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Abstract: In automated manufacturing systems, most of the manufacturing processes including
machining are automated. Automatic tool change is one of the important parameters for reducing
manufacturing lead time. Ceramic cutting tools are used to machine hard materials. Ti[C,N] mixed
alumina ceramic cutting tools are widely used to machine hardened steel and Stainless Steel due to
its superior mechanical properties. Martensitic stainless steel has wide applications in screws, bolts,
nuts and other engineering applications. Machining studies on Martensitic Stainless Steel was
conducted using Ti[C,N] mixed alumina ceramic cutting tool. Tool life was evaluated using flank
wear criterion. The tool life obtained from experimental machining process was taken as training
dataset and test dataset for machine learning. Using the dataset obtained from experimental
machining tool life model has been developed using Gradient Descent algorithm. The model was
validated using co-efficient of determination. The accuracy of the machine learning model was
tested using the test data and 99.83% accuracy was obtained. Tool life model based on Gradient
Descent Algorithm was successfully implemented for the tool life of Ti|C,N] mixed alumina ceramic
cutting tool. Keywords: keyword 1; keyword 2; keyword 3 (List three to ten pertinent keywords
specific to the article; yet reasonably common within the subject discipline.)

1. Introduction

Alumina based ceramic cutting tools have unique chemical and mechanical properties and these
tools can offer increased metal removal rates, extended tool life and the ability to machine hard
workpiece materials like hardened steel and stainless steel. The ceramic cutting tools can reduce the
cost of machining and increase the productivity because of their high material removal rates [1].
Alumina based ceramic cutting tools are capable of machining various types of hard materials due to
the improved cutting tool properties such as fracture toughness, thermal shock resistance, hardness
and wear resistance. The advantages of using ceramic cutting tools are that, the hard materials like
hardened steels, stainless steels and hard powder metal materials with complex shapes can be
machined in their hardened conditions. The grinding quality surface finish can be obtained by
turning the hard work materials using ceramic cutting tools.

The properties of Aluminium oxide are enhanced by the addition of titanium carbide (TiC) in
the alumina matrix which increases the transverse rupture strength, thermal shock resistance of the
composite tool. The titanium nitride (TiN) is also used as a secondary ceramic phase because of its
superior thermal conductivity. By adding these non-oxide particles like TiC and TiN in the alumina
matrix, the thermal conductivity, the thermal shock resistance and the hardness are increased. These
composite ceramic cutting tools retain their hardness even at elevated temperature. In the Ti[C, N]
mixed alumina composite ceramic cutting tool, the TiC, TiN grains pin the crack initiated in the
matrix [2]. The toughening mechanism for this type of mixed ceramic cutting tools is known as
precipitate or dispersion strengthening. Mixed alumina based ceramic tools are fabricated by hot
pressing, which involve mixing of fine grained alumina with 20 -30 % volume of TiC and TiN
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powders. These ceramic cutting tools are generally used for machining of hardened steels because of
their increased hardness.

Martensitic Stainless steels are iron alloys with a minimum of 11.5% chromium. In addition to
iron, carbon, and chromium, stainless steel may also contain other elements, such as nickel, niobium,
molybdenum, and titanium. The chromium content in stainless steel enhances the corrosion
resistance. Martensitic stainless steels are magnetic, contains higher carbon content than the ferritic
types. They are hardenable by quenching and tempering like plain carbon steels and find their main
application in cutlery, surgical tools, aerospace and general engineering. Ronald Klueh and Donald
Harries (2001) have reported that advanced ferritic/martensitic stainless steel is used in thermal
power plants, nuclear power plants and in other demanding environments for its high temperature
properties, and high creep

rupture strength [3]. Grade ASTM A276 is the basic martensitic stainless steel, and like most
non-stainless steels it can be hardened by a "quench-and-temper" heat treatment. In the annealed or
highly tempered conditions grade ASTM A276 machined without much difficulty, but if hardened
to above 30 HRC machining becomes very difficult. Stainless steel grade ASTM A276 is used for parts
requiring a combination of good strength, toughness and reasonable corrosion resistance and typical
applications include bolts, nuts, screws, bushings, pump and valve parts, shafts, steam turbine parts,
gas turbine parts, petrochemical equipment, mine equipment etc. In this present work, the tool life of
Ti [C,N] mixed alumina based ceramic cutting tools is evaluated on machining hardened martensitic
stainless steel — grade ASTM A276.

