming hinged knee joints and constant body segment
lengths. The measurement function is defined by Eq. (45), with measurement noise variance σ2

pla (3× 1

vector), where p pmp is the position of the mid-pelvis expressed in pelvis frame, and ls pla is the position
of the left ankle expressed in left shank frame. We have chosen that the mid-pelvis and ankle are at the
origin of their corresponding reference frames.

[log(hpla(Xk))]
∨ = E(

mid-pelvis in W︷ ︸︸ ︷
T p

k
p pmp −

left ankle in W︷ ︸︸ ︷
T ls

k
ls pla ) ∈ R3, p pmp = ls pla =

[
0 0 0 1

]T
(45)

The measurement pelvis to left ankle vector can be calculated from the measured pelvis to left ankle
distance, d̆pla

k as shown in Eq. (46) which is the Lie Group reformulation of [26, Eq. 4]. In essence, Eq.
(47) calculates the most probably knee angle assuming hinged knee joint and constant body segment
lengths, then Eq. (46) adds the thigh (expressed in shank coordinate system with knee angle θ̂lk

k ) and
shank long axis to the hips to obtain the pelvis-to-ankle vector. See Appendix A for derivation. There
are two solutions for θ̂lk

k due to the inverse cosine in Eq. (47). We chose the θ̂lk
k value as that closer to

the current left knee angle estimate from the prediction step. Note that this measurement function
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could also be formulated as a linearized Euclidean distance between the pelvis and ankle (i.e., similar
to Eq. 44); however, a preliminary exploration of this approach showed poorer performance.

[log(Zpla,k)]
∨ =

ψpla=half pelvis y-axis + shank z-axis︷ ︸︸ ︷
dp

2 T̂ p–
k iy − dls T̂ ls–

k iz +

thigh z-axis in shank frame︷ ︸︸ ︷
dlt T̂ ls–

k (ix sin ( θ̂lk
k )− iz cos ( θ̂lk

k )) ∈ R3 (46)

θ̂lk
k = cos−1

(
αγ±β
√

α2+β2−γ2

α2+β2

)
where

α = −2dltψT
pla T̂ ls–

k iz, β = 2dltψT
pla T̂ ls–

k ix,

γ = (d̆pla
k )2 −ψT

plaψpla − (dlt)2
(47)

To calculate forHpla,k, we first solved for [log(hpla(Xk))]
∨ at Xk = µ̂−k similar to Eq. (41).

[log(hpla(µ̂
−
k ))]

∨ = τpla(µ̂
−
k ) = E(T̂ p–

k
p pmp − T̂ ls–

k
ls pla) (48)

Then solve for [log(hpla(µ̂
−
k exp([ε]∧G)))]

∨ similar to Eq. (42) (i.e., distance between mid-pelvis and left
ankle) giving us [log(hpla(µ̂

−
k exp([ε]∧G)))]

∨ = τpla(µ̂
−
k ) + Γpla. Hpla,k is then calculated as shown in

Eq. (49). The right side of the pelvis-to-ankle distance measurement (i.e., hpra(µ̂
−
k ), Zpra,Hpra,k) can be

solved similarly to the left side.

Hpla,k =
∂

∂ε [log(hpla(µ̂
−
k )
−1hpla(µ̂

−
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(hpla(µ̂

−
k exp([ε]∧G)))]

∨ − [log(hpla(µ̂
−
k ))]

∨
)
|ε=0

= ∂
∂ε

(
τpla(µ̂

−
k ) + Γpla − τpla(µ̂

−
k )
)
|ε=0

= ∂
∂ε

(
Γpla

)
|ε=0 = ∂

∂ε

(
E
(

T̂ p–
k [p pmp]� ε

p
T − T̂ ls–

k [ls pla]� εls
T
))
|ε=0

=
[
︸ ︷︷ ︸

1× 6

E T̂ p–
k [p pmp]� ︸ ︷︷ ︸

1× 6

−E T̂ ls–
k [ls pla]� 01×6 01×9

]
(49)

Covariance Limiter

Lastly, the error covariance of the position estimates of the three instrumented body segments
must be prevented from growing unbounded and/or becoming badly conditioned, as will occur
naturally when tracking global position of objects without any global position reference. At this step,
a pseudo-measurement equal to the current state µ̂+

k is used (implemented by Eq. (50)) with some
measurement noise of variance σlim (9× 1 vector). The covariance P+

k is then calculated through Eqs.
(51)-(53).

Hlim =


mp pos.︷︸︸︷
I3×3 03×3

la pos.︷︸︸︷ ra pos.︷︸︸︷
I3×3 03×3 09×9

I3×3 03×3

 (50)

H′k = [HT
k HT

lim]
T , R′k = diag(σ2

k , σ2
lim) (51)

K′k = P−k H
′T
k (H′kP−k H

′T
k +R′)−1 (52)

P+
k = ΦG (νk) (I−K′kH

′
k)P
−
k ΦG (νk)

T (53)

3.2.3. Satisfying Biomechanical Constraints

After the preceding updates, the joint positions or angles may be beyond their allowed range
(i.e., knee hyperflexion). The constraint update corrects the kinematic state estimates to satisfy the
biomechanical constraints of the human body by projecting the current a posteriori state estimate µ̂+

k
onto the constraint surface, guided by our uncertainty in each state variable, which is encoded by
P+

k . The following biomechanical constraint equations are enforced: (i) estimated thigh long axis
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vector lengths equal the thigh lengths; (ii) both knees act as hinge joints (formulation similar to [11,
Sec. 2.3 Eqs. (4)]); and (iii) the knee joint angle is within realistic range. The constraint functions are
similar to [9, Sec. II-E.3] but expressed under SE(3) state variables. The constrained state µ̃+

k can be
calculated using the equations below, similar to the measurement update of [31] with zero noise, where
Ck = [CT

L,k CT
R,k]

T . CL,k is the concatenation of Cltl,k, Clkh,k, and Clkr,k; the last matrix is not concatenated
when the knee angle, αlk, is within its allowed range (i.e., αlk,min ≤ αlk ≤ αlk,max). Cltl,k, Clkh,k, and Clkr,k
corresponds to the biomechanical constraint for the left thigh length (ltl), left knee hinged joint (lkh),
and left knee angle ROM (lkr), respectively, which will be described more later. CR,k can be derived
similarly, while Dk and c(µ̂+

k )) are constructed similarly to Zk.

