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Abstract

Let (A,A) be a weak multiplier Hopf algebra as introduced in [VD-W3] (see also [VD-
W2]). It is a pair of a non-degenerate algebra A, with or without identity, and a coproduct
A:A— M(A® A), satisfying certain properties. In this paper , we continue the study
of these objects and construct new examples.

A symmetric pair of the source and target maps €5 and &; are studied, and their symmetric
pair of images, the source algebra and the target algebra e4(A) and €,(A), are also inves-
tigated. We show that the canonical idempotent E (which is eventually A(1)) belongs to
the multiplier algebra M (B ® C), where (B = e5(A),C = 4(A)) is the symmetric pair of
source algebra and target algebra, and also that E is a separability idempotent (as stud-
ied in [VD4.v2]). If the weak multiplier Hopf algebra is regular, then also F is a regular
separability idempotent.

We also see how for any weak multiplier Hopf algebra (A, A), it is possible to make
C ® B (with B and C as above) into a new weak multiplier Hopf algebra. In a sense,
it forgets the "Hopf algebra part’ of the original weak multiplier Hopf algebra and only
remembers symmetric pair of the source and target algebras. It is in turn generalized to
the case of any symmetric pair of non-degenerate algebras B and C with a separability
idempotent £ € M(B ® C). We get another example using this theory associated to
any discrete quantum group. Finally we also consider the well-known ’quantization’ of
the groupoid that comes from an action of a group on a set. All these constructions
provide interesting new examples of weak multiplier Hopf algebras (that are not weak
Hopf algebras introduced in [B-N-S]).
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0. Introduction

For an associative algebra A with a non-degenerate product, we say that A\ € Hom(A, A)
is a left multiplier of A if A(ab) = A(a)b for all a,b € A. We denote the space of left
multipliers by L(A). Symmetrically, we call p € Hom(A, A) is a right multiplier of A
if p(ab) = ap(b) for all a,b € A. We denote the space of right multipliers by R(A).
We have two natural symmetric linear maps L : A — L(A), L(a)(b) = A\a(b) = ab and
R:A— R(A),R(a)(b) = ps(b) = ba.

The multiplier algebra M (A) of A is the space of all symmetric pairs (\, p) where A € L(A)
and p € R(A) such that aA(b) = p(a)b for all a,b € A. The unit of M(A) is denoted by 1,
see [VD1, VD3, VD4.v1, VD4.v2].

Weak Hopf algebras were introduced in [B-N-S] by Bohm, Nill and Szlachanyi in 1999,
and they have been of great interest in quantum algebra and mathematical physics. In
previous work in [VD-W3] (see also [VD-W2]), we defined weak multiplier Hopf algebras,
by extending the class of weak Hopf algebras. It is a pair of a non-degenerate algebra
A, with or without identity, and a coproduct A : A — M(A ® A), satisfying certain
properties. If the algebra has an identity and the coproduct is unital, then we have a Hopf
algebra (see [A] or [S]). If the algebra has no identity, but if the coproduct is non-degenerate
(which is the equivalent of being unital if the algebra has an identity), then (A, A) would
be a multiplier Hopf algebra (see [VD1]- [VD3]). If the algebra has an identity, but the
coproduct is not unital, we have a weak Hopf algebra (see [B-N-S] or [B-S]). In the general
case, we neither assume A to have an identity nor do we assume A to be non-degenerate
and so we work with a genuine weak multiplier Hopf algebra, see [VD-W2]-[VD-W5] (see
also [B-G-L], [Z-W]). It is called regular if its antipode is a bijective map from A to itself.

The first fundamental example of a weak multiplier Hopf algebra is the algebra A =
K(G) of complex functions on G with finite support and pointwise product, where G
is a groupoid. Here, the coproduct map A is not necessarily non-degenerate, while the
existence of a certain canonical idempotent element F € M(A ® A) is assumed, which
coincides with A(1) in the unital case.

Symmetrically, for the second example, we take the algebra B, defined as the groupoid
algebra CG of G. If we use p — A, for the canonical embedding of G in CG, then
if p,g € G, we have \y\; = Ayq if pg is defined and O otherwise. Here the canonical
idempotent FE is given by Y A. ® A where the sum is only taken over the units e of G.
The antipode is given by S()\;) = A,-1 for all p € G.

These two examples are dual ( symmetric) to each other. The duality is given by (f, \,) =
f(p) whenever f € K(G) and p € G. We give more details (about this duality) in [VD-W5]
where we treat duality for regular weak multiplier Hopf algebras with integrals.

In the paper under review, we continue the study of these objects and construct new
examples. If A is a weak multiplier Hopf algebra, a symmetric pair of the source and
target maps are studied, and their symmetric pair of images, the source algebra and the
target algebra, are also investigated. We show that the canonical idempotent F belongs
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to the multiplier algebra M (B ® C'), where (B, C) is the symmetric pair of source algebra
and target algebra, and also that F is a separability idempotent. Several interesting new
examples of weak multiplier Hopf algebras are constructed. Some of them are not weak
Hopf algebras.

Content of the paper

In Section 1 we recall some of the basic notions and results on weak multiplier Hopf algebras
as studied in our first papers on the subject ([VD-W2] and [VD-W3]). In particular, we
will explain some of the covering properties as this will be important for the rest of the
paper. We note that in the definition of a weak multiplier Hopf algebra, there are four
symmetry concepts: (a) Multiplier algebra as explained in the introduction; (b) Full; (c)
The properties of the counit and the separability idempotent; (d) the source and the target
maps (algebras).

In the earlier papers on the subject, we briefly looked already at symmetric pair of the
source and target maps €5 and €; and their symmetric pair of images, the source and target
algebras. In Section 2 we investigate these objects further. We recall the definitions and
some of the basic properties that are found already in [VD-W3]. Notice that we make a
change in terminology. We will now call the image £4(A) of the source map the source
algebra and the image £,(A) of the target map the target algebra. In [VD-W4.v1] we
used these terms for the multiplier algebras that can be characterized nicely in the regular
case. Because now we are also studying the non-regular case, these multiplier algebras no
longer seem to have the same characterization and this is what motivated us to change
this terminology. We comment more on this in Section 2.

Indeed, in the regular case, we show that the multiplier algebras M (e5(A)) and M (g:(A))
of the images €5(A) and e:(A) of the source and target maps can be nicely characterized
as certain subalgebras of the multiplier algebra M (A).

In the general case, we show that the canonical idempotent E has all the properties of
a separability idempotent (as studied in [VD4.v2]). It turns out to be a regular one if
the weak Hopf algebra is regular. Finally we use the various results to show that the
underlying algebra A of any weak multiplier Hopf algebra (A, A) has local units. Recall
that in [VD-W3], we only could show this in the regular case.

In Section 3 we study special cases and examples. We start again with the two examples
associated with a groupoid. We will be very short here as we include this mainly for
completeness. These examples have been considered in earlier papers (see e.g. [VD-W3]).
Then we consider any weak multiplier Hopf algebra (A, A) and we associate a new weak
multiplier Hopf algebra (P, Ap) where the underlying algebra P is £;(A) ® £5(A) and the
coproduct is given by the formula

Ap(c®@b)=c®E®Db

for b € e5(A) and ¢ € g,(A) and where E is the canonical multiplier in M (A ® A). We
also use this example further as a model for the construction of an abstract version of this
case. Then we take any symmetric pair of non-degenerate algebras B and C' and start
with a so-called separability idempotent E in the multiplier algebra M (B @ C'). We take
P = C®B and Ap as above. These two examples are 'quantizations’ of the trivial groupoid
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G constructed from a set X by taking G = X x X with product (z,y)(y,x) = (z,2) when
xz,y,z € X.

