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Abstract: Tracking the kinematics of human movement usually requires the use of equipment that
constrains the user within a room (e.g., optical motion capture systems), or requires the use of a
conspicuous body-worn measurement system (e.g., inertial measurement units (IMUs) attached
to each body segment). This paper presents a novel Lie group constrained extended Kalman
filter to estimate lower limb kinematics using IMU and inter-IMU distance measurements in a
reduced sensor count configuration. The algorithm iterates through the prediction (kinematic
equations), measurement (pelvis height assumption/inter-IMU distance measurements, zero velocity
update for feet/ankles, flat-floor assumption for feet/ankles, and covariance limiter), and constraint
update (formulation of hinged knee joints and ball-and-socket hip joints). The knee and hip
joint angle root-mean-square errors in the sagittal plane for straight walking were 7.6 = 2.6° and
6.6 £2.7°, respectively, while the correlation coefficients were 0.95 3= 0.03 and 0.87 4= 0.16, respectively.
Furthermore, experiments using simulated inter-IMU distance measurements show that performance
improved substantially for dynamic movements, even at large noise levels (¢ = 0.2 m). However,
further validation is recommended with actual distance measurement sensors, such as ultra-wideband
ranging sensors.

Keywords: Lie group; Constrained extended Kalman filter; Gait analysis; Motion capture; Pose
estimation; Wearable devices; IMU; Distance measurement

1. Introduction

Human pose estimation involves tracking the pose (i.e., position and orientation) of body
segments, from which joint angles can be calculated. Applications exist in robotics, virtual reality,
animation, and healthcare (e.g., gait analysis). Traditionally, human pose is captured within a laboratory
setting using optical motion capture (OMC) systems with up to millimeter position accuracy when
properly configured and calibrated. However, recent miniaturization of inertial measurements units
(IMUs) has paved the path toward inertial motion capture (IMC) systems suitable for prolonged use
outside of the laboratory. Furthermore, developing a comfortable IMC for routine daily use may
facilitate interactive rehabilitation [1,2], and allow the study of movement disorder progression to
enable predictive diagnostics.

Commercial IMCs attach one sensor per body segment (OSPS) [3], which may be considered too
cumbersome and expensive for routine daily use by a consumer due to the number of IMUs required.
Each IMU typically tracks the orientation of the attached body segment using an orientation estimation
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algorithm (e.g., [4,5]), which is then connected via linked kinematic chain, usually rooted at the pelvis.
A reduced-sensor-count (RSC) configuration, where IMUs are placed on a subset of body segments, can
improve user comfort, reduce setup time and system cost. However, using fewer wearable sensor units
necessarily reduces the kinematic information available, which must otherwise be inferred from (i)
our knowledge of human movement (e.g., enforcing mechanical joint constraints or making dynamic
balance assumptions), or (ii) by using additional sensing modalities within each wearable sensor unit.
Each approach will be described in the next subsections.

1.1. Leveraging Knowledge of Human Movement

RSC performance depends on how the algorithm (i) represents body pose and (ii) infers the
kinematic information of body segments which do not have sensor attached to them. The algorithm
may leverage our knowledge of human movement either through data obtained in the past (i.e.,
observed correlations between co-movement of different body segments) or by using a simplified
kinematic model of the human body. Data-driven approaches (e.g., nearest-neighbor search [6]
and bi-directional recurrent neural network [7]) are able to recreate realistic motion suitable for
animation-related applications. However, these approaches are normally biased toward motions
already contained in the database, which may limit their use in monitoring pathological gait.
Model-based approaches reconstruct body motion using kinematic and biomechanical models (e.g.,
linear regression [8], constrained Kalman filter (KF) [9], extended KF (EKF) [10], particle filter [11],
and window-based optimization [12]). Within model-based approaches, using optimization-based
estimators can be appealing due to its relative ease to setup and ease of understanding. However, it
can be very inefficient in higher dimensions (e.g., when tracking body pose over a wide time window).
When estimating the model state variables across time, a recursive estimator can take advantage of
the substructure and reduce the state dimension, making the estimator efficient and appropriate for
real-time use [13].

Traditionally, body poses have been represented using Euler angles or quaternions [10,11].
However, recent work on pose estimation has shown that using a Lie group to represent the states
of recursive estimator is a promising approach. Such algorithms typically represent the body pose
as a chain of linked segments using matrix Lie groups to represent the orientation or pose of each
body segment; specifically the special orthogonal group, SO(n), and special Euclidean group, SE(n),
where n = 2,3, are the spatial dimensions for humam body kinematics problems. Some early work in
the field ([14] and [15]) investigated representations and propagation of pose uncertainty, the former
in the context of manipulator kinematics and the latter focused on SE(3). This was followed by the
formulation of Lie group-based recursive estimators (e.g., EKF [16] and unscented KF (UKF) [17]).
Recently, Lie group based recursive estimators were used to solve the pose estimation problem. Cesic
et al. estimated pose from marker measurements and achieved significant improvements compared
to an Euler angle representation [18]; and even supplemented the approach with an observability
analysis [19]. Joukov et al. represented pose using SO(n) with measurements from IMUs under an
OSPS configuration. Results also improved because the Lie group representation is singularity free
[20].

1.2. Additional Sensor Measurements

Another approach is to supplement kinematic information from the IMU with another kind
of sensor, which inherently increases cost and reduces battery life. Note that we will focus on
systems that supplement pose estimation, not on the global position estimation of the subject (e.g.,
[21]). For example, IMCs can be supplemented with standard video cameras (e.g., fused using
an optimization-based algorithm [22], and deep neural networks [23]) or depth cameras [24] at
fixed locations in the capture environment, external to the subject. The combination of IMCs and
portable cameras solves a weakness of OMCs (i.e., marker or body segment occlusion) and a weakness
of IMCs (i.e., global position drift). However, the system still requires an external sensor that is
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carried by another person or requires some quick setup. IMCs can also be supplemented by distance
measurements (using ultrasonic devices and KF in OSPS configuration [25], using constrained KF in
RSC configuration [26]), removing dependence on any external non-body-worn sensor.

1.3. Novelty

This paper describes a novel human pose estimator that uses a Lie group representation,
propagated iteratively using a constrained EKF (CEKF) to estimate lower body kinematics for an RSC
configuration of IMUs and inter-IMU distance measurements; the Lie group framework and inclusion
of inter-IMU distance measurements, along with the exploration of its effect on pose estimation
accuracy, are the major advancements made in this paper. It extends the work of [27] and builds on prior
work of [9] and [26], but instead represents the state variables as elements of Lie groups, specifically
SE(3), to track both position and orientation (whereas [9] only tracks position and assumes orientation
measurements are noise-free). Furthermore, this paper describes a novel Lie group formulation for
assumptions specific to pose estimation, such as zero velocity update, and biomechanical constraints
(e.g., constant thigh length and a hinged knee joint). Note that this algorithm is different from [20]
in that the state (i.e., body pose) is represented as SE(3) instead of SO(n). While not our focus
here, this representation allows for tracking of the global position of the body, incorporating IMU
measurements in the prediction step, and a simpler implementation of measurement assumptions, at
the cost of requiring an additional constraint step to ensure biomechanical constraints are satisfied. The
design was motivated by the need for a better state variable representation which would potentially
more closely model the biomechanical system to infer the missing kinematic information from
uninstrumented body segments. The contributions of this paper advance the development of gait
assessment tools for comfortable and long-term monitoring of lower body movement.

2. Mathematical Background: Lie Group and Lie Algebra

The matrix Lie group G is a group of n x n matrices that is also a smooth manifold (e.g., SE(3)).
Group composition and inversion (i.e., matrix multiplication and inversion) are smooth operations.
The Lie algebra g represents a tangent space of a group at the identity element [28]. The elegance of
Lie theory lies in it being able to represent pose using a vector space (e.g., Lie group G is represented
by g) without additional constraints (e.g., without requiring R”R = I which is using a rotation matrix
representation of orientation, or || || = 1 which is using a quaternion representation of orientation)
[29].

The matrix exponential exp ¢ : g—G (Eq. (1)) and matrix logarithm log ¢ : G—g establish a local
diffeomorphism between the Lie group G and its Lie algebra g. The Lie algebra g is a n x n matrix that
can be represented compactly in an n-dimensional vector space. A linear isomorphism between g and
R" is given by operators [ ] : g—R" and [ ] : R"—g, which map between the compact and matrix
representation of the Lie algebra g. Fig. 1 shows an illustration of the said mappings. Furthermore, the
adjoint operator of a Lie group, Adg (X), the adjoint operator of a Lie algebra, adg (v), and the right
jacobian, ®¢ (v) (Eq. (2)), where X € G and [v]é € g will be used in later sections. Multiplying an
n-dimensional vector representation of a Lie algebra with Adg(X) € R"*" (i.e., the product Adg(X)v)
transforms the vector from one coordinate frame to another, similar to how rotation matrices transform
points from one frame to another. ad(v) is the Lie algebra of Adg(X). A summary of the operators for
Lie groups SO(3), SE(3), and R" will be explained in the next subsections. They will serve as building
blocks to implement the algorithm being described by this paper. For a more detailed introduction to
Lie groups refer to [13,29,30].

exp([o]g) = Toto 7 ([0]6)" (1)
P (v) =152 %adc(v)i ,0ER" (2)
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Figure 1. Overview of Lie group theory mappings. When G = SE(3), Lie group X = Tisa 4 x 4
transformation matrix representing pose (i.e., 3D rotation and translation). Similarly, v = ¢ where Lie
algebra [g] g\E(S) € se(3) and the vector ¢ € R" withn = 6.