µ̃+
k = µ̂+

k exp([νk]
∧
G) (54)

νk = Kk([log(c(µ̂+
k )
−1Dk)]

∨
Gc

(55)

Kk = P+
k C

T
k (CkP+

k C
T
k )
−1) (56)

Ck =
∂

∂ε [log(c(µ̂+
k )
−1c(µ̂+

k exp([ε]∧G)))]
∨
Gc
|ε=0 (57)

Thigh Length Constraint

Firstly, the thigh length constraint is shown in Eq. (59), where τlt
z (Xk) (Eq. (58)) denotes the thigh

long axis vector and dlt denotes the measured thigh length during calibration. p plh is the position of
the left hip expressed in pelvis frame, and ls plk is the position of the left knee expressed in left shank
frame. We have chosen that the left hip to be dp

2 to the left of the mid-pelvis origin, and the left knee to
be dls from the left shank origin (i.e., from the left ankle).

τlt
z (Xk) = E

( hip jt. pos. in W︷ ︸︸ ︷
T p p plh −

knee jt. pos. in W︷ ︸︸ ︷
T ls ls plk )

, p plh =
[
0 dp

2 0 1
]T

, ls plk =
[
0 0 dls 1

]T
(58)

[log(cltl(Xk))]
∨ = (τlt

z (Xk))
T τlt

z (Xk) ∈ R, [log(Dltl)]
∨ = (dlt)2 (59)

Cltl,k is calculated using Eq. (60).

Cltl,k =
∂

∂ε [log(cltl(µ̂
+
k )
−1cltl(µ̂

+
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(cltl(µ̂

+
k exp([ε]∧G)))]

∨ − [log(cltl(µ̂
+
k ))]

∨) |ε=0
(60)

Following similar procedure toHlra,k, we obtain τlt
z (µ̂

+
k exp([ε]∧G)) = τlt

z (µ̂
+
k )+Γltz (similar to Eq. (42)),

and [log(cltl(µ̂
+
k exp([ε]∧G)))]

∨ = [log(cltl(µ̂
+
k ))]

∨ + 2(τlt
z (µ̂

+
k ))

TE
(

T̂ p+
k [p plh]� ε

p
T − T̂ ls+

k [ls plk]� εls
T
)

(similar to Eq. (43)), which if we substitute in Eq. (60) gives us Eq. (61)

Cltl,k =
∂

∂ε

(
2 τlt

z (µ̂
+
k )

TE(T̂ p+
k [p plh]� ε

p
T − T̂ ls+

k [ls plk]� εls
T )
)
|ε=0

=
[
︸ ︷︷ ︸

1× 6

2(τlt
z (µ̂

+
k ))

TE T̂ p+
k [p plh]� ︸ ︷︷ ︸

1× 6

−2(τlt
z (µ̂

+
k ))

TE T̂ ls+
k [ls plk]� 01×6 01×9

] (61)

Hinge Knee Joint Constraint

Secondly, the hinge knee joint constraint as defined by Eq. (62) is enforced by having the long (z)
axis of the thigh to be perpendicular to the mediolateral axis (y) of the shank. For example, on the left
leg, we would want rls

y be perpendicular to the thigh long axis vector τlt
z (µ̂

+
k ) (i.e., the dot product of

rls
y and τlt

z (µ̂
+
k ) should be 0). Refer to Fig. 2 for visualization. This formulation is similar to [11, Sec.

2.3 Eqs. (4)].

[log(clkh(Xk))]
∨ = (E T lsiy)

T τlt
z (Xk) = (rls

y )
T τlt

z (Xk) ∈ R, [log(Dlkh)]
∨ = 0 (62)
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Following similar procedure to Cltl,k and taking Xk = µ̂+
k , [log(clkh(µ̂

+
k ))]

∨ and
[log(clkh(µ̂

+
k exp([ε]∧G)))]

∨ can be calculated as shown in Eqs. (63) and (64), respectively.

[log(clkh(µ̂
+
k ))]

∨ = (E T̂ ls+iy)
T τlt

z (µ̂
+
k ) (63)

[log(clkh(µ̂
+
k exp([ε]∧G)))]

∨ = (E T̂ ls+ exp([εls
T ]
∧)iy)

T(τlt
z (µ̂

+
k ) + Γltz)

Taking 1st order approximation of exp

≈ (E(T̂ ls+ + T̂ ls+[εls
T ]
∧)iy)

T(τlt
z (µ̂

+
k ) + Γltz)

Assume 2nd order error ≈ 0

= (E T̂ ls+iy)
T τlt

z (µ̂
+
k ) + (E T̂ ls+ iy)

TΓltz

+ (τlt
z (µ̂

+
k ))

TE T̂ ls+[εls
T ]
∧iy +

���
���

���
�:≈ 0

(E T̂ ls+[εls
T ]
∧iy)

TΓltz

= [log(clkh(µ̂
+
k ))]

∨ + (E T̂ ls+ iy)
TE
(

T̂ p+
k [p plh]� ε

p
T− T̂ ls+

k [ls plk]� εls
T
)

+ (τlt
z (µ̂

+
k ))

TE T̂ ls+[iy]
� εls

T , by expanding Γltz and using Eq. (11)

(64)

Clkh,k can be calculated using Eq. (65).