This groupoid in turn is related with the case of a groupoid G constructed from a (left)
action of a group H on a set X. Now G consists of triples (y, h,x) where x,y € X and
h € H and y = h x and where > is used to denote the action. The product is given by
(z,k,y)(y, h,x) = (z,kh,2). And finally, also this groupoid will be quantized (at least in
a certain sense to be explained in this section).

The starting point is again a symmetric pair of non-degenerate algebras B and C with
a separability idempotent E in the multiplier algebra M (B ® C). Moreover there is a
(regular) multiplier Hopf algebra @ that acts from the right on B and from the left on C
in such a way that B is a right @-module algebra and C a left @Q-module algebra. These
objects are related with the requirement that the right action of Q) on C induces via E the
left action of @ on B. See Section 3 for a more precise statement. The two-sided smash
product P is defined as the algebra generated by B, C' and @ with B and C commuting
and the commutation rules between B and () determined by the left action of () on B and
the ones between C' and @) determined by the right action of QQ on C'. It carries a natural
coproduct making P into a weak multiplier Hopf algebra.

Finally, in Section 4 we draw some conclusions and discuss possible further research on
this subject.

In [VD-W5], the study of weak multiplier Hopf algebras is continued with the investigation
of integrals and duality. The results obtained in the present paper are of great importance
for the treatment of integrals and duality as it is done in [VD-W5].

The material studied in this paper is closely related with the theory of (regular) multiplier
Hopf algebroids, as developed in [T-VD1], where the theory of weak multiplier Hopf alge-
bras is treated within an algebroid framework. See also [T-VD2] for the relation between
the two concepts.

We also like to refer to the paper on weak multiplier bialgebras by Bohm, Gémez-Torecillas
and Loépez-Centella (see [B-G-L]) where the notion of a weak multiplier bialgebra is de-
veloped. In this theory, the symmetric pair of source and target maps, as well as the
symmetric pair of source and target algebras, play a crucial role. See also [K-VD] where
a Larson-Sweedler type theorem is proven for these weak multiplier bialgebras.

Finally, we also notice that many other interesting works (see [B1]-[B2], [K-VD1]-[K-VD3],
[T1]-[T2], [T-VD1]-[T-VD2] and [Z-W]) were motivated by the notion of weak multiplier
Hopf algebras introduced in [VD-W2] (for an earlier background of this paper, see [W]).

Conventions and notations

We only work with algebras A over C (although we believe that this is not essential and
that it is possible to obtain the same results for algebras over other, more general fields).
We do not assume that they are unital but we need that the product is non-degenerate.
We also assume our algebras to be idempotent (that is A? = A). In fact, it turns out
that the algebras we encounter in this theory always have local units. We have seen this
already in [VD-W3], in the regular case. Then of course, the product is automatically
non-degenerate and also the algebra is idempotent.
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When A is such an algebra, we use M(A) for the multiplier algebra of A. When m is
in M(A), then by definition we can define am and mb in A for all a,b € A and we have
(am)b = a(mb). The algebra A sits in M(A) as an essential two-sided ideal and M (A) is
the largest algebra with identity having this property.

Recall that a homomorphism v : A — M(B), where A and B are non-degenerate algebras,
is called non-degenerate if v(A)B = B and By(A) = B. In that case, there is a unique
extension of v, still denoted by =, to a unital homomorphism from M (A) to M(B). There
is a similar result for non-degenerate anti-homomorphisms.

We consider A ® A, the tensor product of A with itself. It is again an idempotent, non-
degenerate algebra and we can consider the multiplier algebra M (A ® A). The same is
true for a multiple tensor product. We use ( for the flip map on A ® A, as well as for its
natural extension to M (A ® A).

We use 1 for the identity in any of these multiplier algebras. On the other hand, we mostly
use ¢ for the identity map on A (or other spaces), although sometimes, we also write 1 for
this map. The identity element in a group is denoted by e. If G is a groupoid, we will also
use e for units. Units are considered as being elements of the groupoid and we use s and
t for the source and target maps from G to the set of units.

When A is an algebra, we denote by A°P the algebra obtained from A by reversing the
product. When A is a coproduct on A, we denote by AP the coproduct on A obtained
by composing A with the flip map (.

For a coproduct A, as we define it in Definition 1.1 of [VD-W3], we assume that A(a)(1®0b)
and (a ® 1)A(b) are in A® A for all a,b € A. This allows us to make use of the Sweedler
notation for the coproduct. The Sweedler notation is first explained in [Dr-VD], but only
for the case of regular coproducts. In [VD3] an approach is developed in the case where
the underlying algebras have local units. In the more recent paper [VD6], this condition
is not assumed. However, it should be mentioned that the Sweedler notation is essentially
just what is says, a notation. It is a way to denote formulas in a more transparent way.
This point of view is explained in [VD6] and the reader is advised to look at that note
for understanding the use of the Sweedler notation for weak multiplier Hopf algebras as
in this paper.

Basic references

For the theory of Hopf algebras, we refer to the standard works of Abe [A] and Sweedler
[S]. For multiplier Hopf algebras and integrals on multiplier Hopf algebras, we refer to
[VD1] and [VD2]. Weak Hopf algebras have been studied in [B-N-S] and [B-S] and more
results are found in [N] and [N-V1]. Various other references on the subject can be found
in [Va]. In particular, we refer to [N-V2] because we will use notations and conventions
from this paper when dealing with weak Hopf algebras.

For the theory of groupoids, we refer to [Br], [H], [P] and [R].

1. Preliminaries on weak multiplier Hopf algebras
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Let (A, A) be a weak multiplier Hopf algebra as in Definition 1.14 of [VD-W3]. In general,
we do not assume that it is regular. On the other hand, we also recall some of the results
that are only true in the regular case.

A is an algebra over C, with or without identity but with a product that is non-degenerate
(as a bilinear map). The algebra is also idempotent in the sense that A = A? (meaning
that any element in A is a sum of products of elements of A). In Proposition 4.9 of [VD-
W3], we showed that in the regular case, the underlying algebra automatically has local
units. In fact, the result turns out to be true also in the non-regular case. We will obtain
a proof in this paper (see Proposition 2.21 in Section 2). Remark that for an algebra with
local units, the product is automatically non-degenerate and the algebra is idempotent.

There is a coproduct A on A. It is a homomorphism from A to the multiplier algebra
M(A ® A) of the tensor product A ® A of A with itself. It is not assumed that it is non-
degenerate (see further). The canonical maps Th, To, T3 and Ty are linear maps defined
on A® A by

Ti(a®b)=A(a)(1®0D) Tr(c®a) = (c®1)A(a)
T3(a®b) = (1 ®b)A(a) Ty(c®a)=Aa)(c®1).

In general, it is assumed that 77 and 75 have range in A ® A. If also T5 and T4 map into
A® A, then the coproduct is called regular.

The coproduct is assumed to be full. This means that the smallest subspaces V' and W
of A satisfying symmetric properties:

Ala)1®b) e V® A and (c®1)A(a) e AW

for all a,b € A are A itself. If the coproduct is regular, then a similar property will also be
true for the maps T3 and Ty and so both the flipped coproduct AP on A and the original
coproduct on A°P will also be full coproducts.