2.1. Special Orthogonal Group SO(3)

The special orthogonal group, SO(3) := {R € R>*3}|RRT = 1,detR = 1}, represents orientation,
where R is the typical 3 x 3 rotation matrix whose column vectors represent the x, y, and z basis vectors.
The operations for SO(3) are listed below, and will serve as building blocks for SE(3), which will be
described in the next subsection. Note that [x] QO 3)Y is equivalent to the cross product of x and y. See

[13, Ch. 7] for details.

M " 0 —¢3 ¢ 0 —¢3 ¢ ! o}
[Pl50) = |¢2 =l ¢ 0 —¢1|, | ¢35 0 —¢y = || =¢ 3)
4)3 S0(3) _(PZ 4)1 0 _(PZ 4)1 0 S0(3) 4)3

If ¢ /|| represents a unit vector axis we wish to rotate around, and |¢| is the angle by which we wish
to rotate, then the rotation matrix, R, which will implement this rotation is given by Eq. (4), which is
also known as the Rodrigues’ axis-angle rotation formula. When ¢ is very small, R ~ I33 + [¢]5, 3)"

R=exp (19500 ) = cos (19 Taxa+ (1 —cos (p) & +sin (@) [$] . @

Furthermore, the Lie algebra adjoint, Lie group adjoint, and inverse operators are listed in Eq. (5).
adgso(s) (@) = [‘P]Qo(s) , Adgp3 (R)=R, R7'=R" ®)

Lastly, to approximate the compound rotations, RiRp, in the Lie algebra space where R; =
exp([¢1]g\o(3)) and R, = exp( [4)2]90(3)), we can use Eq. (6). The right Jacobian, ®503)(¢) € R3*3, is
obtained using Eq. (7).

[log(RiR2)] 403y = P1+ Psoes) (¢1) ' 2 € 50(3) (6)
_ sin(jg) _sin(lg]) ) 997 _ 1-cos(gl) [ ]" 33
Pso()(9) = Mgt e + (1-pP0 ) S L (8] e R @)

2.2. Special Euclidean Group, SE(3)

The special Euclidean group, SE(3) := {T = [(}{T ” € R¥4|{R,t} € SO(3) x R3}, represents
orientation and translation, where T is the typical 4 x 4 transformation matrix, R is the rotation matrix,

do0i:10.20944/preprints202011.0166.v1
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and t represents a coordinate point in Euclidean space. The operations for SE(3) are listed below. I;;
and 0;,; denote i x i identity and i x j zero matrices. See [13, Ch. 7] for details.

b9l o] 950w ]
[EY\ _ [P] _ [ 50(3) ], [ 50(3) ] ::[Pl ®)
SE(3) ¢ SE3) 01«3 O 01«3 O SE(3) o
A d _ R
T = exp([8]p5)) = exp(([)‘i’]io@)) so(3)1( Pp| _ o I ©)
_ |Blsop) [Plsog) [ R [pldopR] a0 [RT —R7p
adsg(3) (5)—[ 055 9o | Adgp(s) (T) = s R , T = 0y 1 (10)

Lastly, we note the useful identity defined in Eq. (11) where [a]5, 3y [b]g\E(3) € se(3) which is the
Lie algebra of the Lie Group SE(3) [13, Eq. (72)], which will be used to compute the Jacobians of our
model later.

_ A
[a]/S\E(?)) b= [b}SQE(:’)) a, where b = € , [b]® — 1713><3 [6}50(3) L e€ R3’ 1 c R (11)
Ul 0153 O1x3

2.3. Real Numbers R"

In order to represent vector state variables (e.g., translation, velocity, and acceleration) and be
consistent with how we used SE(3) to represent pose, we represented the real numbers s € R" as
SE(n) poses with position and no rotation. The operations for R" are listed below.

\Y
A Opxn s O0uxn s
S|mn = , =s 12
HR [len O‘| [len 0‘|]R” ( )
1 1 v 1
s =exp([slan) = | """ 7|, |log (| ° =s, o) = | 7" Tl (13)
015 1 O1x 1 Rr 015 1
aan (S) = Onxn, Ad]R” (S) = In><n/ ¢R” (S) = 0n><n (14)

Note that the multiplication of two elements of the Lie group (i.e., the exponential of s; and s5) is
equivalent to the vector addition of two elements of the Lie algebra (i.e., s1 + s).

[log (exp([s1)2) exp([saln)) I = 51 + 2 (15)
3. Algorithm Description

The proposed algorithm, L55-3IMU, uses a similar model and assumptions to our prior works
in [9] and [26], denoted as CKF-3IMU, albeit expressed in Lie group representation, to estimate the
orientation of the pelvis, thighs, and shanks with respect the world frame, W, using three IMUs
attached at the sacrum and shanks, just above the ankles, and inter-IMU distance measurements (Fig.
2). Using a Lie group representation enables the tracking of not just position but also of orientation
(note that CKF-3IMU only tracked position and assumed orientation measurements were noise-free).
Fig. 3 shows an overview of the proposed algorithm. L55-3IMU predicts the shank and pelvis positions
through double integration of their linear 3D acceleration (obtained after a pre-processing step of
IMU measurements), and predicts the shank and pelvis orientation through integration of their linear
3D angular velocity. Orientation is also further updated using a third party orientation estimation
algorithm. Positional drift due to sensor noise that accumulates in the double integration of acceleration
was mitigated through the following assumptions: (1) the ankle 3D velocity and height above the floor
are zeroed whenever a footstep is detected; (2) the pelvis position is approximated as the length of the
unbent leg(s) above the floor or as informed by inter-IMU distance measurements, when available.
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Furthermore, to contain the ever-growing error covariance for the pelvis and ankle global positions,
a pseudo-measurement equal to the current pose estimate with a fixed covariance is made. Lastly,
biomechanical constraints enforce constant body segment lengths; and hinged knee joints (one degree
of freedom (DOF)) with limited range of motion (ROM). The pre- and post-processing parts remain
exactly the same as the CKF-3IMU algorithm.

Symbol | Description
mp mid-pelvis
gravity -‘E Ih left hip
=] rh right hip
magnetic > Ik left knee
ngrth k= rk right knee
X g la left ankle
ra right ankle
world frame - p pelvis
W) d 21 1t | left thigh
] . .
L X g rt right thigh
%o Is left shank
<+ Dist M 7S right shank
H\f{; s oas - pla pelvis to left ankle
ensor 5 pra pelvis to right ankle
Ira left to right ankle

Figure 2. Model of the lower body used by LGKF-3IMU. The circles denote joint positions, the solid
lines denote instrumented body segments, whilst the dashed lines denote segments without IMUs
attached (i.e., thighs). Dotted lines denote inter-IMU measurements.

[Pre-processing| ~ " T T T T RIS =—=sso ot oo T T T T T T T T
| |
' @
! k[ Remove
: < Gravity
\ a;, [ Component
S )
CEKF !

Y Measurement !
e Update Constraint 1
[T o~ P - ~t 41
i M- | prediction | Mk [Ves | orientation, Pelv. Height { Hy Update Hi
\ > L /Dist. Meas., Cov. Lim, > 1
X Update ZUPT, Flat Floor Thigh Length .
+ -+ Hinged Knee Joint,

! Pk—l Pk Pk Knee Range of Motion !
1 > !
| 1
1 i - !
1 o !
\ Tl Py |
1 4 hl ~+ 1

Figure 3. Algorithm overview which consists of pre-processing, CEKF, and post-processing.
Pre-processing calculates the body segment orientation, inertial body acceleration, and step detection
from raw acceleration, d;, angular velocity, @y, and magnetic north heading, #j;, measured
by the IMU. The CEKF-based state estimation consists of a prediction (kinematic equation),
measurement (orientation, pelvis height/inter-IMU distance measurement, covariance limiter,
intermittent zero-velocity update, and flat-floor assumption), and constraint update (thigh length, hinge
knee joint, and knee range of motion). Post-processing calculates the left and right thigh orientations,
R!! and R

3.1. System, Measurement, and Constraint Models

The system, measurement, and constraint models are presented below

Xy = f(Xp—1,m5—1) = Xje—1 exp([QUXp—q, w1+ 1]¢) (16)
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Zi = h(Xy) exp([mi]¢), Dy = c(X) (17)

where k is the time step. X € G is the system state, an element of state Lie group G. Q (X, u;_) :
G—1RP is a non-linear function which describes how the model acts on the state and input, u;,_;,
where p is the number of dimensions of the compact vector representation for Lie algebra g. nj
is a zero-mean process noise vector with covariance matrix Q (i.e., ny ~ Ngp (Op «1, Q). Zy € Gy,
is the system measurement, an element of the measurement Lie group G,,. h(Xy) : G—Gy, is the
measurement function. my, is a zero-mean measurement noise vector with covariance matrix Ry (i.e.,
my ~ Ngy (qul, Ri) where g is the number of dimensions of available measurements). Dy € G, is
the constraint state, an element of constraint Lie group G¢. ¢ (Xi) : G—G, is the equality constraint
function the state X; must satisfy (i.e., ¢ (X;) = Dy). Similar to [18,31], the state distribution of X is
assumed to be a concentrated Gaussian distribution on Lie groups (i.e., Xj = py exps [e}é, where p is
the mean of X; and Lie algebra error € ~ Ny (Opxl, P)) [14].