2. Literature Review

Tool life and tool wear prediction have been attempted by many researchers using various tools
and machine learning algorithms. Artificial Neural Network has been widely used to predict tool
wear and tool life. Mikolajczyka et al used Artificial Neural Network (ANN) and trained them using
the data subset obtained from actual machining and a predicted data subset obtained from image
recognition. The trained ANN is used to evaluate the tool life in turning operations of a third test set
[4]. Gouarir et.al used sensors to continuously monitor and measure the flank wear and adaptive
control (AC) along with Convolutional Neural Networks (CNN)was used to predict tool wear [5].
Xuefeng Wu et.al used Artificial Neural Network (ANN) to monitor the tool wear from the tool wear
data obtained through cameras. A Convolutional Automatic Encoder (CAE) is used to train the
neural network with data obtained from the camera. Backpropagation and stochastic gradient
descent are performed to obtain average recognition precision rate of 96.20% [6]. Apart from Artificial
Neural Network, the researchers used Support Vector Machines, Logistic Regression, Random Forest
algorithms to predict tool wear and tool life. Jaydeep Karandikar et.al used Support Vector Machines
and Logistic Regression methods to predict the tool wear characteristics of a given tool and to model
the tool life [7]. Schwenzer et.al used Support Vector Machine (SVM) and random forest algorithms
on datasets obtained from orthogonal cutting in milling. They are used to classify the tool as “sharp’
or ‘dull” with the help of force and current signals obtained from sensors [8]. Yang Hui et.al used
Support Vector Machine (SVM) algorithm to extract the features from the vibration signals are sensed
from a milling tool. The stacked generalization (SG) ensemble model based on SVM, decision tree
(DT), Naive Bayes (NB) algorithms are used to recognize the tool wear state of the milling tool [9].
Benjamin Neef et.al used Support Vector Machine (SVM) and random forest ensemble (RSE)
algorithms to analyse the high frequency current samples of a CNC turning machine terminal to
estimate of the tool wear. Experimental studies are conducted and the accuracy of the machine
learning model is noted. An online continuous tool wear monitoring system is proposed for easy tool
wear monitoring [10]. Dazhong Wu used Cloud computing, Industrial Internet of Things (IloT) and
machine learning to estimate the tool wear characteristics of a cutting tool. Random forests (RF)
algorithm was used alongside MapReduce data processing scheme and the training time is reduced
by 14.7 times along with a high prediction accuracy [11]. In addition to machine learning algorithms,
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signal and image processing were also used to predict toll wear. Giovanna Mart ez et.al used signal
imaging to encode the images of the tool at specified timesteps and fed to a pre-made deep learning
package for classifying the tool wear as break-in wear, steady wear, severe wear and failure region
[12]. Bovic Kilundua et.al measured vibration signals on the toolholder and pseudo-local singular
spectrum analysis is done to extract the features that are essential for the quality of the tool and is
monitored continuously [13]. Even though the researchers attempted various machine learning
algorithms, few has attempted linear algorithms. Most of them used classification for predicting the
status of the tool. Linear algorithms are simple, but powerful tools for modelling. Gradient Descent
algorithm is one of the linear algorithms widely used in various types of modelling. An attempt has
been made to predict tool life using Gradient Descent algorithm by training them using the data
obtained from machining hardened and tempered martensitic stainless steel — grade ASTM A276 by
Ti [C,N] mixed alumina based ceramic cutting tool.

3. Materials and Methods
3.1. Cutting tool inserts

Machining tests were carried out using Ti [C,N] mixed alumina ceramic cutting tool inserts on a
precision lathe with variable spindle speeds and feeds. The specifications of the cutting tool inserts
are presented in Tablel.

Table 1. Details of cutting tool inserts specifications

Insert specification Rhombic Rhombic inscribed . Nose
Shape ) . Thickness .
(ISO) nose angle circle diameter radius
CNGN
Rh i 2 12.7 4.7 .
12 04 08 T01020 ombic 80 mm 6 mm 0.8 mm

3.2. Work materials

The work material used in these machining studies was martensitic stainless (ASTM A276.) steel
and was hardened and tempered to HRC 42. Machining studies were conducted on them. The
composition of the stainless steel (ASTM A276) is given in table 2.