Fullness of the coproduct implies that any element in A is a linear span of elements of the
form (t®@w)(A(a)(1®b)) where a,b € A and where w is a linear functional on A. Similarly
for the span of elements (w ® ¢)((c ® 1)A(a)) with a,c € A and a linear functional w on
A. In fact, this property is equivalent with fullness of the coproduct. We have a result
of the same type for fullness of a regular coproduct. See e.g. Proposition 1.6 in [VD-W1]
and also Lemma 1.11 in [VD-W2]

Furthermore, it is assumed that there is a counit. This is a linear map ¢ : A — C satisfying
the following symmetric properties:

(e®@)(A(a)(1®Db)) =ab and (t®@e)((c®1)Aa)) = ca

for all a,b,c in A. Similar formulas will be true for the other canonical maps in the case
of a regular coproduct.

Because the coproduct is assumed to be full, this counit is unique in the following sense.
Assume that € and €’ are linear maps such that

(e®@)(Ala)(1®b)) =ab and @) ((c®1)A(a)) = ca
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for all a,b,c in A. Then already ¢ = ¢’. This is proven by applying ¢« ® € ® ¢ on the right
hand side and : ® ¢’ ® ¢ on the left hand side of the equation that expresses coassociativity
of the coproduct

(c®1®)(A®)(A@)(1®D) =0t A)((c®1)A(a))(1®1Db).

In the two cases we get the same result, namely (¢ ® 1)A(a)(1 ® b). This is true for all
a,b,c € A and from the fullness of the coproduct, it follows that ¢ = ¢&’.

It is not clear if there is a uniqueness result without the assumption that the coproduct
is full. And it is also not clear if the existence of a counit, in the non-unital case, implies
fullness of the coproduct. Remark that in general, the counit is not a homomorphism in
the case of weak multiplier Hopf algebras.

It seems not possible to construct a counit, even given that the coproduct is full. Therefore,
the existence of the counit is part of the axioms for weak multiplier Hopf algebras.

There is an idempotent element F in M (A ® A), called the canonical idempotent, giving
the ranges of the canonical maps T} and 75 as the following symmetric properties:

A(A)(1® A) = E(A® A) and (A®1)A(A) = (A® A)E.

If the weak multiplier Hopf algebra is regular, we also have these properties for the ranges
of the canonical maps T3 and Ty. So in that case, we also have the following symmetric
properties:

A(A)(AR1)=FEA®A) and (1® AAA) = (A A)E
with the same idempotent. This element is uniquely determined and it satisfies
A(a)E = A(a) = EA(a)

for all a € A.

We see that the coproduct is degenerate if F is strictly smaller than 1. However, still the
coproduct can be extended in a unique way to a homomorphism from M (A) to M(A® A)
(again denoted by A) provided we assume A(1) = E. Similarly, the homomorphisms A®¢
and ¢ ® A have unique extension to M (A ® A) such that, again using the same symbols
for these extensions, we have the following symmetric properties:

(A®)(1l)=E®1 and t@A)(1)=1® E.

We use 1 for the identity, both in M (A) and in M (A®A). We have (A®¢)(E) = (LQA)(E).
It is further assumed that

(AR)(E)=(E®1)(1®FE)=(1 E)(E®1).

The last equality means, in a sense that can be made precise, that the left and the right
legs of E' commute.

The left and the right legs of E are also big enough in the following sense.
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Lemma 1.1. If a € A and if E(1 ® a) =0, then a = 0. Similarly a =0, if (1®a)E =0,
(a®@1)E=0orif E((a®1)=0.

Proof. Assume a € A. If E(1 ® a) = 0 then A(b)(1 ® a) =0 for all b € A. If we apply
the counit € on the first leg of this equality we find ba = 0 for all b and so a = 0. If
Ela®1) =0 we get (c®1)A(b)(a® 1) =0 for all b,c € A. Now we apply the counit on
the second leg and we find cba = 0 for all b,c € A. Again this implies a = 0. A similar
argument works for the two other cases. O

There is a unique antipode S. It is a linear map from A to the multiplier algebra M (A).
It is an anti-algebra map in the sense that S(ab) = S(b)S(a) for all a,b € A and it is an
anti-coalgebra map meaning that A(S(a)) = ((S®S)A(a) for all a € A (in an appropriate
sense - see e.g. Proposition 3.7 and more comments in [VD-W3] for a correct formulation).
Recall that we use ¢ for the flip map. Moreover, the antipode satisfies the following
symmetric formulas between S and ¢:

Z am)S(a@))aE) = a and Z S(ay)aw)Slag)) = S(a)
(a) (a)

for all @ in A. One has to multiply with an element of A, left or right, in order to be able
to use the Sweedler notation, and so strictly speaking, the formulas hold in M(A) (see
also Remark 1.2 below).

We have the equalities

ZA 1®S( ())) (1. 1)

(1®a)E = Z(5<a(1)) ® 1)A(ag) (1. 2)
(a)

for all a. These equations are equivalent with

ZAca )(1® S(ag)) (1. 3)

(1®a)A(b) = Z(S(a(l)) ® 1)A(a)b) (1. 4)
(a)
for all a, b, c. Observe that using the Sweedler notation in these formulas is just a matter
of notation and nothing more. Indeed, the formula (1.3) above is a shorthand for the
formula A(e)(a ® 1) =3, A(pi)(1 ® S(g;)) where >, p; ® ¢; = (¢ ® 1)A(a). This is true
for all the formulas with the Sweedler notation we have here in this preliminary section.
It illustrates a remark already made in the introduction.

In the regular case, we have that the antipode maps A to itself and is bijective. In fact,
this property of the antipode characterizes the regular weak multiplier Hopf algebras.

In that case, we have the following counterparts of the formulas (1.1) and (1.2) above. We
have

ZA a(g) a(l)) ®1) (1. 5)

(a®1)E = 2(1 ® S a@w))Alaq)) (1. 6)
(a)
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for all a. Again these formulas can also be written as

= Abag)(S (apy) ® 1) (1. 7)

(@@ 1DA(e) =Y (1885 (a@))Alan)0) (1. 8)
(a)

for all a, b, c.

Observe the following peculiarity in these formulas. The formulas (1.3) and (1.4) are true
in the non-regular case but the expressions need not be in A ® A. On the other hand,
the formulas (1.7) and (1.8) only make sense in the regular case (as the inverse of S is
involved), while now the expressions are true in A ® A.

We now make an important remark about the covering of the previous formulas.