Clkh,k =
∂

∂ε [log(clkh(µ̂
+
k )
−1clkh(µ̂

+
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(clkh(µ̂

+
k exp([ε]∧G)))]

∨ − [log(clkh(µ̂
+
k ))]

∨) |ε=0
(65)

Substituting Eqs. (63) and (64) into Eq. (65) gives us Eq. (66).

Clkh,k =
[
︸ ︷︷ ︸

1× 6

(E T̂ ls+iy)TE T̂ p+[p plh]� ︸ ︷︷ ︸
1× 6

−(E T̂ ls+iy)TE T̂ ls+[ls plk]� + (τlt
z (µ̂

+
k ))

TE T̂ ls+[iy]� 01×15

]
(66)

Knee Range of Motion Constraint

Thirdly, the knee ROM constraint is defined by Eq. (69) and is only enforced if the knee angle,
αlk, is outside the allowed ROM. The bounded knee angle, α′lk, is calculated by Eq. (67). Eq. (69) is
obtained by expanding Eq. (67) to Eq. (68) which when rearranged gives us [log(clkr(Xk))]

∨ (i.e., Lie
group representation of [9, Eq. (26)]). Note that lsrlt

z is the normalized thigh long axis expressed in the
left shank frame.

αlk = tan−1
(
−(rls

z )
T rlt

z
−(rls

x )T rlt
z

)
+ π

2 , α′lk = min(αlk,max, max(αlk,min, αlk)) (67)

− rlt
z ·rls

z
− rlt

z ·rls
x
=

sin(α′lk−
π
2 )

cos(α′lk−
π
2 )

(68)

[log(clkr(Xk))]
∨ = (E T ls

lsrlt
z =long axis of left thigh in shank frame︷ ︸︸ ︷(

iz cos(α′lk − π
2 )− ix sin(α′lk − π

2 )
)
)T τlt

z (Xk) ∈ R, [log(Dlkr)]
∨ = 0 (69)

Following a similar procedure to Clkh,k (i.e., replace iy in Eq. (64) with lsrlt
z ) and

taking Xk = µ̂+
k , Clkr,k can be calculated from clkr(µ̂

+
k exp([ε]∧G)) = [log(clkr(µ̂

+
k ))]

∨ +

(E T̂ ls+ lsrlt
z )

TE
(

T̂ p+
k [p plh]� ε

p
T− T̂ ls+

k [ls plk]� εls
T
)
+ (τlt

z (µ̂
+
k ))

TE T̂ ls+[lsrlt
z ]
� εls

T , as shown in Eq. (70).

Clkr,k =
∂

∂ε [log(clkr(µ̂
+
k )
−1clkr(µ̂

+
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(clkr(µ̂

+
k exp([ε]∧G)))]

∨ − [log(clkr(µ̂
+
k ))]

∨) |ε=0

=
[
︸ ︷︷ ︸

1× 6

(E T̂ ls+ lsrlt
z )

TE T̂ p+[p plh]� ︸ ︷︷ ︸
1× 6

−(E T̂ ls+ lsrlt
z )

TE T̂ ls+[ls plk]� + (τlt
z (µ̂

+
k ))

TE T̂ ls+[lsrlt
z ]
� 01×15

]
(70)
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3.3. Post-Processing

The orientation of the pelvis and shanks are obtained from the state µ̃+
k . The

orientation of the left thigh, R̃lt+, can be calculated using R̃lt+ = [ r̃ls+
y × r̃lt+

z r̃ls+
y r̃lt+

z ] =

[ [E T̃ ls+
k iy]

∧
SO(3) r̃lt+

z (E T̃ ls+
k iy) r̃lt+

z ], where r̃lt+
z = τlt

z (µ̃
+
k )/|| τlt

z (µ̃
+
k )||. The orientation of the right thigh,

R̃rt+, is calculated similarly.

4. Experiment

An extension of the dataset from [9] was used to evaluate our L5S based algorithms. It involved
movements listed in Table 1 (including dynamic movements) from nine healthy subjects (7 men and
2 women, weight 63.0± 6.8 kg, height 1.70± 0.06 m, age 24.6± 3.9 years old), with no known gait
abnormalities. Raw data were captured using a commercial IMC (i.e., Xsens Awinda) with IMUs
attached to the pelvis and ankles, compared against a benchmark OMC (i.e., Vicon Plug-in Gait) within
an ~4× 4 m2 capture area. The experiment was approved by the Human Research Ethics Board of the
University of New South Wales (UNSW) with approval number HC180413.

Table 1. Types of movements done in the validation experiment.

Movement Description Duration Group
Walk Walk straight and return ∼ 30 s F
Figure-of-eight Walk along figure-of-eight path ∼ 60 s F
Zig-zag Walk along zig-zag path ∼ 60 s F
5-minute walk Unscripted walk and stand ∼ 300 s F
Speedskater Speedskater on the spot ∼ 30 s D
TUG Timed up-and-go test ∼ 30 s D
Jog Jog straight and return ∼ 30 s D
Jumping jacks Jumping jacks on the spot ∼ 30 s D
High-knee jog High-knee jog on the spot ∼ 30 s D

F denotes free walk, D denotes dynamic movements

Frame alignment and yaw offset calibrations are similar to [9, Sec. III-B]. The algorithm and
calculations were implemented using Matlab 2020a. The initial position, orientation, and velocity (µ̃+

0 )
were obtained from the Vicon benchmark system. P+

0 was set to 0.5I27×27. The variance parameters
used to generate the process and measurement error covariance matrix Q andR are shown in Table 2.

Table 2. Parameters for error covariance matrices, Q andR.

Q Parameters R Parameters
σ2

a σ2
ω σ2

ori σ2
mp σ2

ls and σ2
rs σ2

dl and σ2
dr σ2

da σ2
lim

(m2.s−4) (rad2.s−2) (rad2) (m2) (m2.s−2 and m2) (m2) (m2) (m2)
10219 10319 119 0.1 [0.0113 10−4] 10 1 10118

where 1n is an 1× n row vector with all elements equal to 1.