The Lie group state variables X; model the position, orientation, and velocity
of the three instrumented body segments (i.e., pelvis and shanks) as X; =
diag(T?, T, T™, exp([[(0F)T ()T (v*)T]T]2,)) € G = SE(3)® x R where T' € SE(3) represents
the pose (i.e., orientation and position) of body segment b relative to world frame W, and 42" is the
velocity of body segment b relative to frame A. If frame A is not specified, assume reference to the
world frame, W. The Lie algebra error is denoted as € = [(ef)T (e§)T (e)T (eu")T (el)T (ef")T]T
where the first three variables correspond to the Lie group in SE(3) while the latter three
are for R%. []¥, exp([]), [log()]¢, Adg(Xy), and ®g( ) are constructed similarly as X (e.g.,
Adg(X) = diag(Adses (T'), Adge(s) (T), Adse (T), Adgs (exp([[(07)T (0)7 (07%)7)7]3))).
Refer to Sec. 2.2 and 2.3 for definition of SE(3) and R" operators.

3.2. Lie Group Constrained EKF (LG-CEKF)

The a priori, a posteriori, and constrained state estimate (i.e., estimated mean of Xj) for time step k
are denoted by i, fi;", and ﬁk+' respectively. Note that the true state X can be expressed as p exp([€]2)
where iy is one of the state means just mentioned with error, [€]3. The a priori and a posteriori error
covariance matrices are denoted as P,_ and P;", respectively. Note the error covariance is not updated
at the constrain update step. The KF is based on the Lie group EKEF, as defined in [31], where the state
means (A, f;", and fi;") and state error covariance matrices (P, and P;") are propagated by the KF at
each time step.

3.2.1. Prediction Step

Prediction step estimates the a priori state fi,~ at the next time step and may not necessarily respect
the kinematic constraints of the body, so joints may become dislocated after this step. The mean
propagation of the three instrumented body segments is governed by Eq. (18) where Q(fi; |, uy) (Egs.
(19)) is the motion model for the three instrumented body segments. The input uy, is defined in Eq.
(20), where the orientation and acceleration as obtained by the IMU attached to segment b with respect
world frame W are denoted as Iv{,l; and ﬁ}lé for b € {p,Is,rs}, while the angular velocity as obtained by
the IMU attached to segment b expressed in frame b is denoted as ? @,

A = i exp([Q(E,, m)le) (18)
- ~ 2 . - 2 .
Q@ w) = (A7 + 85 a)T R AtP@l  (Atal + 58 alf)TRE  Atlo]

N—— \—.,—/
1>§3 1x3 1x3 1x3 (19)

(AT + 88w )T R Aol (")t aran T AT’

N——
1x3 1x3 1x9

= [R} Rp Ry af af ap re, o, to (20)
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The state error covariance matrix propagation is governed by Eq. (21), where Fj represents
the matrix Lie group equivalent to the Jacobian of f(X_;,n;_1), Q is the covariance matrix of the
process noise, and ¢ = %Q(ﬁ,:l exp([€]2), ui)|e—o represents the linearization of the motion model
with an infinitesimal perturbation €. The process noise covariance matrix, Q, is calculated from the
input-to-state matrix G and the noise variances of the measured acceleration and angular velocity, o2
and 0'5,, respectively.

P = PPl Fl + 6 (Qfy, ur) QP (i, we))T (21)
Fe = Adoexpg (- [0 1)18) + Pe(Q,,w)6 @)
Q = Gdiag(c?,02)G" (23)
= a%muk Lexp([e] > uk>|e_o
| o T
(At(ﬁ;ﬂ+ +e”‘)+%ﬁk)TRZS‘At’ScD,f‘At(d,TP) ‘At(ﬁk“) ‘At(ﬁ,Z“)T‘] |e:o
‘At(R’“) 033 033
| 0343 033 033 (24)
033 AHRE)T 03,3
01818 !
6 = 0353 033 0353
| 03x3 O3x3  At(RE)T
o L O O 05
i 0927 ]
[ 82/213.5 033 03x3 1 03x3  O3x3 0343 |
033 033 033 :AtI3X3 03x3  03x3
0353 AP/2I3.3 0343 1 0343 O3x3 0343
Gg= 033 033 O3x3 | O3x3 Atlzz 0343 (25)
033 033 At2/213><3: 0353 03x3 0343
S Ox3 O3 033 03x3 O3xs Alaxs
i Atlgxg ‘ 099 |

3.2.2. Measurement Update

Measurement update estimates the state at the next time step by: (i) updating the orientation
state using new orientation measurements of body segments from IMUs; by (ii) encouraging pelvis
position to be above the feet, as informed by either some pseudo-measurement or inter-IMU distance
measurements; and by (iii) enforcing ankle velocity to reach zero, and the ankle z position to be
near the floor level, zy when step is detected. When only IMU measurements are available, (iia)
pelvis z position is encouraged to be close to initial standing height, z,. When inter-IMU distance
measurements are available, (iia) is not used. Instead, (iib) ankle distance is directly incorporated
while pelvis position is inferred from inter-IMU distance measurements assuming hinged knee joints
and constant body segment lengths. The a posteriori state mean #I,” is calculated following the Lie
EKF equations below. Note that [log(/(f; ) ' Zy)] ¢, in Eq. (27) is akin to the KF innovation/residual,
where h(fi; ) 7' Z (derived from Eq. (17) assuming my = 0 and X = fi, , i.e., Zy = h(fi, )) is the
innovation/residual in Lie group G, brought to the vector representation of the Lie algebra space
using the inverse exponential (i.e., logarithm) mapping.

:ﬁlj = i, expg([v ] ) (26)
= Ky ([log(h(; )~ 1Zk)]Gm) 27)
Kk = Pk Hk (HkPk Hk + Rk) (28)
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M) can be seen as the matrix Lie group equivalent to the Jacobian of 1(X), and is defined as the
concatenation of H,,; and H,,;, x when inter-IMU distance measurement is not available. When
inter-IMU distance measurement is available, H,,, x is replaced by H ;s x = [’H;l ok ’H; ok ’HlTr a,k} T,
Hjs x and/or H,,  are also concatenated to H; when the left and/or right foot contact (FC) is detected
(See [9, Eq. (9)]). Each component matrix will be described later. The measurement matrix Z; € Gy,
measurement function h(Xy) € G, and measurement covariance noise Ry are constructed similarly

to Hy, but combined using diag instead of concatenation (e.g., Ry = diag(c2,., cr,znp)).

\
Hi = & [10g () niag exp((€l2) ] le=o
(M5 Hz;zp/dz‘st]T no FC
e Mg Hi” left FC (29)
[Honi ,H;zp/dist HrTs,k] T right FC
(Hoi Hopraist sk Hyspl”  both FC

Orientation Update

The orientation update utilizes the orientation measurement to update the state estimate as
defined by Eq. (30), with measurement noise variance ”oZri (9 x 1 vector).

hori(X¢) = diag(R}, R, RY) € SO(3)?,  Z,,; = diag(R], R, R}?) (30)

H,ri along with other components of Hy are calculated by applying Eq. (29) to their corresponding
measurement functions, followed by tedious algebraic manipulation and first order linearization
(e, exp([e]") = I+ [€]"). The derivation for H,,; (Eq. (31)) can be solved trivially as
108 (ror (7)o (5 exp([e]2)))]Y = [(€5)T (€l)T (€13)T)T, where €} = [(€4)T (b)7]T for body
segment b € {p,Is,rs}.
033 I3x3 |
Hori = 033 I3x3 1099 (31)
03x3 I3x3

Pelvis Height Assumption

The pelvis height assumption softly constrains the pelvis z position to be close to initial standing
height z,, as defined by Eq. (32) (represented in vector space of its Lie algebra) and Eq. (33), with
measurement noise variance 0'%1;, (1 x 1 vector). This assumption is used only when inter-IMU distance
measurement is not available. iy, iy, iz, and iy denote 4 x 1 vectors whose 15 to 4" rows, respectively,
are 1, while the rest are 0; they are used below to select rows, columns, or elements from matrices.

0
TP, R; p;| |0 p
oty 00 = 10 = [0 0 1] | ¥ 216} oo o] 1] < e o
1
[log(Zm}g)]v =zp€R (33)

The derivation of H,,,; = %[log(hmp(ﬁk_)_lhmp(ﬁk_ exp([€]2)))]" |e=o is shown in Eqs. (34)-(36).
Taking best estimate X; = fi;~ gives us Eq. (34).

log(hy, (i ))]Y = iz T i (34)
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[log (T (A exp(le]g)))]Y = il T} exp([ef]")io
~ il Tz_io +il TZ_[ei]/\io, 1st order linearization
Use Eq. (11), [a]" b = [b]” a, to bring €]} to right of i
— [0y (7)) + T T i) €

(35)

Remember €} is a subvector of € as defined in Sec. 3.1 and is the Lie algebra error of the state
in its compact vector representation. Note that if measurement function h,(X;) € Lie group
RY, then [log(h, (7 ) Uy (X))]¥ = [log(h, (X)) — [log(lt, (7)) = Nlog(hy (5 exp([e]f)))]” —
[log(h, (4 ))]" by applying Egs. (15) and (13) (inverse of Lie group R"). Finally, H,,,,, s is calculated as
shown in Eq. (36).