Remark 1.2. i) First rewrite the (images of the) canonical maps 77 and T», and of T3
and Ty in the regular case, using the Sweedler notation, as

J(1®b) = Za ® a( (c@1)A an(1)®a (1. 9)
(1®b)A(a) = Za(l) ® ba) Ye®1) Za c®ag (1. 10)
(a) (a)

where a,b,c € A. In all these four expressions, either a(y) is covered by ¢ and or a(y) by b.
This is by the assumption put on the coproduct, requiring that the canonical maps have
range in A ® A.

ii) Next consider the expressions

Z a) ® S(Q(Q))b and Z cS(a(l)) ® a(g) (1. 11)
(a) (a)

Z agy ® bS(a()) and Z S(agy)e® ag) (1. 12)
(a)

where a,b,c € A. In the first two formulas (1.11), we have a covering by the assumption
that the generalized inverses R; and Ry of the canonical maps exist as maps on A ® A
with range in A® A (see [VD-W3]). In the second pair of formulas (1.12), we have a good
covering only in the regular case. It follows by considering the expressions in (1.9) and
using that S is a bijective anti-algebra map from A to itself. In the regular case, we can
also consider the above expressions with S replaced by S~1.

iii) If on the one hand, we first apply S in the first or the second factor of the expressions
n (1.9) and multiply and if on the other hand we simply apply multiplication on the
expressions in (1.11), we get the four elements

Z S(ag))ag)b and Z ca)S(a)) (1. 13)
(a)
Z a(l)S(a(g))b and Z cS(a(l))a(Q) (1. 14)

(a) (a)
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in A for all a,b,c € A. This is used to define the source and target maps in the next
section (see Definition 2.1 in the next section).

iv) Now, we combine the coverings obtained in i) and ii). Consider e.g. the two expressions

Z A(a(l))(l & S(a(g))b) (1. 15)
(a)
> (eS(ag)) ® 1)A(a) (1. 16)

(a)

where a,b,c € A. The first expression (1.13) is obtained by applying the canonical map Tj
to the first of the two expressions in (1.11). So this gives an element in A® A and we know
that it is F(a ® b) as we can see from the formula (1.1). Similarly, the second expression
(1.14) is obtained by applying the canonical map 75 to the second of the two expressions
in (1.11). We know that this is (b ® a)E as we see from the formula (1.2) above. Remark
that E(a ® b) and (b ® a)E belong to A ® A because by assumption E € M(A® A), but
that on the other hand, it is not obvious (as we see from the above arguments) that the
expressions that we obtain for these elements belong to A ® A.

v) Finally, as a consequence of the above statements, also the four expressions

ZS(a(l))a@)S(a(g))b and an(l)S(a(g))a(g) (1. 17)
(a) (a)
ZcS(a(l))a(g)S(a(g)) and Za(l)S(a@))a(g)b (1. 18)
(a) (a)

are well-defined in A for all a,b,c € A (also in the non-regular case as S : A — M(A)).
This justifies a statement made earlier about the properties of the antipode. O
And once again, in all these cases, the Sweedler notation is just used as a more transparent
way to denote expressions. We refer to the coverings just to indicate how the formulas
with the Sweedler notation can be rewritten without the use of it.

In the regular case, we also have many other nice formulas (see Section 4 in [VD-W3|.
One of them is (S ® S)E = (E (as expected because E = A(1)). Other formulas that we
will use, will be recalled later. In any case, they are all found in [VD-W3] and we refer to
this paper for details.

2. The symmetric pair of source and target algebras

As in the previous section we consider a weak multiplier Hopf algebra (A, A). In general,
we do not assume that it is regular. In the regular case, nicer results can be obtained, but
we try to push the theory as far as possible in the general case.

We first recall the definition of the symmetric pair of source and target maps €5 : A —
M(A) and g : A — M(A) and prove the first properties. We show among other things
that the images are non-degenerate subalgebras of M (A), sitting nicely in M (A) so that
also their multiplier algebras can be considered as subalgebras of M(A).
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The symmetric pair of source and target maps, together with their images, have been
considered already in [VD-W3] and a few properties were proven, mainly for the purpose
of studying the antipode. In this paper, we will continue this study.

Remark that in this paper, as we mentioned already in the introduction, we will define
the symmetric pair of source and target algebras as the symmetric pair of images of the
source and target maps (see Notation 2.9). We will explain later why we do this.

We will also study the behavior of the antipode S on the source and target algebras.
Recall that S is an anti-homomorphism from A to M (A). It is non-degenerate in the
sense that S(A)A = A and AS(A) = A (see Proposition 3.6 in [VD-W3]). Therefore, as
a consequence of a general property mentioned already in the introduction (see also the
appendix of [VD1]), it has a unique extension to a unital anti-homomorphism from M (A)
to itself.

We consider the canonical idempotent E in M(A® A) as reviewed in the previous section
and we use that the coproduct A can be extended to the multiplier algebra as we have
mentioned earlier. We will show that E is a separability idempotent as studied in [VD4.v2].

The source and target algebras B and C

We first consider the symmetric pair of source and target maps s : A — M(A) and
et A — M(A). Recall Definition 3.1 from [VD-W3].

Definition 2.1. For a € A we define

es(a) = Z S(agy)a) and et(a) = Za(l)S(a(g))
(a) (a)

where S is the antipode. The map ¢; is called the source map and the map &; is the target
map. O
We have seen in Remark 1.2.iii that these maps have well-defined values in the multiplier
algebra M (A).

We will show that the images of the source and target maps are subalgebras of M(A).
Before we can do this, we need some elementary properties, also important for the further
study of these subalgebras.

First we have that the range of €5 coincides with the left leg of E and that the range of ¢,
is the right leg of E. These statements are made precise in the following proposition.

Proposition 2.2. The range £5(A) of the source map is spanned by elements of the form
(t®w(a - b))E where a,b € A and where w is a linear functional on A. Symmetrically the
range £:(A) of the target map is spanned by elements of the form (w(c - a) ® ¢)E where
a,c € A and with w a linear functional on A.

Proof. By formula (1.2) in Section 1 we get for a,b € A that

1®a)E(1@b) =Y S(aq))ap @ azb
(a)

and this belongs to e5(A) ® A. We can apply a linear functional w on the second leg and we
see that (t®@w(a - b))FE is well-defined and belongs to 5(A). The fullness of A guarantees
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that any element of A is a sum of elements of the form
(t ®@w)(A(a)(1® b))

where a,b € A and where w is a linear functional (see Section 1). Hence it follows that
es(A) is spanned by elements as in the formulation of the proposition. Similarly for the
range £4(A) of the target map. O
Because E® 1 and 1 ® E commute, it follows that e5(a) and e.(b) will commute in M (A)
for all a,b € A.

Also the following is an easy consequence of the previous result. The formulas in the
proposition make sense in the multiplier algebra M (A @ A).

Proposition 2.3. We have the following symmetric properties:
Alz)=(z®1)E=E(z®1) and Aly) =FE(l®y)=(1yE

for z € g,(A) and y € e5(A).
Proof. Simply apply the appropriate linear functionals on the first, respectively the third
factor of the equations

LRAE=(ER1)(I®E)=(1E)(F®1) (2. 1)
(AR)E=(E®1)(1®FE)=(1 E)(E®1). (2. 2)
This completes the proof. O

The result above is the motivation for the following lemma.

Lemma 2.4. For an element x € M(A), the following are equivalent:
i) A(z) = (z®@1)E,
ii) A(z) = E(z®1).

Similarly, for an element y € M (A), the following are equivalent:

i) A(y) = E(1®y),

i) Aly) = (1®y)E.

Proof. First let € M(A) and assume that A(z) = (x® 1)E. Take any y € £5(A). Then

Azy) = A@)A(y) = (@ DEA(Y) = (z @ 1)A(y) = (z @ y)E.

We have used that A(y) = (1 ® y)E, proven in the previous proposition for elements y in
gs(A). On the other hand

Ayz) = A(y)A(z) = (10 y)EA(z) = (1@ y)A) = (2@ y)E

and we see that A(zy) = A(yx). Multiply with A(a) for any a € A and apply the counit.
This will give xya = yxa and because this is true for all a, we have xy = yzx.