Table 2. Composition of Stainless steel - ASTM A276 grade by weight percentage

Elements C Si Mn Cr Ni P S Fe
Weight Percentage 0.09-0.15 1.0 1.0 11.5-13.5 1.0 0.04 0.03 Balance

3.3. Experimental Conditions

Machining studies were conducted on hardened martensitic stainless steel- grade ASTM A276
using Ti [C,N] mixed alumina based ceramic cutting tool at different cutting speeds and at constant
feed rate and depth of cut. Experimental conditions are shown in Table 3.

Table 3. Experimental conditions

Cutting speed (v) m/min. 100-300
Feed rate (f) mm/rev. 0.12
Depth of cut (d) mm. 0.5

Environment Dry
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3.4. Observations on tool wear and tool life

The main objective of the present study is to evaluate the tool life of Ti [C,N] mixed ceramic
cutting tools on machining ASTM A276 steel (HRC 42) by measuring tool wear. The wear
measurements were taken using a toolmakers microscope (Metzer-model METZ 1395) with 30X
magnification factor. The machining time was accurately measured with a stopwatch. Flank wear is
one of the main types of wear generally occur while machining hard materials. The machining was
stopped periodically to measure flank wear of the cutting tool. The tool life of the cutting tool is
considered as per ‘ISO Standard 3685 for tool life testing” and it is the machining time of the cutting
tool when the average flank wear reaches 0.4 mm. The tool life of the Ti [C,N] mixed ceramic cutting
tool is found out by observing the flank wear of the cutting tool at various cutting speeds.

3.5. Observations on tool wear and tool life

Tool life model has been developed using Gradient Descent algorithm. Gradient descent
algorithm minimizes an objective function and iterates several time to minimize error. The algorithm
updates the model after each iteration and finally converges into local minima. The learning rate is
used to specify the number of steps required to reach the local minima. The machining data obtained
from turning operation was used to train the model. The trained model was used to predict tool life.
The tool life of Ti [C,N] mixed ceramic cutting tool on machining ASTM A276 steel were found out.
Using the tool life data, tool life models were developed using Gradient Descent Algorithm. For
comparison, regression model for tool life has also been developed using least square method.

4. Results and Discussion

Machine Learning algorithms learn from the data and predict the output without human
intervention. There are several types of machine learning algorithms and linear algorithms are used
where the input parameters and output variables exhibit a linear relationship. The aim of the linear
algorithm is to find the best-fit model by training the algorithm with given input parameters. The
linear algorithms try to minimize the error of prediction find the appropriate model which has
minimum errors. Gradient descent is one of the linear algorithms which uses minimization technique.
The Gradient Descent algorithm trains the machine learning model and iterates a number of times
until it converges into a local minima. Tool life prediction plays an important role in the machines
that are connected to Automated Manufacturing System (AMS). Tool/ insert changes should
happen at predicted times. So, tool life prediction is an important process in automated systems and
the machine learning algorithms play vital role in automation. Using the experimental machining
data, the tool life model was developed using Gradient Descent Algorithm. In addition to the
machine learning model, tool life model using conventional least square method was also developed
for comparison. Machining studies carried out and experimental data of the life and cutting speed

plotted in Figurel.
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Figure 1. Cutting Speed vs. Tool life of Ti [C,N] mixed ceramic cutting insert
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3.4. Tool Life Model using Gradient Descent Algorithm

Tool life model using Gradient Descent Algorithm was developed and basically this algorithm
works well, if the dependent variables and independent variables have a linear relationship. The
machine learning model using Gradient Descent Algorithm is developed using Taylors’s equation
VTr = constant. This is equation can be slightly modified to have linear relationship.

v =C (1)
By taking logrithm,
log V+nlog T=log C (2)
By rearranging,
log T=(1/n) log C—(1/n) log V (3)

where V - cutting speed in m/min; T - tool life in minutes; C & n - constants

The above equation can be rewritten in the form of y = a+ bx, which represents the logarithmic
linear relationship between cutting speed and tool life. The tool life found out from the experimental
machining studies are used to develop the tool life models. Using Gradient Descent algorithm, the
tool life model developed and the constants of the models were found out.