108y ()~ iy (i, @xp([e]3))]Y o
% (108 (1 exp([e]g)))]” = o8y ()] leo 66
il TV [i0]® 01x6 O1x6 :01><9}

——
1x6

Hmp,k =

o &l

I
QY

Zero Velocity Update and Flat Floor Assumption

When step is detected, the ankle velocity is enforced to be zero and the ankle z position is brought
to near the floor level, z 5 (i.e., flat floor assumptions). The corresponding measurement function is
defined by Eq. (37), with measurement noise variance ‘les (4 x 1 vector).

[ vls
= Is
pz,k
The zero velocity part of H;; ;. (Eq. (38)) and H, . can also be calculated trivially, while the flat floor

assumption can be calculated similarly as H,,, x but the z position set to floor height, zy, instead of the
pelvis standing height, z,.

vls

[log(hls(xk))]v = lg T;csio

eRY, [log(Z,)]" = loz;] (37)

Hls,k = %[log(hls (ﬁki)ilhls@iki exp([e]é)))]v|€=0
52 ([og (s (A exp([e])]” — log (A )]Y) le=o

0356  03x6  03x6103x3 Isx3 0343
.T "l_ .
O1x6 iz TP [i0]® O1x6'01x3 O1x3 013

(38)

pose states in SE(3) velocity states
Left and Right Ankle Distance Measurement

When the inter-IMU distance between the ankles, dvf(m, is available, ankle distance measurement
is incorporated as a soft distance constraint. The measurement function is defined by Eq. (40), with
measurement noise variance ‘ler . (1 x 1vector). 7,,, (Xk) (Eq. (39)) is the vector that points from the
right ankle to the left ankle, where **p' is the position of the left ankle expressed in left shank frame,
and " p'® is the position of the right ankle expressed in right shank frame. We have chosen that the
ankles are at the origin of their respective shank frames. Note that matrix E converts homogeneous
4 x 1 coordinates to standard 3 x 1 coordinates (i.e., drops the 1 from the end of the 4 x 1 vector).

origin of frame
E leftanklein W right ankle in W ,i/_\

Is Is l; m Is la 7S 1a T
sz(Xk)=[Iax3 03><1}( g "p" — TP ), Pt ="p =[000 1] (39)
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By taking the squared Euclidean distance of 7,,,(Xx) (i.e., || 7,,,(Xk)||*), we can get the ankle distance
measurement model.

[log(hlm(xk))]v = (Tlm(xk))T Tlm(Xk) €R, [log(zlm)}v = (d“;(m)z (40)

To solve for H,, i (Eq. (44)), we first solved for [log(h,,,(Xk))]" at X = @, (Eq. (41)).

T () = E(TE Bp! = T p), [log(hyye ()] = (T (B0))T T () (41)

Then solve for 7,,, (4, exp([e]2)) and [log(h,,,(#; exp([e]2)))]" as shown in Eqgs. (42) and (43).

T (i exp([e]@)) = (T exp((eg]) *p — T exp([eX]") *p™)
Take the 1st order approximation
~ E(T?_ lspla _ rj—v’;;s— rspm [ zlg]/\ lspla Trs—[ rs]/\ rspm) (42)
rlm

T ) +E(TE[Pp"]” e — T [°p]” €F),  Using Eq. (11)
[10g (o (A exp(EJN]Y = (Tia () + Tira) " (T (A7) + Tira)
Assume 2nd order error ~ 0
= T ()" T () +2 T () T +w (43)
= [log (7, ()]
+27,, () TE( T [Fp)” ef — T [Pp™ ] €F)
a%[log(hlm(ﬁ ) hlm(ﬂk exp([ ] )))] |e:0
3 ([log(hy,, (A exp([e]$)))]” = Mog(hyy, (A )]Y) le=o
& (2 () TE(HE () € = TE 11 €6)) leco (4
= 0106 27, () TETE[p]° " 27, (1 TE T[] 01 |

1x6 1x6

Pelvis-to-Ankle Distance Measurement

In addition to the soft ankle distance constraint, the ankle to pelvis vector is inferred from the
ankle to pelvis distance measurements while assuming hinged knee joints and constant body segment
lengths. The measurement function is defined by Eq. (45), with measurement noise variance 0'pl ., Bx1
vector), where P p""? is the position of the mid-pelvis expressed in pelvis frame, and *p'® is the position
of the left ankle expressed in left shank frame. We have chosen that the mid-pelvis and ankle are at the
origin of their corresponding reference frames.

mid-pelvisin W left ankle in W
——— —

T
log(h,;, (X)) = E( T} Pp™ — Tp"p' )eR?, Ppmr =lplt = [0 00 1] (45)

The measurement pelvis to left ankle vector can be calculated from the measured pelvis to left ankle
distance, dvfla as shown in Eq. (46) which is the Lie Group reformulation of [26, Eq. 4]. In essence, Eq.
(47) calculates the most probably knee angle assuming hinged knee joint and constant body segment
lengths, then Eq. (46) adds the thigh (expressed in shank coordinate system with knee angle é;ck) and
shank long axis to the hips to obtain the pelvis-to-ankle vector. See Appendix A for derivation. There
are two solutions for é,l(k due to the inverse cosine in Eq. (47). We chose the éf(k value as that closer to

the current left knee angle estimate from the prediction step. Note that this measurement function

do0i:10.20944/preprints202011.0166.v1
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could also be formulated as a linearized Euclidean distance between the pelvis and ankle (i.e., similar
to Eq. 44); however, a preliminary exploration of this approach showed poorer performance.

$pia=half pelvis y-axis + shank z-axis thigh z-axis in shank frame
log(Z,, )1 = & T i, —d" T;;— i, +d" T (i, sin (61F) — i, cos (01F)) € R® (46)
It ls— i It ls— i
Alk o051 a’y:l:ﬁ\/m = —2d lpplu Ty ’ o B=2d Ipplu Ty ’ Ly,
O = R where plaso " 47)
Y= (dk ) - tppla‘ppla - (d )

To calculate for Hj, ¢, we first solved for [log(f,, (Xi))]Y at Xy = - similar to Eq. (41).

og (T, ()] = Ty ) = E(TY Pp™? — T p) (48)

Then solve for [log(h,,;, (f; exp( [e]&)))]Y similar to Eq. (42) (i.e., distance between mid-pelvis and left

ankle) giving us [log(h,,;, (f; exp([e]2))]Y = Tyt () + Tpia- Hpiax is then calculated as shown in

Eq. (49). The right side of the pelvis-to-ankle distance measurement (i.e., /1y, (ﬁk_ ) Zpra, ’Hpm,k) can be
solved similarly to the left side.

lea,k = [log(hpla( ) 1hpla(ﬁk_ exp([e]é)))]v|€:0

(1og Ut exp((el&)))]” — [og (i N ) e

(Tplu (ﬁk_) + rpla - Tpla (ﬁk_)) |e:0 (49)
( plu) |e 0=£ (E(Tp [ppmp] e _ Tls [lspla](D ls)) |€:0

E k_[Pme]Q‘_Ej‘ﬂ;{s—[lspla](a‘01><6‘01><9]

1x6 1x6

flo &l &l

e

|
QY

Covariance Limiter

Lastly, the error covariance of the position estimates of the three instrumented body segments
must be prevented from growing unbounded and/or becoming badly conditioned, as will occur
naturally when tracking global position of objects without any global position reference. At this step,
a pseudo-measurement equal to the current state i, is used (implemented by Eq. (50)) with some

measurement noise of variance ¢;,, (9 x 1 vector). The covariance P} is then calculated through Eqs.
(51)-(53).

mp pos. la pos. ra pos.
A~ PN PN ‘
I3x3 033 |
Hiim = I3.3 033 1099 (50)
I3.3 033 !
Hy = "] H]1T, R, = diag( ) (51)
k k liml 7 k= diag ‘Tk/ ‘lem
K =P H (P H + R (52)
Pl = @ (v) (1 K H) P O (v) " (53)

3.2.3. Satisfying Biomechanical Constraints

After the preceding updates, the joint positions or angles may be beyond their allowed range
(i.e., knee hyperflexion). The constraint update corrects the kinematic state estimates to satisfy the
biomechanical constraints of the human body by projecting the current a posteriori state estimate fi;"
onto the constraint surface, guided by our uncertainty in each state variable, which is encoded by
P,". The following biomechanical constraint equations are enforced: (i) estimated thigh long axis

do0i:10.20944/preprints202011.0166.v1
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vector lengths equal the thigh lengths; (ii) both knees act as hinge joints (formulation similar to [11,
Sec. 2.3 Egs. (4)]); and (iii) the knee joint angle is within realistic range. The constraint functions are
similar to [9, Sec. II-E.3] but expressed under SE(3) state variables. The constrained state ﬁ; can be
calculated using the equations below, similar to the measurement update of [31] with zero noise, where
Cr = [CLT,k C ng] T. Cp x is the concatenation of Cyy , Cji k, and Ci, x; the last matrix is not concatenated
when the knee angle, ay;, is within its allowed range (i.e., Kpfemin < A < Dqk,mux). Cltl,k/ Clkh,kr and Clkr,k
corresponds to the biomechanical constraint for the left thigh length (It]), left knee hinged joint (Ikh),
and left knee angle ROM (lkr), respectively, which will be described more later. Cg x can be derived
similarly, while Dy and c(fi;")) are constructed similarly to Z;.