The inter-IMU distance measurements, d̆pla, d̆pra, and d̆lra, were simulated by calculating the
distance from the mid-pelvis to the left and right ankles and adding normally distributed positional
noise with different standard deviations (i.e., σdist ∈ {0, 0.01, . . . , 0.1, 0.15, 0.2} m). Each trial was
simulated five times.

Lastly, the evaluation was done using the following metrics: (1) Mean position and orientation
root-mean-square error (RMSE) (e.g., similar to [9,12] as shown in Eqs. (71) and (72)), where pb

k and Rb
k

are obtained from the benchmark OMC system, p̃b+
k and R̃b+

k are obtained from the algorithm. Note
that as the global position of the estimate is still prone to drift due to the absence of an external global
position reference, the root position of our system was set equal to that of the benchmark system
(i.e., the mid-pelvis is placed at the origin in the world frame for all RMSE calculations). (2) joint
angles RMSE with bias removed (i.e., the mean difference between the angles over each entire trial
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was subtracted) and correlation coefficient (CC) of the hip in the sagittal (Y), frontal (X),and transverse
(Z) planes and of the knee in the sagittal (Y) plane. Note that these joint angles are commonly used
parameters in gait analysis. (3) Spatiotemporal gait parameters (e.g., total travelled distance (TTD)
deviation, average stride length, and gait speed of the foot). Refer to [9, Sec. III] for more details.

epos,k =
1

Npos
∑b∈DP || pb

k − p̃b+
k ||, Npos = 6, DP = {lh, rh, lk, rk, la, ra} (71)

eori,k =
1

Nori
∑b∈DO ||[log(Rb

k(R̃b+
k )T)]∨||, Nori = 2, DO = {lt, rt} (72)

5. Results

5.1. Mean Position and Orientation RMSE, Joint Angle RMSE and CC

In this experiment, multiple variations of the algorithm were tested as shown in Table 3. Firstly,
L5S-3IMU is the algorithm described in this paper (Sec. 3) with parameters listed in Table 2. The
parameter for L5S-3IMU were selected by taking the best joint CC (i.e., mean of free walk and
dynamic movements) from a grid search of parameters σ2

ω = {1, 10, 102, 103} rad2/s2 and σ2
ori =

{10−2, 10−1, 1, 10} rad2. Secondly, CKF-3IMU and CKF-3IMU+D were the algorithms described in
[9] and [26], respectively. Thirdly, CKF-3I-KB is a modified CKF-3IMU using similar parameters,
measurement, and constraint functions as L5S-3IMU. The key difference between CKF-3IMU and
CKF-3I-KB is that CKF-3I-KB allows knee bending, denoted by the suffix KB, during the constraint
update. Fourthly, L5S-3I-NO is a variation of L5S-3IMU with σ2

ω = 107 rad2/s2, σ2
ori = 10−1 rad2,

and bω̆k = 0 rad. The parameters were chosen to have high uncertainty on the tracked orientation
(i.e., effectively not using the orientation measurements at all), leading to a variation of L5S-3IMU that
is similar to our prior work CKF-3IMU which assumed orientation measurements were noise-free.
Lastly, the black box output (i.e., pelvis, thigh, and shank orientations) from the MVN Studio software
(denoted as OSPS), which illustrates the performance of a widely-accepted commercial wearable IMC
system with an OSPS configuration. For the first to fourth variations, the +D suffix means simulated
inter-IMU distance measurements (σdist = 0.1 m) was used instead of the pelvis height assumption.

Table 3. The experiment was tested on the following algorithm variations.

Algorithm
Inter-IMU
distance Summary description

L5S-3IMU N Tracks position and orientation as described in Sec. 3 with parameters
listed in Table 2.L5S-3IMU+D Y

CKF-3IMU [9] N
Only tracks position using a constrained KF.CKF-3IMU+D [26] Y

CKF-3I-KB N Modified CKF-3IMU using similar parameters as L5S-3IMU (Table 2).
Also allows knee bending during the constraint update.CKF-3I-KB+D Y

L5S-3I-NO N L5S-3IMU with parameters that assume noise-free orientation (NO)
measurements like CKF-3IMU.L5S-3I-NO+D Y

OSPS N Output from a commercial OSPS wearable IMC system.

Fig. 4 shows the mean position and orientation RMSE, mean knee Y and hip joint angle RMSE
(bias removed) and CC of different variations of CKF-3IMU and L5S-3IMU for both free walking
and dynamic motions. Y, X, and Z refers to the sagittal, frontal, and transverse planes, respectively.
CKF-3IMU performed well with free walking (epos = 4.27 cm, eori = 15.85◦, CC = 0.66) [9]. However,
a more extensive evaluation showed that it performed poorly for certain dynamic movements (e.g.,
high-knee jog with epos = 18.15 cm, eori = 24.87◦, CC = 0.02). Removing the no-knee-bending
assumption during the constraint update fixed this issue, as shown by the performance of CKF-3I-KB
(e.g., high-knee jog improved by ~9 cm epos, ~9◦ eori, ~0.4 CC). L5S-3I-NO which is the L5S version of
CKF-3IMU expectedly have similar performance with CKF-3I-KB (i.e., ∆epos < 0.5 cm, ∆eori < 1◦, and
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∆CC 0.02 differences). L5S-3IMU, which tracked both position and orientation while assuming there is
noise in the orientation measurements, had a slightly better performance (e.g., improved jumping jacks
and high-knee jog by ~0.1 CC, < 0.03 CC difference with other movement types). The use of simulated
distance measurement with σdist = 0.1 m on CKF-3I-KB, L5S-3I-NO, and L5S-3IMU had slight effects
for free walking, and a significant improvement for dynamic movements. For free walking, joint angle
RMSE and CC of L5S-3IMU+D compared to L5S-3IMU improved by ~1◦ and < 0.01 CC, while epos

and eori slightly disimproved (< 0.5 cm and < 1◦). The similar results suggest that inferring pelvis
position from simulated distance measurement (σdist = 0.1 m) is comparable to our pelvis height
assumption at least for free walking. For dynamic movements, the epos, eori, joint angle RMSE, and CC
of L5S-3IMU+D improved by 2−16 cm, 0−40◦, 1−9◦, and < 0.42, respectively; more significantly for
movements TUG and high-knee jog.