Because this result is true for all elements y in the left leg of F, as a consequence we find
that (x ® 1)E = E(z ® 1) and hence also A(z) = E(z ® 1).

Similarly if A(z) = E(z®1) also A(z) = (z®1)E will be true. This proves the equivalence
of i) and ii) in the first part of the lemma.

The second part is proven in a completely similar way. O
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We arrive at the following notation.

Notation 2.5. We will denote by As the set of elements y € M(A) satisfying A(y) =
E(1®y) and by A; the set of elements x € M (A) satisfying A(z) = (x ® 1)E. O
The following is an immediate consequence of the lemma.

Proposition 2.6. The sets A; and A; are commuting subalgebras of M(A).

Proof. It is immediately clear from the definitions that these sets are subalgebras of
M(A). Moreover, if x € A; and y € A,, we have as in the first part of the proof of the
lemma

Azy) = A(z)A(y) = (z@y)E A(yz) = A(y)Az) = (z@y)E

where we have used the two equivalences of i) and ii) in the lemma. Hence A(zy) = A(yx)
and as before, xy = yzx. O
From Proposition 2.3, we know that e,(A) C A, and £,(A) C A;. However, we can now
prove more.

Proposition 2.7. Assume that x € A;. Then for all a € A we have e¢(xa) = zei(a)
and e5(ax) = S(z)es(a). Symmetrically, if y € As we have e5(ay) = e5(a)y and &,(ya) =
et(a)S(y) for all a € A.

Proof. Take x € M(A) and assume that A(z) = (zr ® 1)E. Let a € A. Then A(za) =
(x ® 1)A(a) and if we apply m(: ® S) where m is multiplication, we find e(za) = ze¢(a).
By Lemma 2.4, we know that also A(ax) = A(a)(x ® 1) and now we apply m(S ® ¢) to
find e5(az) = S(x)es(a). This proves the first part of the proposition.

The second part is proven in a completely similar way. O
Using techniques as above, we find other formulas of this type but we will not need these.

The result above has a few obvious, but important consequences.

Proposition 2.8. i) The sets £5(A) and ¢;(A) are subalgebras.
ii) The algebra e4(A) is a right ideal of Ay and £,(A) is a left ideal of A;. O

Remark that the algebras A5 and A; contain the identity of M (A). This is not the case in
general for the subalgebras e5(A) and £,(A). It is also not clear if, again in general, e4(A)
is also a left ideal of A, and if £,(A) is also a right ideal of A;. All of this is related with
the behavior of the antipode on these algebras (as we can see already from formulas in
Proposition 2.7). In a subsequent item, we investigate this further.

First we look at the multiplier algebras of the images of the source and the target maps.
The multiplier algebras of the source and target algebras

We introduce the following notation and terminology. As mentioned already in the intro-
duction, the terminology is different from the one originally used in [VD-W3], see further.

Notation 2.9. In what follows, we will denote the algebra £5(A) by B and €,(A) by C.
We will call (B, C) the symmetric pair of source algebra and target algebra. O
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Recall that we do not expect these algebras to be unital. And we are interested in their
multiplier algebras, if they exist.

We begin with some module properties giving more information about these algebras B
and C and how they sit in M (A).

Proposition 2.10. We have

A=AB and A=CA (2.
A=BA and A=AC. (2.

NN
= W
NN

Proof. We know that

ba=)_bamS(aw)ae =D _bawes(a)
(@ @

for all a,b. The right hand side is in Aeg(A) and because A? = A we find that A = Ae(A).
Similarly, from the formula

ab =3 awS(ag)agb =D eilam)aeb
@ @

for all a,b, we get A =e,(A)A.

If on the other hand, we start with the formula

bS(a) = Z bS(a(l))a(Q)S(a(g)) = Z bS(a(l))et(a(z))
(a) (a)

for all a,b, we find that AS(A) is contained in Ae;(A) (recall Remark 1.2.ii in Section 1).
Now, in Proposition 3.6 of [VD-W3], we have shown that AS(A) = A and so we get also
A = Aegi(A). Similarly A = e5(A)A. O
The results above say that A as a B-bimodule and as a C-bimodule is unital. If we com-
bine the above result with the property in Proposition 2.7 we get the following.

Corollary 2.11. The algebras B and C are idempotent. 0
Indeed, for all a,b we have e.g. e5(aes(b)) = es(a)es(b). Similarly for e,(A).

Later, we will see that the algebras B and C' have local units. This implies that the bi-
modules are also non-degenerate. In fact, this already follows by a more general argument,
which is part of the following, also more general result.

Lemma 2.12. Let R be a subalgebra of M (A). Multiplication makes A into a R-bimodule.
Assume that this module is unital. Then it is also a non-degenerate bimodule. The algebra
R is a non-degenerate algebra and the embedding of R in M (A) extends uniquely to an
embedding of the multiplier algebra M (R) of R in M (A). Moreover we have, considering
M (R) as sitting inside M (A),

M(R)={x € M(A) | zr € R and rz € R for all r € R}. (2. 5)

Proof. We first show that the module is non-degenerate. Take any a € A and assume
that ra = 0 for all » € R. Then a’ra = 0 for all @’ € A and r € R. Because we assume
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that AR = A, it follows that also a’a = 0 for all «’ € A. Then a = 0. Similarly on the
other side. We get in that A is a non-degenerate R-bimodule.

We also claim that R is a non-degenerate subalgebra of M(A). To show this assume that
r € R and that rs = 0 for all s € R. Multiply with an element a € A from the right and
use that RA = A. This implies that ra = 0 for all @ € A. Then r» = 0. Similarly on the
other side. So the algebra R is non-degenerate and we can consider its multiplier algebra
M(R).

As A is assumed to be a unital R-bimodule, we have RA = A and AR = A. So the
embedding j : R — M(A) is a non-degenerate homomorphism and a standard result
implies that it extends uniquely to a unital homomorphism j : M(R) — M(A). It is not
hard to show that in this case, this extension is still an embedding. Because obviously for
any © € M(R) we have 2r € R and rz € R for all r € R, we find one inclusion of the
statement (2.1). The other inclusion is proven by using again that the R-bimodule A is
unital. Il
We can apply this lemma and we obtain the following. Recall that we use B to denote
the algebra £5(A) and C for £,(A) (cf. Notation 2.9).

Theorem 2.13. The algebras B and C' are non-degenerate and idempotent. Their
multiplier algebras M (B) and M (C') embed in M(A). An element x € M (C) still satisfies

A(z)=(z®@1)E=FE(x®1)

while
Aly) =E(1®y) =(1xy)E

is still true for elements y of M (B). So M(B) C A and M(C) C A;.

Proof. The conditions in Lemma 2.12 are fulfilled for the subalgebras B and C' as shown
in the Propositions 2.10. Therefore, B and C' are non-degenerate algebras and they sit in
M(A) in such a way that the embeddings B C M (A) and C C M (A) extend to embedding
of their multiplier algebras M (B) and M (C).

We have already explained that the algebras B and C are idempotent. There are various
ways to prove that we still have the embeddings M (B) C As and M(C) C A;. Take e.g.
m € M(C), x € C and a € A. Then

A(mza) = (mz ® 1)A(a) = (m ® 1)A(za).

As CA = A, it follows that A(ma) = (m ® 1)A(a) for all a € A and hence A(m)
(m ® 1)E. Similar arguments are used for the other equations.