Ay = eXP([Vk]/\) (54)

v = Ki([log(c(i) "Dy ¢, (55)

K, =P cl(crpich)™) (56)

Cr = a-llog(c(f) (i exp([e])))]E, le=o0 (57)

Thigh Length Constraint

Firstly, the thigh length constraint is shown in Eq. (59), where let(Xk) (Eq. (58)) denotes the thigh
long axis vector and d* denotes the measured thigh length during calibration. ? p'” is the position of
the left hip expressed in pelvis frame, and *p/¥ is the position of the left knee expressed in left shank
frame. We have chosen that the left hip to be % to the left of the mid-pelvis origin, and the left knee to
be d'* from the left shank origin (i.e., from the left ankle).

hip jt. pos. in W kneejt. pos. in W

—— T T
Tét(xk) _ E( TP pplh _ Tl lsplk ), Pplh — {0 % 0 1} , lsplk _ [0 0 dls 1] (58)
log (e (Xi)]” = (2 (X)) T2(Xe) € R, [log(Dyy)]" = (") (59)

Cipi i is calculated using Eq. (60).

Cune = e llog (e (AF) " e (B exp([e]))]]e=o (60)
= 5% (llog ey (A exp([e])))]" — llog ey ())]Y) le=o
Following similar procedure to H,,, s, we obtain T/ (" exp([ 18)) = T( k+) +rltz (similar to Eq. (42)),
and [log(cy (7 exp([€2)))” — Nog(ei (3 DIY + 202 (37 ) TE( b ¢ PP el — T [Ppi)e ek)
(similar to Eq. (43)), which if we substitute in Eq. (60) gives us Eq. (61)
Cing = 2 (274 (@0)TECTY Pp™) €f — T3 9™ €f) ) leo
(61)

= |2 @) TE T Pp™) 2 (a))TE TP 016 010 |
1x6 1x6

Hinge Knee Joint Constraint

Secondly, the hinge knee joint constraint as defined by Eq. (62) is enforced by having the long (z)
axis of the thigh to be perpendicular to the mediolateral axis (y) of the shank. For example, on the left
leg, we would want rlys be perpendicular to the thigh long axis vector T/ (ﬁ]j) (i.e., the dot product of
Is and T/ () should be 0). Refer to Fig. 2 for visualization. This formulation is similar to [11, Sec.

y
2.3 Egs. (4)].

[log (cy (X)) = (BT"iy)T o (X¢) = (r))" ¥ (Xe) € R, [log(Dyy,)]Y =0 (62)

do0i:10.20944/preprints202011.0166.v1
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Following similar procedure to Cpx and taking X, = f;, [log(cy,(#))]Y and
[log(c e, (A7 exp([€]2)))]Y can be calculated as shown in Egs. (63) and (64), respectively.
[log(clkh(ﬁl—:))}v = (BT < (a]) (63)
[log ey (4 exp([e]6)))]Y = (E T exp([ef]")iy) " (T (A]) + Lisz)
Taking 1st order approximation of exp
~ (B(T* + T[] )iy) T (TE () + Tiee)
Assume 2nd order error ~ 0
(64)

= (BT el () + (B i) T

TR+ DT

)
= [log ey ()] + (BT i )TE( T ["p™)® ef— T [*p']° ef)
+ (i 1 )'E T'5+[i,]® €%, by expanding I'j;, and using Eq. (11)

Cikn k can be calculated using Eq. (65).

F exp(le]g))]Y]e=o
eI = llog ey, (AENTY) le=0

Substituting Eqgs. (63) and (64) into Eq. (65) gives us Eq. (66).

C
Tkhk (65)

log (e, () ey (R
]

?
~ e
= 2 ([log(cyy, (A7 exp(le

Cikng = [ (E Tls+iy)TE o+ [pplh]@ : -(E Tls+iy)TE Tls+[lsplk]® + (let(ﬁ;'))TE Tls+[iy]® : 01x15 } (66)

1x6 1x6

Knee Range of Motion Constraint

Thirdly, the knee ROM constraint is defined by Eq. (69) and is only enforced if the knee angle,
ajg, is outside the allowed ROM. The bounded knee angle, «}, is calculated by Eq. (67). Eq. (69) is
obtained by expanding Eq. (67) to Eq. (68) which when rearranged gives us [log(c;, (Xk))]" (i.e., Lie
group representation of [9, Eq. (26)]). Note that "*r! is the normalized thigh long axis expressed in the
left shank frame.

l T lt
/ .
agp = tan” ( E IZ§T lt) + 5, ag = min g e, Max (kg min, Xk) ) (67)
il sin(ufk—%) (68)
- r” r’s COS(Dé;kfg)

Is It r; =long axis of left thigh in shank frame

[log ey, (Xi))]¥ = (ET™ (iz cos(ay — §) — ixsin(a, — 5)))" ¥(Xc) € R,  [log(Dy,)]Y =0 (69)

Following a similar procedure to Cjyx (ie., replace iy in Eq. (64) with lsrét) and
taking Xy = A, Cyx can be calculated from e (A exp([€]d)) = [log(cy, ()Y +
(E Tls+ lsrét)TE( lei7+ [pplh](a e};_ Tis+[lsplk]® els) ( (:uk ))TE Tils+ [ls lt}@ e!lgl as shown in Eq. (70).

[log ey () ™ ey (A exp([€]G)))] Y=o

= ([log (e (" exp([e])))]Y — [log ey (B)]) le=o

(E Tls+ lsrlzt)TE Tr+ [pplh]ca (E Tls+1s lt) E T's+ [ls lk] (let (ﬁ]:r))TE Tls+ [lsrét]Q : 01415 ]
1x6 1x6 (70)

Cikr =

&l %J\QJ

— QY
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3.3. Post-Processing
The orientation of the pelvis and shanks are obtained from the state fij.  The
orientation of the left thigh, R'"*, can be calculated using R'™* = [#7 x #* | G i) =

[ [E Tl iﬂ@o@) i (ETE* i) 7 ], where 7 = T (ii)/|| (i} )||. The orientation of the right thigh,

R, is calculated similarly.

4. Experiment

An extension of the dataset from [9] was used to evaluate our L5S based algorithms. It involved
movements listed in Table 1 (including dynamic movements) from nine healthy subjects (7 men and
2 women, weight 63.0 & 6.8 kg, height 1.70 & 0.06 m, age 24.6 £ 3.9 years old), with no known gait
abnormalities. Raw data were captured using a commercial IMC (i.e., Xsens Awinda) with IMUs
attached to the pelvis and ankles, compared against a benchmark OMC (i.e., Vicon Plug-in Gait) within
an -4 x 4 m? capture area. The experiment was approved by the Human Research Ethics Board of the
University of New South Wales (UNSW) with approval number HC180413.

Table 1. Types of movements done in the validation experiment.

Movement Description Duration  Group
Walk Walk straight and return ~30s F
Figure-of-eight ~Walk along figure-of-eight path ~ 60's F
Zig-zag Walk along zig-zag path ~60s F
5-minute walk  Unscripted walk and stand ~300s F
Speedskater Speedskater on the spot ~30s D
TUG Timed up-and-go test ~30s D
Jog Jog straight and return ~30s D
Jumping jacks  Jumping jacks on the spot ~30s D
High-kneejog  High-knee jog on the spot ~30s D

F denotes free walk, D denotes dynamic movements

Frame alignment and yaw offset calibrations are similar to [9, Sec. III-B]. The algorithm and
calculations were implemented using Matlab 2020a. The initial position, orientation, and velocity (fi] )
were obtained from the Vicon benchmark system. Par was set to 0.5Ip727. The variance parameters
used to generate the process and measurement error covariance matrix Q and ‘R are shown in Table 2.

Table 2. Parameters for error covariance matrices, Q@ and R.

Q Parameters ‘R Parameters
0'% 03, o'gn- zrfnp 0'125 and a%s 0%1 and 0'§r 0% A ‘TIZim
m2s%  (rad®s?) | (rad?) (m?) (m%s 2and m?) (m?) m?)  (m?)
10%14 10314 119 0.1 [0.0113 107 10 1 10148

where 1, is an 1 X n row vector with all elements equal to 1.

The inter-IMU distance measurements, d?/%, V"%, and d'"?, were simulated by calculating the
distance from the mid-pelvis to the left and right ankles and adding normally distributed positional
noise with different standard deviations (i.e., oy;; € {0,0.01,...,0.1,0.15,0.2} m). Each trial was
simulated five times.