(a) Mean position and orientation RMSE (b) Joint angle RMSE and CC

Figure 4. The performance of CKF, L5S, and OSPS with and without using inter-IMU distance
measurements at each motion type.

To give insight on how the accuracy of the simulated inter-IMU distance measurements affect pose
estimation performance, Fig. 5 shows the mean of knee Y and hip joint angle RMSE and CC at different
σdist values. At σdist = 0.1 m, the simulation showed comparable performance between L5S-3IMU,
which implements pelvis height assumption, and L5S-3IMU+D, which implements inter-IMU distance
measurement to supplement the pelvis position estimate, for free walking. Significant improvement
for dynamic movements can be seen even for σdist = 0.2 m. These results suggest that the actual
distance measurement sensor must have noise standard deviation σdist ≤ 0.1 m to improve pose
estimate performance. Note that the +D variation in Fig. 4 and in the experiments that follow were
evaluated at σdist = 0.1 m.

Figure 5. Joint angle RMSE (top) and CC (bottom) of free walk and dynamic movements at different
noise level σdist. The broken lines represent L5S-3IMU results (denoted as nD) where inter-IMU distance
measurements were not used. The solid lines represent L5S-3IMU+D results (denoted as +D) where we
can observe slight and great improvements for free walk and dynamic movements, respectively.
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5.2. Hip and Knee Joint Angle RMSE and CC

Fig. 4 shows the knee and hip joint angle RMSE (bias removed) and CC of L5S-3IMU and
L5S-3IMU+D compared against the OMC output. Y, X, and Z refers to the sagittal, frontal, and
transverse planes, respectively. Turning movements and half steps were manually removed from the
per-step result of Walk movement and was denoted as Straight Walk. Note that sensor-to-body
calibration was only done at the beginning of trial, not for each step. Between L5S-3IMU and
L5S-3IMU+D, there was minimal hip and knee joint angle RMSE and CC improvement for free
walking (~1◦ RMSE and ~0.03 CC difference). However, there was significant improvement for most
dynamic movements, specifically, speed-skater, jog, high-knee jog, and TUG (e.g., 4− 17◦ knee Y and
hip Y joint angle RMSE improvements). Furthermore, the CC for dynamic movements started to reach
similar performance with the free walk movement, indicating that inter-IMU distance measurements
have indeed made the pose estimator capable of tracking more ADLs and not just walking.

Figure 6. The CC of knee (Y) and hip (Y, X, Z) joint angles for L5S-3IMU (denoted as nD) and
L5S-3IMU+D (denoted as +D) at each motion type.

Fig. 7 shows a sample Walk trial. At the peaks of knee Y angle, the distance between the pelvis
and ankle positions of L5S-3IMU+D were a few cm shorter (i.e., pelvis position was lower than actual
while ankle position was higher) than the actual distance resulting in higher knee Y angle peaks.
Violations of our biomechanical constraints are also apparent at t = 4 to 5.5 s, where the subject makes
a 180◦ turn. After the turn, L5S-3IMU and L5S-3IMU+D were able to recover during the straight
walking (t = 5.5 to 9.74 s of Fig. 7). Notice that the bias between OSPS and OMC can be observed at
t = 0 of the hip Y joint angle.

5.3. Spatiotemporal Gait Parameters

Table 4 shows the TTD, stride length, and gait speed accuracy computed from the global ankle
position estimate of L5S-3IMU, L5S-3IMU+D, and the OMC system for free walk, jogging, and TUG.
The use of inter-IMU distance measurements (σdist = 0.1 m) helped improve the TTD, stride length,
and gait speed accuracy of free walk and TUG (e.g., TTD improved from ~9% to ~5%). Refer to the
code repository for links to videos of sample trials.

6. Discussion

In this paper, a Lie group EKF algorithm for lower body pose estimation using only three IMUs,
ergonomically placed on the ankles and sacrum to facilitate continuous recording outside the laboratory,
was described and evaluated. The algorithm utilizes fewer sensors than other approaches reported in
the literature, at the cost of reduced accuracy.
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Figure 7. Knee (Y) and hip (Y, X, Z) joint angle output of L5S-3IMU in comparison with the benchmark
system (Vicon) for a Walk trial. The subject walked straight from t = 0 to 3 s, turned 180◦ around from
t = 3 to 5.5 s, and walked straight to the original starting point from 5.5 s until the end.

Table 4. Total travelled distance (TTD) deviation from optical motion capture (OMC) system at the
ankles.