In the next item of this section, we study the behavior of the antipode on the algebras
and C.

WOl

The antipode on the source and target algebras

We begin with the following result about the symmetric pair of subalgebras A and A; of
M(A). Recall that we can extend the antipode S to a unital anti-homomorphism from
M(A) to itself.

Proposition 2.14.
) Ifr,ye M(A) and (1®z)E = (y® 1)E, then z € A; and y € A;.
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i) f x,y € M(A) and E(1®z) = E(y® 1), then z € A; and y € As.

iii) If x € A; then S(x) € As and (1®x)E = (S(z) ® 1)E.

iv) If y € As then S(y) € A and E(y® 1) = E(1® S(y)).

Proof. i) Assume z,y € M(A) and that (1® z)E = (y® 1)E. If we apply ¢ ® A to this
equation, we find

leA@)(Fel) =@yelol)(EFel)(le E)
=(1eze1)(Ex1)(1®E)
=(1®z®1)(1®E)(E®1).

Now we use the property that (1 ® a)E = 0 implies that a = 0 (see Lemma 1.1 in Section
1). This will eventually give A(z) = (x ® 1)E. This proves that € A;. If we apply A®¢
instead, we obtain that y € A,.

ii) The second property is proven in completely the same way.

iii) Let € A; so that A(z) = E(z®1). Then for all a € A we have A(ax) = A(a)(z®1)
and so

(1®az)E = (S((az)1)) ® D)A((az)(2)
(az)
= (S(awyr) ® 1)A(ag)
(a)

This implies (1 ® x)E = (S(x) ® 1)E. It follows from i) that S(z) € As.

iv) Similarly we get S(y) € A; when y € A; and E(y® 1) = E(1® S(y)). O
Remark that it follows that S is injective on A and on A;. However, it does not imply
that these maps are surjective in the general case.

We now investigate the maps Sp : B — M(A) and S¢ : C — M(A) that we obtain by
restricting (the extension of) the antipode to the subalgebras B and C of M(A). As a
special case of the equations above, we have

(1®z)E = (Se(r)® 1)E and Ely®1)=E(1®Sp(y))

for x € B and y € C. In particular, we know already that Sp: B — A; and S¢ : C' — A,.
In the next proposition, we get a stronger result.

Proposition 2.15. The map Sp is a non-degenerate anti-homomorphism from B to
M(C') and the map S¢ is a non-degenerate anti-homomorphism from C to M(B). Both
maps are injective.

Proof. i) Take x € C. Then x € A; and from Proposition 2.7 we know that e5(az) =
S(z)es(a) for all a. Because now also e5(aS(z)) = e5(a)S(z) for all a, we see that S(z) €
M (B). Similarly S(y) € M(C) when y € B. It follows that S¢ is an anti-homomorphism
from C to M(B) and that Sp is an anti-homomorphism of B to M(C).
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ii) As BA = A and g(ya) = €4(a)S(y) for y € B, we see that C'S(B) = C. On the other
hand we have
A=S5(A)A=S(AB)A=S(B)S(A)A=5(B)A

and because £:(S(y)a) = S(y)et(a) for y € B we see that also S(B)C = C.

Hence Sp : B — M(C) and S¢ : C — M (B) are non-degenerate anti-homomorphisms. [
From the general theory, we know that Sp and S¢ have unique extensions to unital
anti-homomorphism from M (B) to M(C) and from M (C) to M(B) respectively. These
extensions are still the restrictions of the antipode S to the multiplier algebras M (B) and
M (C) respectively.

In the regular case, we have the following stronger results.

Theorem 2.16. In the case of a regular weak multiplier Hopf algebra, we have that Sp
is an anti-isomorphism from B tot C' and S¢ is an anti-isomorphism from C' to B. The
multiplier algebras M (B) and M (C) are respectively equal to the algebras As and A; as
defined in Notation 2.5.

Proof. We can use e.g. that (S® S)FE = (F in the case of a regular weak multiplier Hopf
algebra (see Proposition 4.4 in [VD-W3|). As B is the left leg of E and C is the right
leg of E, we find that S maps B to C and C' to B. It also follows that these maps are
surjective. As we know already that they are also injective, we find the first statement of
the proposition.

The equation (S ® S)E = (F also implies that S maps A to A; and vice versa. In
Proposition 2.7 we have shown that

es(ay) = es(a)y and es(az) = S(x)es(a)

for y € As and x € A;. It follows that the algebra B, the image £5(A), is a two-sided ideal
of As. And because we know already that the M(B) C Aj, it follows that M(B) = As,.

Similarly we have M (C) = A;. O
It is not completely clear what the situation is in the non-regular case. We have Propo-
sition 2.15 saying that Sp embeds B in M (C) and Theorem 2.13 saying that M (C) is a
subalgebra of A;. Symmetrically S¢ embeds C' in M (B) and M (B) is a subalgebra of As.

For this reason, we have changed our terminology and are now calling the algebras B and
C, the images of the source and target maps respectively, the source and target algebras.
In an earlier version of this paper [VD-W4.v1] we have used these terms for A, and A,
instead. This was motivated by the fact that, in the regular case, the can be identified with
the multiplier algebras of B and C' respectively. But this is not sure in the non-regular
case that we are investigating in greater detail in this version of the paper.

The canonical idempotent E as a separability idempotent in M(B ® C')

We have the algebras B and C. They are non-degenerate and idempotent. The algebra
B is the left leg of E and the algebra C' is the right leg of F, in an appropriate sense,
see Proposition 2.2. And because F is a multiplier of A ® A, we can expect that it is
also a multiplier of B ® C'. This turns out to be the case. Moreover it is a separability
idempotent as defined and studied in [VD4.v2]. This is what we show next.

17


https://doi.org/10.20944/preprints202011.0293.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2020 d0i:10.20944/preprints202011.0293.v1

The first step is the following result.

Lemma 2.17. We have the following symmetric properties:
E(l®a)e B A and (a®1)E€e A C

for all @ € A.
Proof. For all a in A we can define a left multiplier €/ (a) of A by the formula

()b = (L@e)(E(b®a))

where b is in A. We will see later why we use this notation.

Fix two elements a,a’ in A. Write
Z € ) ® aggya’ = Zt @ G

where ¢; is a left multiplier of A and ¢; € A. Assume that the (¢;) are linearly independent.
For all b in A we find

Zs Db@aga => (18e®)(E®1)(b®am) ® apa))
(a)

(t®e)(E®1)(1®E)(b® A(a)(l®d)))
(t2ex)((tA)Eb®a)(1®1®d))
Eb®a)(l®d)=E(b®ad).

Therefore E(b® aa’) =Y, t;b ® g; for all b € A.

On the other hand, for all ¢ € A, we have also

(1®cE(1®ad) = ZS c(1))c@) @ czyaa’

- ng (en)) ® czaa
()

and this belongs to B ® A.

If we combine this with the previous formulas, we find ), t; ® cq; € B® A for all ¢ € A.
Now let w be a linear functional on the space L(B) of left multipliers of A that vanishes on
elements in B. We find ), w(t;)cg; = 0 for all ¢ in A. By non-degeneracy of the product in
A and because the elements (g;) are linearly independent, it follows that w(t;) = 0 for all
i. Hence t; is in B for all i and we find that F(1®ad’) € B® A. Because A is idempotent,
we get F(1® A) C B® A.