Lastly, the evaluation was done using the following metrics: (1) Mean position and orientation
root-mean-square error (RMSE) (e.g., similar to [9,12] as shown in Egs. (71) and (72)), where pllz and RZ
are obtained from the benchmark OMC system, ﬁ]lf and R,L:’ are obtained from the algorithm. Note
that as the global position of the estimate is still prone to drift due to the absence of an external global
position reference, the root position of our system was set equal to that of the benchmark system
(i.e., the mid-pelvis is placed at the origin in the world frame for all RMSE calculations). (2) joint
angles RMSE with bias removed (i.e., the mean difference between the angles over each entire trial
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was subtracted) and correlation coefficient (CC) of the hip in the sagittal (Y), frontal (X),and transverse
(Z) planes and of the knee in the sagittal (Y) plane. Note that these joint angles are commonly used
parameters in gait analysis. (3) Spatiotemporal gait parameters (e.g., total travelled distance (TTD)
deviation, average stride length, and gait speed of the foot). Refer to [9, Sec. III] for more details.

eposk = N Loene || PL— PLtIl, Npos =6, DP = {Ih,rh, Ik, rk,la, ra} (71)
Corik = N Loeno ||[log(RE(RY) TV, Now =2, DO = {it,rt} (72)

5. Results

5.1. Mean Position and Orientation RMSE, Joint Angle RMSE and CC

In this experiment, multiple variations of the algorithm were tested as shown in Table 3. Firstly,
L55-3IMU is the algorithm described in this paper (Sec. 3) with parameters listed in Table 2. The
parameter for L5S-3IMU were selected by taking the best joint CC (i.e., mean of free walk and
dynamic movements) from a grid search of parameters ¢, = {1,10,10%,10%} rad?/s? and ¢2,;, =
{1072,1071,1,10} rad?. Secondly, CKF-3IMU and CKF-3IMU+D were the algorithms described in
[9] and [26], respectively. Thirdly, CKF-3I-KB is a modified CKF-3IMU using similar parameters,
measurement, and constraint functions as L5S-3IMU. The key difference between CKF-3IMU and
CKF-3I-KB is that CKF-3I-KB allows knee bending, denoted by the suffix KB, during the constraint
update. Fourthly, L5S-3I-NO is a variation of L5S-3IMU with ¢2, = 107 rad?/s?, ¢2,. = 107! rad?,
and @, = 0 rad. The parameters were chosen to have high uncertainty on the tracked orientation
(i.e., effectively not using the orientation measurements at all), leading to a variation of L5S-3IMU that
is similar to our prior work CKF-3IMU which assumed orientation measurements were noise-free.
Lastly, the black box output (i.e., pelvis, thigh, and shank orientations) from the MVN Studio software
(denoted as OSPS), which illustrates the performance of a widely-accepted commercial wearable IMC
system with an OSPS configuration. For the first to fourth variations, the +D suffix means simulated

inter-IMU distance measurements (0;5; = 0.1 m) was used instead of the pelvis height assumption.

Table 3. The experiment was tested on the following algorithm variations.

. Inter-IMU o
Algorithm distance Summary description
L55-3IMU N Tracks position and orientation as described in Sec. 3 with parameters
L55-3IMU+D Y listed in Table 2.
CKF-3IMU [9] N . . .
CKE-3IMU+D [26] Y Only tracks position using a constrained KF.
CKF-3I-KB N Modified CKF-3IMU using similar parameters as L5S-3IMU (Table 2).
CKF-3I-KB+D Y Also allows knee bending during the constraint update.
L55-3I-NO N L55-3IMU with parameters that assume noise-free orientation (NO)
L55-3I-NO+D Y measurements like CKF-3IMU.
OSPS N Output from a commercial OSPS wearable IMC system.

Fig. 4 shows the mean position and orientation RMSE, mean knee Y and hip joint angle RMSE
(bias removed) and CC of different variations of CKF-3IMU and L5S-3IMU for both free walking
and dynamic motions. Y, X, and Z refers to the sagittal, frontal, and transverse planes, respectively.
CKF-3IMU performed well with free walking (epos = 4.27 cm, e,,; = 15.85°, CC = 0.66) [9]. However,
a more extensive evaluation showed that it performed poorly for certain dynamic movements (e.g.,
high-knee jog with ejos = 18.15 cm, e,,; = 24.87°, CC = 0.02). Removing the no-knee-bending
assumption during the constraint update fixed this issue, as shown by the performance of CKF-3I-KB
(e.g., high-knee jog improved by .9 cm epos, ~9° €4yi, ~0.4 CC). L5S-3I-NO which is the L5S version of
CKF-3IMU expectedly have similar performance with CKF-3I-KB (i.e., Aepos < 0.5 cm, Ae,,; < 1°, and


https://doi.org/10.20944/preprints202011.0166.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2020 d0i:10.20944/preprints202011.0166.v1

17 of 26

ACC 0.02 differences). L55-3IMU, which tracked both position and orientation while assuming there is
noise in the orientation measurements, had a slightly better performance (e.g., improved jumping jacks
and high-knee jog by 0.1 CC, < 0.03 CC difference with other movement types). The use of simulated
distance measurement with oy;5; = 0.1 m on CKF-3I-KB, L55-3I-NO, and L55-3IMU had slight effects
for free walking, and a significant improvement for dynamic movements. For free walking, joint angle
RMSE and CC of L5S-3IMU+D compared to L5S-3IMU improved by .1° and < 0.01 CC, while epos
and e,,; slightly disimproved (< 0.5 cm and < 1°). The similar results suggest that inferring pelvis
position from simulated distance measurement (0y;;; = 0.1 m) is comparable to our pelvis height
assumption at least for free walking. For dynamic movements, the ey, €4, joint angle RMSE, and CC
of L55-3IMU+D improved by 2-16 cm, 0-40°, 1-9°, and < 0.42, respectively; more significantly for
movements TUG and high-knee jog.

N
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[ nDHD L55-3IMU CKF-3IMU EZB8 CKF-3I-KB L55-3I-NO [ OSPS

Jomnt Angle

RMSE (°)
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TUG High-knee jog 3 Free walk Speedskater Jog Jumping jacks TUG High-knee jog

(a) Mean position and orientation RMSE (b) Joint angle RMSE and CC

u 1)
Free walk Speedskater

Figure 4. The performance of CKF, L5S, and OSPS with and without using inter-IMU distance
measurements at each motion type.

To give insight on how the accuracy of the simulated inter-IMU distance measurements affect pose
estimation performance, Fig. 5 shows the mean of knee Y and hip joint angle RMSE and CC at different
04ist values. At 0y, = 0.1 m, the simulation showed comparable performance between L55-3IMU,
which implements pelvis height assumption, and L55-3IMU+D, which implements inter-IMU distance
measurement to supplement the pelvis position estimate, for free walking. Significant improvement
for dynamic movements can be seen even for oy, = 0.2 m. These results suggest that the actual
distance measurement sensor must have noise standard deviation o;; < 0.1 m to improve pose
estimate performance. Note that the +D variation in Fig. 4 and in the experiments that follow were
evaluated at 04;5; = 0.1 m.
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Figure 5. Joint angle RMSE (top) and CC (bottom) of free walk and dynamic movements at different
noise level 0;5;. The broken lines represent L55-3IMU results (denoted as nD) where inter-IMU distance
measurements were not used. The solid lines represent L55-3IMU+D results (denoted as +D) where we
can observe slight and great improvements for free walk and dynamic movements, respectively.
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5.2. Hip and Knee Joint Angle RMSE and CC

Fig. 4 shows the knee and hip joint angle RMSE (bias removed) and CC of L55-3IMU and
L55-3IMU+D compared against the OMC output. Y, X, and Z refers to the sagittal, frontal, and
transverse planes, respectively. Turning movements and half steps were manually removed from the
per-step result of Walk movement and was denoted as Straight Walk. Note that sensor-to-body
calibration was only done at the beginning of trial, not for each step. Between L55-3IMU and
L55-3IMU+D, there was minimal hip and knee joint angle RMSE and CC improvement for free
walking (~1° RMSE and -0.03 CC difference). However, there was significant improvement for most
dynamic movements, specifically, speed-skater, jog, high-knee jog, and TUG (e.g., 4 — 17° knee Y and
hip Y joint angle RMSE improvements). Furthermore, the CC for dynamic movements started to reach
similar performance with the free walk movement, indicating that inter-IMU distance measurements
have indeed made the pose estimator capable of tracking more ADLs and not just walking.

32 [ nDH+D L55-3IMU knee Y hip Y EZBA hip X hip Z
= 28 L
Z 2
5 20
]
b
s
£ 4
=0
1.0
9 .
Jos ]
@ %
0.6 : 7 K
zZ 3 8
- 0.4 ool 4 ]
E ki . BN
202 $ ™ T i
0. i i BN

ki ] VAREAIHN
Jumping jacks High-knee jog  Straight Walk
Per Trial Per Step

Figure 6. The CC of knee (Y) and hip (Y, X, Z) joint angles for L5S-3IMU (denoted as nD) and
L55-3IMU+D (denoted as +D) at each motion type.