The Gradient Descent algorithm iterates and finds out best possible model with minimum error.
Using the data the algorithm trains to predict the output variable, and the input independent variable
‘x” and the output dependent variable ‘y’ are tabulated in Table 4. From the dataset given in the table,
the machine learning model using Gradient Descent algorithm was developed. Even though dataset

Table 4. Machining Dataset of input variable ‘x” and the output variable ‘y’

S.No  Input variable ‘x’ Output variable ‘y’
1. 2 1.41664051
2. 2.07918125 1.38021124
3. 2.14612804 1.31175386
4. 2.20411998 1.27415785
5. 2.25527251 1.24303805
6. 2.34242268 1.19865709
7. 2.38021124 1.17026172
8. 2.41497335 1.13987909
9. 2.44715803 1.11058971
10. 2.47712125 1.08635983

contains less variables, it is the sample tool life model and similar larger number of industrial datasets
can be used to develop tool life model with same accuracy. The model is trained using Gradient
Descent algorithm and for every iteration Root Mean Square Error was found out. The number of
iterations is more as the dataset is smaller and it needed more training time. The Root Mean Square
Error (RMSE) vs. No. of Iterations is depicted in Figure 2. The machine learning algorithm iterations
were carried out with a learning rate of 0.1. The local minima was converged at 60280t iteration. As
the number of iterations was more, the learning rate of the machine learning algorithm was increased
to 0.2 and 0.3. The convergence point of the local minima was observed and it was plotted in
Figure 3. For the same dataset tool life model was developed using Least square method.
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Figure 3. No. of iterations for covergence vs. Learning rate

The tool life models developed using Gradient Descent Algorithm (GDA) and Least square method
(LSM) are given below.

Gradient Descent Algorithm (GDA): 'Y =2.788458 - 0.683752 X (4)
Least Square Method (LSM): Y =2.868808 -0.719076 X (5)

4.2. Comparison of the Tool life Models

The tool life model based on Gradient Descent algorithm (GDA) and the tool life model based
on Least Square method (LSM) are compared for the Root mean square error (RMSE). The Root mean
square error is used to measure the difference between the predicted values and the observed or
actual values. RMSE is a measure of the spread out of the errors from the regression line. The RMSE
of the tool life model using Gradient Descent Algorithm and that of the tool life model using least
square method is compared in Figure 4. From this figure, it can be observed that the tool life model
using Gradient Descent Algorithm has lower RMSE than the tool life model using least square
method. It is also can be observed that the RMSE error is very minimum for the Gradient Descent
Algorithm tool life model. The significance of the model was found out using coefficient of
determination. The coefficient of determination is also known as R-squared (or R2), assesses the linear
relationship is between two variables. Similarly the Adjusted R Squared determines the extent of the
variance of the dependent variable by all independent variables. The R?value and adjusted R?value
of Tool life model using Gradient Descent Algorithm are R?= 0.994084 and R? Adj=0.99334. It can be
observed that the machine learning model has significance level of 99% .
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Figure 4. Root Mean Square Error of tool life models based on Gradient Descent Algorithm (GDA) and Least
Square method (LSM)

4.2. Prediction of Tool life

In order to validate the machine learning tool life model, machining studies were carried out
and tool life were evaluated for various cutting speeds. Using the machine learning tool life model,
tool life were predicted for the given cutting speeds. The test data set, predicted values and errors are
given in table 5. From the table, it is observed that the percentage of error is very minimum and the
error is not more than 0.3 % in the given test dataset. The average percentage of error is 0.17% and
the accuracy of the model is 99.83%. Even though the model is very simple, it is very effective for
predicting tool life. The output data is converted to tool life and the predicted tool life and the actual
tool life is presented in Figure 5.
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Figure 5. Comparison of Predicted Tool Life with Actual Tool Life

From this figure, it can be inferred that the predicted tool life values are very close to the actual tool life
values. Hence, the Gradient Descent Algorithm can be successfully implemented for tool life prediction.

5. Conclusions

Machining studies were conducted using Ti [C,N] mixed alumina based ceramic cutting tool on
ASTM A276 martensitic stainless steel. The training dataset and test data were obtained by evaluating
the tool life experimentally. Tool life model was developed using Gradient Descent Algorithm. For
comparison, tool life model based on Least square method was also developed. Different learning
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rates were attempted to improve the performance of the model. Root Mean Square Error and
Determination coefficient R square and adjusted R square values were evaluated and the model had
a significance level of 99%. Tool life prediction were carried out using the test data and the model
had an accuracy of 99.83%. The predicted tool life values are very close to the actual tool life values.
The Gradient Descent algorithm was successfully implemented for tool life prediction.
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