In a completely similar way we can prove that also (A ® 1)E € A® C. This proves the
lemma. U
From the proof we see that 3_ es(ap)) ® aigya’ € B® A and from the fullness of the
coproduct, it follows that £'(a) € B for all a € A. This in turn follows of course also from
the property that E(1® A) C B® A.
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We will give more comments on this result later. First we use the lemma to prove the
following main result.

Theorem 2.18. The canonical idempotent of a weak multiplier Hopf algebra is a sepa-
rability idempotent in M (B ® C') where (B, C) is the symmetric pair of source and target
algebras.

Proof. i) By the lemma, we find that E(1®a) belongs to B A. We therefore can apply &,
on the second leg of this expression. We know that the second leg of E belongs to £;(A) and
this is a subalgebra of A;. In Proposition 2.7 we have shown that e;(za) = ze:(a) for all
x € A;. Therefore (1®¢;)(E(1®a)) = E(1®e(a)). We conclude that E(1®e.(a)) € BRC
for all a and so E(1®C) C B®C.

In a completely similar way, we find that (B ® 1)E C B ® C. It follows not only that
E € M(B®C), but also that it satisfies the first requirements for a separability idempotent
(see Section 1 of [VD4.v2]).

ii) We will now show that E is full in the sense of Definition 1.1 of [VD4.v2]. For this,
assume that V' is a subspace of B so that E(1® z) C V ® C for all x € C. Then
(1®b)E(l1®@xa) e V®Aforall a,b € A and x € C. In Proposition 2.10 we showed that
CA = A and in Proposition 2.2 that B is spanned by elements of the form (1 @w(a - b))E
where a,b € A and where w is a linear functional on A. Then we must have V' = B proving
that the left leg of E' (as an idempotent in M (B ® ()) is still all of B. Similarly for the
right leg. Hence E is full.

iii) Finally, we know already from Proposition 2.15 that the antipode is a non-degenerate
anti-homomorphism from B to M(C) as well as a non-degenerate anti-homomorphism
from C to M(B). As in Proposition 2.14 they satisfy

(l®@z)E=(S(x)®1)FE and Ey®1)=E(1®S(y))

when z € C and y € B. This is the final requirement in Definition 1.4 of [VD4.v2] and
shows that E is a separability idempotent in M (B ® C'). This completes the proof. O
Remark that in item iii) of the proof above, we find E(y®1) = E(1® S(y)) for all y € B.
Then E(1®S(y)z) = E(y®«x) for all x € C and y € B. From the fact that £ € M(B®C)
and that S is a non-degenerate anti-homomorphism from B to M (C'), it would also follow
that E(1® C) C B® C.

In the regular case, we have the following expected result.

Proposition 2.19. If the weak multiplier Hopf algebra is regular, then E is a regular
separability idempotent.

Proof. There are different ways to prove this. If we start with the definition of regularity
for a weak multiplier Hopf algebra (as e.g. in Definition 4.1 of [VD-W3]), then we assume
that (A, A°P) also satisfies the axioms of a weak multiplier Hopf algebra. The canonical
idempotent now is (E where F is the canonical idempotent of the original weak multiplier
Hopf algebra. Remember that ¢ is the flip map on A ® A and extended to M (A ® A).

Because B and C' are the left and the right legs of E, we get that C' and B are the left
and the right legs of (F. Applying Theorem 2.18 to the new weak multiplier Hopf algebra
(A, A°P) we obtain that (E is a separability idempotent in M (C ® B). Then E is indeed
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a regular separability idempotent by the very definition of regularity for a separability
idempotent (see Definition 2.4 of [VD4.v2]). O
In an earlier version of this paper (reference [VD-W4.v1]), we only considered regular
weak multiplier Hopf algebras and this result was obtained already, see Section 2 in [VD-
W4.v1]).

Let us now consider some of the results we have proven for general and regular separability
idempotents in [VD4.v2] and see what they give in the case of the canonical idempotent
of a weak multiplier Hopf algebra. Recall the distinguished linear functionals ¢p and @¢
on B and C respectively, defined and characterized by the formulas

(ppRE =1 and (t®ec)E =1,

see Proposition 1.9 in [VD4.v2].

Proposition 2.20. The distinguished linear functionals ¢p and @c, obtained for the
separability idempotent E, satisfy the following symmetric properties:

¢B(es(a)) = (a) and vc(et(a)) = e(a)
for all a € A.
Proof. We have the formula
(1®a)E(1@D) Zss 2)b

for all a,b € A (see e.g. in the proof of Lemma 2.17). If we apply ¢p on the first factor,
we obtain

vB(es(aqy))a@)b = ab.
If we apply a linear functional w we find ¢p(es(a’)) = w(ab) with

= (t®w)(A(e)(1@D).

(
Because (a’) = w(ab) we see that pp(es(a’)) = e(a’). By the fullness of the coproduct,
any element of A is of the form (¢ ® w)(A(a)(1 ® b). This proves the first formula of this
proposition. The other one is proven in a similar way. O

Ezistence of local units
From the general theory of (possibly non-regular) separability idempotents, we know that

there exist local units (cf. Proposition 1.10 in [VD4.v2]). As a consequence we get the
following result.

Proposition 2.21 The algebra A has local units.
Proof. Let a € A and assume that w is a linear functional on A so that w(ba) = 0 for all
be A. Then

(L@w)((1ab)(t®S)((ce1)A(p)(1®a))=0

for all b,c,p € A. We use that (c® 1)A(p) € A® A. We know that ((¢: ® S)A(p))(1 ® a)
belongs to A ® A. Therefore, we can cancel ¢ in the above equation and get

(t@w)(1eb)((teS)AP)(1®a)) = 0.
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Write ((t ® S)A(p))(1 ® a) as Y, p; ® ¢; and assume that the elements (p;) are linearly
independent. We find w(bg;) = 0 for all ¢ and all b € A. Replace b by p; and take the
sum over i. Because Y p;q; = £¢(p)a we get w(ei(p)a) = 0 for all p € A. This means that
w(za) =0 for all z € C.

We know that A = C'A and because we have left local units in C, there exists an element
x € C so that za = a. Then we see that w(a) = 0. This means that a € Aa and we know
that this implies that A has left local units. In a similar way, we find that A also has right
local units. This completes the proof. O
We see in the proof that we only need that B has right local units and that C' has left
local units. These results have a more easy proof in [VD4.v2].

Recall also that in earlier work on weak multiplier Hopf algebras, the existence of local units
was only obtained in the case of a regular weak multiplier Hopf algebra, see Proposition
4.9 in [VD-W3|.

We finish this section with a couple of remarks.

