A peer-reviewed article of this preprint also exists.
Abstract
This paper deals with the characteristics of the cyclone separator from the Lagrangian perspective to design important dependent variables, develops a neural network model for predicting the separation performance parameter, and compares the predictive performance between the traditional surrogate model and the neural network model. In order to design the important parameters of the cyclone separator based on the particle separation theory, the force acting until the particles are separated was calculated using the Lagrangian-based CFD methodology. As a result, it was proved that the centrifugal force and drag acting on the critical diameter having a separation efficiency of 50% were similar, and the particle separation phenomenon in the cyclone occurred from the critical diameter, and it was set as an important dependent variable. For developing a critical diameter prediction model based on machine learning and multiple regression methods, Unsteady-RANS analyzes according to shape dimensions were performed. The input design variables for predicting the critical diameter were selected as four geometry parameters that affect the turbulent flow inside the cyclone. As a result of comparing the model prediction performances, the ML model showed the 32.5 % of improvement rate of R2 compared to the traditional MLR considering the nonlinear relationship between the cyclone design variable and the critical diameter. The proposed techniques have proven to be fast and practical tools for cyclone design.
Keywords:
Subject:
Engineering - Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.