Si
de

TTD Stride length (cm) Gait speed (cm.s−1)
Error Actual Error Actual Error

Algo. % dev µ med µ± σ RMS µ med µ± σ RMS

Freewalk L 8.97% 91 99 −8.1± 6 9.9 70 74 −6.0± 5 7.7
L5S-3IMU R 9.00% 93 99 −8.3± 6 10.3 71 75 −6.2± 5 8.2
Freewalk L 5.23% 91 99 −4.7± 7 8.3 70 74 −3.6± 6 6.6

L5S-3IMU+D R 5.85% 93 99 −5.4± 8 9.4 71 75 −4.1± 6 7.4
Jog L 21.35% 81 86 −17.4± 23 28.5 107 118 −19.2± 33 38.0

L5S-3IMU R 26.79% 85 97 −22.9± 25 33.8 111 124 −26.4± 34 43.1
Jog L 22.40% 81 86 −18.2± 22 28.4 107 118 −21.6± 30 37.0

L5S-3IMU+D R 26.70% 85 97 −22.8± 24 32.8 111 124 −27.5± 31 41.4
TUG L 18.20% 74 76 −13.5± 18 22.1 58 60 −10.0± 15 18.0

L5S-3IMU R 20.98% 79 90 −16.6± 15 22.5 63 67 −13.1± 13 18.4
TUG L 3.80% 74 76 −2.8± 6 6.7 58 60 −2.3± 5 5.9

L5S-3IMU+D R 4.22% 79 90 −3.3± 6 6.8 63 67 −2.7± 5 5.6

where µ and σ denote mean and standard deviation. Error denotes estimate minus actual value, while
TTD % dev denotes abs(error)/actual TTD.
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6.1. Mean Position and Orientation RMSE

The mean position and orientation RMSE of L5S-3IMU, L5S-3IMU+D, and related literature
(sparse orientation poser (SOP) and sparse inertial poser (SIP) [12]) are listed in Table 5. SOP used
orientation measured by IMUs and biomechanical constraints, while SIP used similar information
but with the addition of acceleration. Both SOP and SIP were benchmarked against an OSPS system
tracking the full body while our algorithm was benchmarked against an OMC system tracking only
the lower body. The epos and eori (no bias) performance of L5S-3IMU and compared to SOP for free
walking and jogging were comparable (∆epos0.1− 0.5 cm and ∆eori2.5− 3◦ differences). The epos and
eori (no bias) of SIP was better than L5S-3IMU and L5S-3IMU+D for free walking (~2.1− 2.5 cm and
6.5− 7◦ difference). Although this improvement was expected, as SIP optimizes the pose over multiple
frames whereas our algorithm, like CKF-3IMU, optimizes the pose for each individual frame. For
jumping jacks, the eori of L5S-3IMU and L5S-3IMU+D was significantly (~4− 8◦) better than SOP’s
and SIP’s. However, this difference is probably because both SOP and SIP were evaluated on the full
body (our algorithm was only evaluated on the lower body) and errors in arm pose estimation may
have increased eori for the SOP and SIP algorithms.

Table 5. Mean position and orientation RMSE of L5S-3IMU, L5S-3IMU+D, OSPS, Sparse orientation
power (SOP) and Sparse inertial poser (SIP) [12].

epos (cm) eori, no bias (cm)

Free walk Jog Jumping jacks Free walk Jog Jumping jacks

L5S-3I 5.1± 1.2 7.3± 1.4 8.7± 1.6 17.5± 2.7◦ 20.2± 3.8◦ 12.8± 4.0◦

L5S-3I + D 5.5± 1.0 6.2± 1.1 4.9± 0.9 18.0± 2.5◦ 17.4± 3.2◦ 12.6± 3.2◦

OSPS 5.4± 1.5 5.6± 1.2 5.5± 1.6 12.9± 4.0◦ 10.3± 1.8◦ 7.6± 3.3◦

SOP [12] ~5.0 ~8.0 ~8.0 ~15.0◦ ~22.0◦ ~20.0◦

SIP [12] ~3.0 ~5.0 ~4.0 ~11.0◦ ~16.0◦ ~16.0◦

Comparing processing times, L5S-3IMU and L5S-3IMU+D were slower than CKF-3IMU, but can
still be used in real-time; specifically, CKF-3IMU, L5S-3IMU, and L5S-3IMU+D processed a 1,000-frame
sequence (i.e., 10 seconds long) in ~0.7, ~2, ~3.5 seconds, respectively, on an Intel Core i5-6500 3.2 GHz
CPU [9], while SIP [12] took 7.5 minutes on a quad-core Intel Core i7 3.5 GHz CPU. All set-ups used
single-core non-optimized Matlab code. Albeit slower than CKF-3IMU, L5S-3IMU and L5S-3IMU+D
could also be used to provide real-time gait parameter measurement to inform actuation of assistive or
rehabilitation robotic devices.

6.2. Hip and Knee Joint Angle RMSE and CC

The knee and hip joint angle RMSEs (no bias) and CCs of L5S-3IMU, L5S-3IMU+D, OSPS and
related literature for straight walking (i.e., per step evaluation) are shown in Table 6 [9,32–34]. Similar
to IMC based systems, L5S-3IMU and L5S-3IMU+D also follows the trend of having sagittal (Y axis)
joint angles similar to that captured by OMC systems (0.95 knee Y and > 0.83 hip Y CCs), but with
significant difference in frontal and transverse (X and Z axis) joint angles [9,32]. CKF-3IMU performed
slightly better (e.g., 0.03 knee Y, 0.09 hip Y CC), which is expected as the biomechanical constraint (i.e.,
no-knee-bending) assumption of CKF-3IMU was designed specifically for walking, at the cost of being
less accurate for other dynamic movements. Both L5S-3IMU and L5S-3IMU+D were comparable, and
at times even better (within 2.5◦ RMSE, 0.1 CC difference) than the results of Hu et al. and Tadano et al.,
indicating excellent per-step reconstruction in the sagittal plane [33,34]. Hu et al. used 4 IMUs (two at
the pelvis and one on each foot) and Tadano et al. used an OSPS configuration. Both systems can only
estimate the pose in the sagittal plane.

Despite the promising performance when using inter-IMU distance measurements, further
validation with actual hardware implementation is needed, as the sensor noise in the real world
may not necessarily follow a normal distribution and may be non-stationary. For reference, portable
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Table 6. Knee and hip angle RMSE no bias (top) and CC (bottom) of CKF-3IMU, OSPS, and related
literature for free walk.