Fig. 7 shows a sample Walk trial. At the peaks of knee Y angle, the distance between the pelvis
and ankle positions of L5S-3IMU+D were a few cm shorter (i.e., pelvis position was lower than actual
while ankle position was higher) than the actual distance resulting in higher knee Y angle peaks.
Violations of our biomechanical constraints are also apparent at t = 4 to 5.5 s, where the subject makes
a 180° turn. After the turn, L5S-3IMU and L5S-3IMU+D were able to recover during the straight
walking (t = 5.5 t0 9.74 s of Fig. 7). Notice that the bias between OSPS and OMC can be observed at
t = 0 of the hip Y joint angle.

5.3. Spatiotemporal Gait Parameters

Table 4 shows the TTD, stride length, and gait speed accuracy computed from the global ankle
position estimate of L55-3IMU, L5S-3IMU+D, and the OMC system for free walk, jogging, and TUG.
The use of inter-IMU distance measurements (0;;;; = 0.1 m) helped improve the TTD, stride length,
and gait speed accuracy of free walk and TUG (e.g., TTD improved from ..9% to ~5%). Refer to the
code repository for links to videos of sample trials.

6. Discussion

In this paper, a Lie group EKF algorithm for lower body pose estimation using only three IMUs,
ergonomically placed on the ankles and sacrum to facilitate continuous recording outside the laboratory,
was described and evaluated. The algorithm utilizes fewer sensors than other approaches reported in
the literature, at the cost of reduced accuracy.
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B

1 2 3 4 5 [ 7 8 9
—— L55-3IMU —-- L55-3IMU+D -+ OSPS —--- OMC Time (s)

Figure 7. Knee (Y) and hip (Y, X, Z) joint angle output of L55-3IMU in comparison with the benchmark
system (Vicon) for a Walk trial. The subject walked straight from t = 0 to 3 s, turned 180° around from
t = 3 to 5.5 s, and walked straight to the original starting point from 5.5 s until the end.

Table 4. Total travelled distance (TTD) deviation from optical motion capture (OMC) system at the

ankles.
o, ITD Stride length (cm) Gait speed (cm.s™1)
T Error Actual Error Actual Error
Algo. P 9% dev u  med uto RMS u  med uto RMS
Freewalk L 897% 91 99 —-81+6 99 70 74 —-60£5 77
L5S-3IMU R 9.00% 93 99 —-83+6 103 71 75 —62+5 82
Freewalk L 523% 91 99 —47+7 83 70 74 -3.6L£6 6.6
L5S-3IMU+D R 585% 93 99 —54+8 94 71 75 —41+6 74
Jog L 2135% 81 86 —-1744+23 285 107 118 —192+33 380
L5S-3IMU R 2679% 8 97 229425 338 111 124 —264+34 431
Jog L 2240% 81 86 —-182+22 284 107 118 —-21.6+£30 37.0
L5S-3IMU+D R 2670% 8 97 —2284+24 328 111 124 275431 414
TUG L 1820% 74 76 —135+18 221 58 60 —-10.0+15 18.0
L5S-3IMU R 2098% 79 90 —-16.6+15 225 63 67 —1314+13 184
TUG L 3.80% 74 76 —28+6 67 58 60 —23£5 59
L5S-3IMU+D R 422% 79 90 —33+6 6.8 63 67 —27+5 56

where y and ¢ denote mean and standard deviation. Error denotes estimate minus actual value, while
TTD % dev denotes abs(error)/actual TTD.
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6.1. Mean Position and Orientation RMSE

The mean position and orientation RMSE of L55-3IMU, L55-3IMU+D, and related literature
(sparse orientation poser (SOP) and sparse inertial poser (SIP) [12]) are listed in Table 5. SOP used
orientation measured by IMUs and biomechanical constraints, while SIP used similar information
but with the addition of acceleration. Both SOP and SIP were benchmarked against an OSPS system
tracking the full body while our algorithm was benchmarked against an OMC system tracking only
the lower body. The epos and e,,; (no bias) performance of L55-3IMU and compared to SOP for free
walking and jogging were comparable (Aepos0.1 — 0.5 cm and Ae,,;2.5 — 3° differences). The ejos and
eori (no bias) of SIP was better than L55-3IMU and L55-3IMU+D for free walking (~2.1 — 2.5 cm and
6.5 — 7° difference). Although this improvement was expected, as SIP optimizes the pose over multiple
frames whereas our algorithm, like CKF-3IMU, optimizes the pose for each individual frame. For
jumping jacks, the e,,; of L55-3IMU and L55-3IMU+D was significantly (.4 — 8°) better than SOP’s
and SIP’s. However, this difference is probably because both SOP and SIP were evaluated on the full
body (our algorithm was only evaluated on the lower body) and errors in arm pose estimation may
have increased e,,; for the SOP and SIP algorithms.

Table 5. Mean position and orientation RMSE of L55-3IMU, L5S-3IMU+D, OSPS, Sparse orientation
power (SOP) and Sparse inertial poser (SIP) [12].

epos (cm) €,ri, NO bias (cm)
Free walk  Jog Jumping jacks | Free walk  Jog Jumping jacks
L5S-31 51+12 73+14 87%£16 175£27° 202+£38° 12.8+4.0°
L58-3I+D | 55£10 62+11 49409 18.0+£2.5° 1744+32° 126+£32°
OSPS 54+15 56+12 55£16 129+4.0° 103+£18° 7.6+£3.3°
SOP [12] ~5.0 ~8.0 ~8.0 ~15.0° ~22.0° ~20.0°
SIP [12] ~3.0 5.0 ~4.0 ~11.0° ~16.0° ~16.0°

Comparing processing times, L55-3IMU and L5S-3IMU+D were slower than CKF-3IMU, but can
still be used in real-time; specifically, CKF-3IMU, L55-3IMU, and L55-3IMU+D processed a 1,000-frame
sequence (i.e., 10 seconds long) in 0.7, .2, .3.5 seconds, respectively, on an Intel Core i5-6500 3.2 GHz
CPU [9], while SIP [12] took 7.5 minutes on a quad-core Intel Core i7 3.5 GHz CPU. All set-ups used
single-core non-optimized Matlab code. Albeit slower than CKF-3IMU, L55-3IMU and L5S-3IMU+D
could also be used to provide real-time gait parameter measurement to inform actuation of assistive or
rehabilitation robotic devices.

6.2. Hip and Knee Joint Angle RMSE and CC

The knee and hip joint angle RMSEs (no bias) and CCs of L55-3IMU, L5S-3IMU+D, OSPS and
related literature for straight walking (i.e., per step evaluation) are shown in Table 6 [9,32-34]. Similar
to IMC based systems, L5S-3IMU and L5S-3IMU+D also follows the trend of having sagittal (Y axis)
joint angles similar to that captured by OMC systems (0.95 knee Y and > 0.83 hip Y CCs), but with
significant difference in frontal and transverse (X and Z axis) joint angles [9,32]. CKF-3IMU performed
slightly better (e.g., 0.03 knee Y, 0.09 hip Y CC), which is expected as the biomechanical constraint (i.e.,
no-knee-bending) assumption of CKF-3IMU was designed specifically for walking, at the cost of being
less accurate for other dynamic movements. Both L55-3IMU and L5S-3IMU+D were comparable, and
at times even better (within 2.5° RMSE, 0.1 CC difference) than the results of Hu et al. and Tadano et al.,
indicating excellent per-step reconstruction in the sagittal plane [33,34]. Hu et al. used 4 IMUs (two at
the pelvis and one on each foot) and Tadano et al. used an OSPS configuration. Both systems can only
estimate the pose in the sagittal plane.

Despite the promising performance when using inter-IMU distance measurements, further
validation with actual hardware implementation is needed, as the sensor noise in the real world
may not necessarily follow a normal distribution and may be non-stationary. For reference, portable
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Table 6. Knee and hip angle RMSE no bias (top) and CC (bottom) of CKF-3IMU, OSPS, and related
literature for free walk.

Joint angle RMSE (°) Knee sagittal ~Hip sagittal Hip frontal Hip transverse
L5S-3IMU 76+2.6 6.6+2.7 50+2.6 8.61+3.6
L5S-3IMU+D 71+£21 75+£21 51+23 8.9+37
OSPS 50+1.8 3.6+1.7 41+£22 11.9+43
CKF-3IMU [9] 57+22 44+£19 55126 9.0+3.8
Cloete et al.[32] 85+£5.0 58+38 73+£52 79+49
Hu et al.[33] 49435 6.8+3.0 - -

Tadano et al.[34] 10.14+1.0 79+£1.0 - -

Joint angle CC Knee sagittal ~Hip sagittal Hip frontal Hip transverse
L5S-3IMU 095+0.03 087+0.16 0.76+0.18 0.36 £0.36
L55-3IMU+D 095+0.03 0.83+0.14 0.72+0.19 0.29 +0.37
OSPS 097+0.04 095+£0.06 0.72+0.19 0.26 £0.20
CKF-3IMU [9] 0.98+£0.03 096+0.08 0.73+0.17 0.26 £0.39
Cloete et al.[32] 0.89+£0.15 0944008 0.55£0.40 0.544+0.20
Hu et al.[33] 0.95+0.04 0.97+£0.04 - -

Tadano et al.[34] 0.97+£0.02 098+0.01 - -

ultrasound-based distance measurement can achieve millimetre accuracy with a sampling rate of 125
Hz [25], while a commercial UWB-based distance measurement devices can achieve ..10 cm accuracy
with a sampling rate of 200 Hz [35,36].

Lastly, despite L5S-3IMU and L55-3IMU+D achieving 0.95 joint angle CCs in the sagittal plane,
the unbiased joint angle RMSE (> 5°) makes its utility in clinical applications uncertain [37]. Although
the algorithm is expected to work on pathological gait where our biomechanical assumptions are
satisfied, overall performance still needs more improvement. To achieve clinical utility, one may either
use more accurate sensors or average out cycle-to-cycle variation in estimation errors over many gait
cycles; for example, use a more accurate distance measurement sensor (0;; < 0.1 m). The evaluation
of how these solutions can bridge the gap to clinical application for the proposed system will be part
of future work.

6.3. Spatiotemporal Gait Parameters

The focus of the proposed algorithms, L5S-3IMU and L5S-3IMU+D, are to estimate joint
kinematics. However, as L55-3IMU and L5S-3IMU+D both track the global position of the ankles, it is
also capable of calculating spatiotemporal gait parameters (performance listed in Table 4). The TTD
deviation of our algorithms compared against the gold standard OMC were not as good as CKF-3IMU
[9] (3.6 - 3.81% TTD deviation) or other state-of-the-art dead reckoning algorithms [38,39] (0.2 - 1.5%
TTD deviation). Two possible sources of inaccuracy lies (1) in the dead reckoning approximation done
in the prediction step, and (2) in the assumption that the velocity of the shank IMU is zero when the
associated foot touches the floor, but of course this IMU continues to move with some small velocity
on the lower shank during the stance phase. To illustrate the dead reckoning approximation, let us
look at the predicted pelvis pose in Eq. (73). In our algorithm, we assumed ¢, ~ I35 (note that
D (-AtPw,) =~ I3x3 and R,’fil (R,f)T ~ I3 3 since At @, is small) which did not significantly affect the
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joint kinematic estimate, but slightly affected the global position estimate. Nevertheless, body drift has
been reduced substantially compared to Marcard et al.’s SIP [12].

o - 2
(RDT(At5"] + AF al) "

p- _ P+
Ty =T exp(] Atkf’a})k
1/)(7 ~ I3x3 (73)
~p+ . ~Mp+ =P+ . > ~mp+ 2
R exp([AtPa ) gty + RET, @ (-AtPa, ) (RD)T(At5,7] + A &)
01x3 1

6.4. Limitations and Future Work

L5S has similar pelvis drift, covariance matrix numerical issue, and flat floor limitation as
CKF-3IMU, which is expected as L5S implements the same measurement and constraint update
as CKF-3IMU, albeit formulated using Lie group representation instead of vectors and quaternions
[9]. The pelvis height and flat floor assumption helps prevent the pelvis and the ankles from drifting
towards each other (i.e., pelvis drift downward while ankles drift upward). However, it will also
prevent accurate pose estimation of motions such as sitting, lying down, or standing on one leg, where
the pose is maintained for a duration much longer than that of a typical gait cycle. The covariance
limiter (Sec. 3.2.2) helps prevent the covariance becoming badly conditioned (i.e., singular), especially
for longer duration trials (e.g., 5-minute walk) where the position uncertainty grows at a faster rate
for the pelvis position than the ankle position. As can be observed from Fig. 6, substituting the
pelvis height assumption with inter-IMU distance measurements can increase the algorithm’s accuracy
especially for tracking dynamic movements. If the distance measurement is accurate enough (i.e.,
smaller 2. ), the inter-IMU distance measurement update may be enough to limit the growth of pelvis
position uncertainly and possibly making the covariance limiter not needed.

Fig. 6 shows that the optimized performance of L55-3IMU, even if it allows the tracked orientation
to be corrected by inter-IMU distance measurements and the tracked position estimate, was only
slightly better than CKF-3IMU /L55-3I-NO, which effectively assumed the measurement input from the
orientation estimation algorithm to be perfect (i.e., trusted the tracked orientation less). As L5S5-3IMU
requires more computing resources, such result suggests that CKF-3IMU may be more suitable to
use when computing power is limited. To fully leverage the advantages brought by the Lie group
representation, additional sensor measurements that can help correct tracked orientation will be
needed (e.g., estimating angle of arrival between two sensors [40] or using fish eye cameras to improve
pose estimate [41]).

Additional sensor measurements provide new opportunities for automatic calibration even under
RSC configuration. IMC systems typically need anthropometric measurements (i.e., measurement
of body segments such as d”) beforehand. By taking the initial distance measurement at some
predetermined posture, anthropometric measurements can be automatically inferred. The formulation
for a hinge joint with two IMUs on both sides has been leveraged to enable automatic sensor-to-segment
calibration (i.e., align sensor frame to body frame) and even a completely magnetometer free orientation
estimation [42,43]. Magnetometer free orientation estimation rids us of the yaw offset issue from an
inhomogeneous magnetic field in indoor environments, typically with stronger disturbances closer
to the floor [44]. An approach using a hinge joint with two IMUs may not be applicable to RSC
configurations (e.g., our algorithm only has one IMU on one side of the hinge joint). However, distance
measurements may be use to compensate for the missing IMU information from the uninstrumented
segment, and a modified version may be developed for a RSC configuration.

Enabling longer-term tracking of ADL in the subject’s natural environment may lead to
novel investigations of movement disorder progression and the identification of early intervention
opportunities. This work is just one of the early steps towards seamless remote gait monitoring.
Developing solutions to further increase accuracy, increase the number of body segments tracked (e.g.,
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track full body under RSC [12]), or use even fewer IMUs (tracking lower body using two IMUs [45])
will be investigated in the future.

7. Conclusions

This paper presented a Lie group CEKF-based algorithm (L5S-3IMU) to estimate lower limb
kinematics using a RSC configuration of IMUs, supplemented by inter-IMU distance measurements in
one implementation. The knee and hip joint angle RMSEs in the sagittal plane for straight walking
were 7.6 = 2.6° and 6.6 &= 2.7°, respectively, while the CCs were 0.95 £ 0.03 and 0.87 £ 0.16, respectively.
We also showed that inter-IMU distance measurement is a promising new source of information to
improve the pose estimation of IMC under a RSC configuration. Simulations show that performance
improved dramatically for dynamic movements even at higher noise levels (e.g., 05 = 0.2 m),
and that similar performance to L55-3IMU was achieved at 0;;; = 0.1 m for free walk movements.
However, further validation is recommended with actual distance measurement from real sensors.
The source code for the L5S algorithm, supplementary material, and links to sample videos will be
made available at https://git.io/JTRQ3.
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Abbreviations

The following abbreviations are used in this manuscript:

OMC  Optical Motion Capture

IMC  Inertial Motion Capture

IMU Inertial Measurement Unit
OSPS  One Sensor per Body Segment
RSC Reduced-Sensor-Count

KF Kalman Filter

CEKF Constrained Extended Kalman Filter
ADL  Activities of Daily Living

TTD Total Travelled Distance

SOP Sparse Orientation Poser

SIP Sparse Inertial Poser

Appendix A Derivation of Pelvis-to-Ankle Distance Measurement

This section explains the derivation of the measurement pelvis-to-ankle vector (Eq. (46)) as
obtained from pelvis-to-ankle distance measurements, dv,flu and dv,fm, while assuming hinged knee
joints and constant body segment lengths. For the sake of brevity, only the left side formulation is
shown. The right side (i.e., pelvis to right ankle vector) can be calculated similarly.

First, we solve for an estimated left knee angle, ég{k (Eq. (47)), from the measured pelvis to left
ankle distance, dfl”. The pelvis to left ankle vector, T,’;f “ (A 9,l<k ) (Eq. (A6)), can be defined as the sum
of the mid-pelvis to hip, thigh long axis, and shank long axis vectors.

1,=half pelvis y-axis + shank z-axis thigh z-axis in shank frame

Ty, 0F) = ST i —dS T i, d" T (i sin () — i, cos (6))) (A1)
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By definition of (dfla)2 and expanding Tf,’f ‘ (e, 9}(]‘ ) with Eq. (A1), we obtain
! A ”
(df H)Z = (Tpla (I”k ’, Gllck))T Tpla (:uk 7 gllck) (AZ)
= ’:b;la’/’pla - 201“1/);1‘Z T i, cos (G}Ck) + Zdlttp;a T i sin (9,1(") + (d")?
Eq. (A2) can be rearranged in the form of Eq. (A3) with «, B, v as shown in Eq. (A4).
Ik : lky _
acos (6 )+ Bsin (6;) = (A3)
Als— . Als— . 1

a==2d") T i, Bp=2d"y), T iy, v =(d]") — ¥t — (@) (A4)

Solving for éfck from Eq. (A3) gives us a quadratic equation with two solutions as shown in Egs. (A5)
and (47). Between the two solutions, éf(k is set as the éik whose value is closer to the current left knee
angle estimate from the prediction step. This solution serves as a pseudomeasurement of the knee
angle.

0k = cos! (miﬁ Y “2+ﬁ272) (A5)

a2+p2

Finally, Z,, , the KF measurement shown in Eqs. (A6) and (46), is the inter-IMU vector between the
pelvis and left ankle, calculated using Eq. (A1) with input éik .

la ~— Alk
Zplu,k = T1]171 (Fk ’ Gk ) (A6)
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