Joint angle RMSE (◦) Knee sagittal Hip sagittal Hip frontal Hip transverse

L5S-3IMU 7.6± 2.6 6.6± 2.7 5.0± 2.6 8.6± 3.6
L5S-3IMU+D 7.1± 2.1 7.5± 2.1 5.1± 2.3 8.9± 3.7
OSPS 5.0± 1.8 3.6± 1.7 4.1± 2.2 11.9± 4.3
CKF-3IMU [9] 5.7± 2.2 4.4± 1.9 5.5± 2.6 9.0± 3.8
Cloete et al.[32] 8.5± 5.0 5.8± 3.8 7.3± 5.2 7.9± 4.9
Hu et al.[33] 4.9± 3.5 6.8± 3.0 - -
Tadano et al.[34] 10.1± 1.0 7.9± 1.0 - -

Joint angle CC Knee sagittal Hip sagittal Hip frontal Hip transverse

L5S-3IMU 0.95± 0.03 0.87± 0.16 0.76± 0.18 0.36± 0.36
L5S-3IMU+D 0.95± 0.03 0.83± 0.14 0.72± 0.19 0.29± 0.37
OSPS 0.97± 0.04 0.95± 0.06 0.72± 0.19 0.26± 0.20
CKF-3IMU [9] 0.98± 0.03 0.96± 0.08 0.73± 0.17 0.26± 0.39
Cloete et al.[32] 0.89± 0.15 0.94± 0.08 0.55± 0.40 0.54± 0.20
Hu et al.[33] 0.95± 0.04 0.97± 0.04 - -
Tadano et al.[34] 0.97± 0.02 0.98± 0.01 - -

ultrasound-based distance measurement can achieve millimetre accuracy with a sampling rate of 125
Hz [25], while a commercial UWB-based distance measurement devices can achieve ~10 cm accuracy
with a sampling rate of 200 Hz [35,36].

Lastly, despite L5S-3IMU and L5S-3IMU+D achieving 0.95 joint angle CCs in the sagittal plane,
the unbiased joint angle RMSE (> 5◦) makes its utility in clinical applications uncertain [37]. Although
the algorithm is expected to work on pathological gait where our biomechanical assumptions are
satisfied, overall performance still needs more improvement. To achieve clinical utility, one may either
use more accurate sensors or average out cycle-to-cycle variation in estimation errors over many gait
cycles; for example, use a more accurate distance measurement sensor (σdist < 0.1 m). The evaluation
of how these solutions can bridge the gap to clinical application for the proposed system will be part
of future work.

6.3. Spatiotemporal Gait Parameters

The focus of the proposed algorithms, L5S-3IMU and L5S-3IMU+D, are to estimate joint
kinematics. However, as L5S-3IMU and L5S-3IMU+D both track the global position of the ankles, it is
also capable of calculating spatiotemporal gait parameters (performance listed in Table 4). The TTD
deviation of our algorithms compared against the gold standard OMC were not as good as CKF-3IMU
[9] (3.6 - 3.81% TTD deviation) or other state-of-the-art dead reckoning algorithms [38,39] (0.2 - 1.5%
TTD deviation). Two possible sources of inaccuracy lies (1) in the dead reckoning approximation done
in the prediction step, and (2) in the assumption that the velocity of the shank IMU is zero when the
associated foot touches the floor, but of course this IMU continues to move with some small velocity
on the lower shank during the stance phase. To illustrate the dead reckoning approximation, let us
look at the predicted pelvis pose in Eq. (73). In our algorithm, we assumed ψp ≈ I3×3 (note that
Φ(−∆t pω̆k) ≈ I3×3 and R̃p+

k−1(R̆p
k )

T ≈ I3×3 since ∆t pω̆k is small) which did not significantly affect the
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joint kinematic estimate, but slightly affected the global position estimate. Nevertheless, body drift has
been reduced substantially compared to Marcard et al.’s SIP [12].

T̂ p–
k = T̃ p+

k−1 exp([

[
(R̆p

k )
T(∆t ṽmp+

k−1 + ∆t2

2 ăp
k )

∆t pω̆k

]
]∧)

=

[
R̃p+

k−1 exp([∆t pω̆k]
∧) p̃mp+

k−1 +

ψp ≈ I3×3︷ ︸︸ ︷
R̃p+

k−1Φ(−∆t pω̆k)(R̆p
k )

T(∆t ṽmp+
k−1 + ∆t2

2 ăp
k )

01×3 1

] (73)

6.4. Limitations and Future Work

L5S has similar pelvis drift, covariance matrix numerical issue, and flat floor limitation as
CKF-3IMU, which is expected as L5S implements the same measurement and constraint update
as CKF-3IMU, albeit formulated using Lie group representation instead of vectors and quaternions
[9]. The pelvis height and flat floor assumption helps prevent the pelvis and the ankles from drifting
towards each other (i.e., pelvis drift downward while ankles drift upward). However, it will also
prevent accurate pose estimation of motions such as sitting, lying down, or standing on one leg, where
the pose is maintained for a duration much longer than that of a typical gait cycle. The covariance
limiter (Sec. 3.2.2) helps prevent the covariance becoming badly conditioned (i.e., singular), especially
for longer duration trials (e.g., 5-minute walk) where the position uncertainty grows at a faster rate
for the pelvis position than the ankle position. As can be observed from Fig. 6, substituting the
pelvis height assumption with inter-IMU distance measurements can increase the algorithm’s accuracy
especially for tracking dynamic movements. If the distance measurement is accurate enough (i.e.,
smaller σ2

dist), the inter-IMU distance measurement update may be enough to limit the growth of pelvis
position uncertainly and possibly making the covariance limiter not needed.

Fig. 6 shows that the optimized performance of L5S-3IMU, even if it allows the tracked orientation
to be corrected by inter-IMU distance measurements and the tracked position estimate, was only
slightly better than CKF-3IMU/L5S-3I-NO, which effectively assumed the measurement input from the
orientation estimation algorithm to be perfect (i.e., trusted the tracked orientation less). As L5S-3IMU
requires more computing resources, such result suggests that CKF-3IMU may be more suitable to
use when computing power is limited. To fully leverage the advantages brought by the Lie group
representation, additional sensor measurements that can help correct tracked orientation will be
needed (e.g., estimating angle of arrival between two sensors [40] or using fish eye cameras to improve
pose estimate [41]).

Additional sensor measurements provide new opportunities for automatic calibration even under
RSC configuration. IMC systems typically need anthropometric measurements (i.e., measurement
of body segments such as dls) beforehand. By taking the initial distance measurement at some
predetermined posture, anthropometric measurements can be automatically inferred. The formulation
for a hinge joint with two IMUs on both sides has been leveraged to enable automatic sensor-to-segment
calibration (i.e., align sensor frame to body frame) and even a completely magnetometer free orientation
estimation [42,43]. Magnetometer free orientation estimation rids us of the yaw offset issue from an
inhomogeneous magnetic field in indoor environments, typically with stronger disturbances closer
to the floor [44]. An approach using a hinge joint with two IMUs may not be applicable to RSC
configurations (e.g., our algorithm only has one IMU on one side of the hinge joint). However, distance
measurements may be use to compensate for the missing IMU information from the uninstrumented
segment, and a modified version may be developed for a RSC configuration.

Enabling longer-term tracking of ADL in the subject’s natural environment may lead to
novel investigations of movement disorder progression and the identification of early intervention
opportunities. This work is just one of the early steps towards seamless remote gait monitoring.
Developing solutions to further increase accuracy, increase the number of body segments tracked (e.g.,
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track full body under RSC [12]), or use even fewer IMUs (tracking lower body using two IMUs [45])
will be investigated in the future.

7. Conclusions

This paper presented a Lie group CEKF-based algorithm (L5S-3IMU) to estimate lower limb
kinematics using a RSC configuration of IMUs, supplemented by inter-IMU distance measurements in
one implementation. The knee and hip joint angle RMSEs in the sagittal plane for straight walking
were 7.6± 2.6◦ and 6.6± 2.7◦, respectively, while the CCs were 0.95± 0.03 and 0.87± 0.16, respectively.
We also showed that inter-IMU distance measurement is a promising new source of information to
improve the pose estimation of IMC under a RSC configuration. Simulations show that performance
improved dramatically for dynamic movements even at higher noise levels (e.g., σdist = 0.2 m),
and that similar performance to L5S-3IMU was achieved at σdist = 0.1 m for free walk movements.
However, further validation is recommended with actual distance measurement from real sensors.
The source code for the L5S algorithm, supplementary material, and links to sample videos will be
made available at https://git.io/JTRQ3.
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Abbreviations

The following abbreviations are used in this manuscript:

OMC Optical Motion Capture
IMC Inertial Motion Capture
IMU Inertial Measurement Unit
OSPS One Sensor per Body Segment
RSC Reduced-Sensor-Count
KF Kalman Filter
CEKF Constrained Extended Kalman Filter
ADL Activities of Daily Living
TTD Total Travelled Distance
SOP Sparse Orientation Poser
SIP Sparse Inertial Poser

Appendix A Derivation of Pelvis-to-Ankle Distance Measurement

This section explains the derivation of the measurement pelvis-to-ankle vector (Eq. (46)) as
obtained from pelvis-to-ankle distance measurements, d̆pla

k and d̆pra
k , while assuming hinged knee

joints and constant body segment lengths. For the sake of brevity, only the left side formulation is
shown. The right side (i.e., pelvis to right ankle vector) can be calculated similarly.

First, we solve for an estimated left knee angle, θ̂lk
k (Eq. (47)), from the measured pelvis to left

ankle distance, d̆pla
k . The pelvis to left ankle vector, τ

pla
m (µ̂−k , θlk

k ) (Eq. (A6)), can be defined as the sum
of the mid-pelvis to hip, thigh long axis, and shank long axis vectors.

τpla(µ̂
−
k , θlk

k ) =

ψpla=half pelvis y-axis + shank z-axis︷ ︸︸ ︷
dp

2 T̂ p–
k iy − dls T̂ ls–

k iz +

thigh z-axis in shank frame︷ ︸︸ ︷
dlt T̂ ls–

k (ix sin (θlk
k )− iz cos (θlk

k )) (A1)
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By definition of (d̆pla
k )2 and expanding τ

pla
m (µ̂−k , θlk

k ) with Eq. (A1), we obtain

(d̆pla
k )2 = (τpla(µ̂

−
k , θlk

k ))
T τpla(µ̂

−
k , θlk

k )

= ψT
plaψpla − 2dltψT

pla T̂ ls– iz cos (θlk
k ) + 2dltψT

pla T̂ ls– ix sin (θlk
k ) + (dlt)2

(A2)

Eq. (A2) can be rearranged in the form of Eq. (A3) with α, β, γ as shown in Eq. (A4).

α cos (θlk
k ) + β sin (θlk

k ) = γ (A3)

α = −2dltψT
pla T̂ ls–

k iz, β = 2dltψT
pla T̂ ls–

k ix, γ = (d̆pla
k )2 −ψT

plaψpla − (dlt)2 (A4)

Solving for θ̂lk
k from Eq. (A3) gives us a quadratic equation with two solutions as shown in Eqs. (A5)

and (47). Between the two solutions, θ̂lk
k is set as the θ̂lk

k whose value is closer to the current left knee
angle estimate from the prediction step. This solution serves as a pseudomeasurement of the knee
angle.

θ̂lk
k = cos−1

(
αγ±β
√

α2+β2−γ2

α2+β2

)
(A5)

Finally, Zpla,k, the KF measurement shown in Eqs. (A6) and (46), is the inter-IMU vector between the
pelvis and left ankle, calculated using Eq. (A1) with input θ̂lk

k .

Zpla,k = τ
pla
m (µ̂−k , θ̂lk

k ) (A6)
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