Remarks 2.22. i) As we see from the proof of Lemma 2.17 and from earlier arguments,
we find that (¢ ® €)((1 ® a)E) = e5(a) when a € A. The formula makes sense as an
equality of left multipliers of A. Remark that we do not expect (1 ® a)FE to belong to
B ® A. Similarly, we find (e ® ¢)(E(a ® 1)) = &¢(a) for a in A, now as right multipliers of
A. Again we do not expect E(A® 1) C A®C.

ii) On the other hand, we do have F(1® A) C B® Aand (A®1)E C A® C as we have
shown in the lemma. As we have seen before, if we apply € on the second leg in the first
case and on the first leg in the second case, we get

(t®e)(E(l1®a))=c¢(a) and (e®1)((a®@1)E) = gi(a)

where ¢/, : A— Band ¢} : A — C.

iii) From the proof of the lemma, we see that the range of €/, is the same as the range of
€s, namely B. Indeed, we have

ZES ®C GG_ZS b®a )

and using the fullness of the coproduct, we see that the range of e, is contained in the
range of ¢’s. Similarly, we can define ¢} by ¢}(a) = (¢ ® ¢)((a ® 1)E) and also ¢} and &,
have the same range, namely C'.

iv) In the regular case, we get

ei(a) = a@S e and et(a) = S Hag)aq)
(a) (a)

for a € A. We see that then
S(er(a)) = ei(a) and S(ey(a))es(a)

for all a. O
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It is somewhat remarkable that in general, the maps ¢/, and ¢} exist and have the same
range as the maps €5 and &; respectively, while it is not expected that the inverse of S
exists. We make more comments on this peculiarity in Section 3, where we discuss further
possible research.

These four counital maps are also considered in e.g. [B-G-L] but the notations are different.
For the convenience of the reader, in [K-VD] is included an appendix with a dictionary.
It includes the following formulas relating our notation with the ones used in [B-G-L]:

es(a)

M(a) el(a) = T(a), (2. 6)
€t((l) |_|L

(a), ei(a) =M (a). (2.7)

3. Examples and special cases

In this section we will treat some examples and special cases. The main purpose is to
illustrate results in Section 2 about the source and target algebras. However we will also
use some of the examples for the illustration of the general theory of weak multiplier Hopf
algebras because this has not yet been done in the earlier papers we wrote on the subject.

The groupoid examples

For completeness we begin with a very brief review of the two basic motivating examples
associated with a groupoid. We will not give details as they can be found in our earlier
papers on the subject (see [VD-W2] and [VD-W3]). On the other hand, we use these
examples to illustrate some of the statements we made earlier in this paper, as well as for
some other examples further in this section.

Example 3.1. i) Consider a groupoid G. First there is the algebra A, defined as the
space K (G) of complex functions on G with finite support and pointwise product. Recall
that the coproduct A on K(G) is defined by

| f(pq) if pq is defined,
AP = { 0 otherwise.

The pair (A, A) is a regular weak multiplier Hopf algebra (in the sense of Definitions 1.14
and 4.1 in [VD-W3]). The canonical idempotent E in M(A ® A) is given by the function
on pairs (p,q) in G x G that is 1 if pq is defined and 0 if this is not the case. The antipode
S is defined by (S(f))(p) = f(p~!) whenever f € K(G) and p € G.

In this example, the algebra A, is the algebra of all complex functions on G so that
f(p) = f(q) whenever p,q € G satisfy s(p) = s(q). It is naturally identified with the
algebra of all complex functions on the set G of units in G. The source map 5 from A to
Ay is defined by (e5(f))(p) = f(p~'p) whenever p € G and f € K(G). The image of the
source map £5(A), what we called in this paper the source algebra, is identified with the
algebra of complex functions with finite support on the units. Symmetrically, the algebra
Ay consists of functions f on G so that f(p) = f(q) if t(p) = t(q) for p,q € G. It is also
identified with the space of all complex functions on the units. The target map &; from
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A to Ay is defined by (g.(f))(p) = f(pp?!) for all p and f € K(G). The target algebra,
i.e. the image €;(A) of the target map, is again identified with the space of functions with
finite support on the units. Recall that these two algebras are subalgebras of the multiplier
algebra M (A) (here the algebra of all complex functions on G). Observe also that the
source and target algebras e5(A) and £,(A), can be strictly smaller than the algebras A,
and A; respectively. This happens when the set of units is infinite. In that case, we see
that A is indeed the multiplier algebra M (e5(A)) of €5(A) and similarly for the target
map.

ii) For the second case, we take the groupoid algebra CG of G. If we use p — X, for the
canonical embedding of G in CG, then if p,q € G, we have \,\; = A\pq if pg is defined
and 0 otherwise. The coproduct on CG is given by A(\,) = A, ® A, for all p € G. The
idempotent F is Y Ac® A\ where the sum is only taken over the units e of G. The antipode
is given by S(A\p) = A\,-1 for all p € G.

The symmetric pair of source and target maps is given by €5(\,) = e where e = s(p) and
et(Ap) = Ac where now e = t(p) for p € G. Here the source and target algebras coincide
and it is the algebra of the span of elements of the form A\, where e is a unit of G. Also
here the source and target algebras need not be unital and so can be strictly smaller then
their multiplier algebras. U
Recall that these two cases are dual (symmetric) to each other. The duality is given by
(f,A\p) = f(p) whenever f € K(G) and p € G. We will give more details (about this
duality) in [VD-W5] where we treat duality for (regular) weak multiplier Hopf algebras
with integrals.

Ezamples associated with separability idempotents

For the next example, we start with any separability idempotent. Later, we will consider
two special cases of this. The most important one will be constructed from the separability
idempotent that is the canonical idempotent of a given weak multiplier Hopf algebra. In
some sense, we isolate the source and target algebras with what remains of the original
coproduct.

These examples illustrate very well the use of different properties of the source and target
algebras, obtained in the previous section.

Recall from [VD4.v2] that a separability idempotent is an idempotent in the multiplier
algebra M (B ® C') of the tensor product of two non-degenerate algebras B and C with
certain properties. In particular there exist non-degenerate anti-homomorphisms Sp :
B — M(C) and S¢ : C — M(B) characterized by the formulas

Eb®1)=E(1®Sp()) and (1®c)E = (Sc(c) @ 1)E

whenever b € B and ¢ € C. There are also the unique linear functionals ¢ and pc on B
and C respectively, characterized by

(pp @) (E(1®c)) =c and (t®@ec)(b®1)E) =10
for all b € B and ¢ € C. We refer to [VD4.v2| for details.

We now construct a weak multiplier Hopf algebra from a separability idempotent in the
next proposition.
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Theorem 3.2. Let (B,C) be a symmetric pair of non-degenerate algebras and assume
that E is a separability idempotent in M (B ® C'). Let P = C ® B. There is a coproduct
Ap on P defined by

Ap(c®@b)=cRE®D

for c € C and b € B. The pair (P,Ap) is a weak multiplier Hopf algebra. The counit
ep is given by ep(c ® b) = ¢p(Sc(c)b). We also have ep(c ® b) = pc(cSp(b)). The
canonical idempotent Ep of (P,Ap) is 1® E®1. The antipode Sp is given by Sp(c®b) =
Sp(b) ®Sc(c) when b € B and ¢ € C. The source and target algebras are 1 ® B and C® 1
respectively and the source and target maps are

P(cob) =10 Sc(c)b and el(c@b) =cSp(b) @1

forallb € B and c € C. Inthese formulas, 1 is the identity in M (C) and M (B) respectively.
Proof. We will systematically use tp, 1p, etc. for objects related with P. For the objects
related with the original algebras, we will use no index.

i) The algebra P is non-degenerate and idempotent because this is true for its components
B and C.

ii) Because F € M(B ® C) we have that Ap(c ® b), defined as ¢ ® E ® b, belongs to
M(P ® P). Because E? = E, it is clear that Ap is a homomorphism. By assumption, we
have that E(1 ® C) and (B ® 1)E are subsets of B ® C. Therefore

Ap(P)1p®P)C PR P and (P®1p)Ap(P) C P® P.

The coproduct Ap is coassociative and (Ap ® tp)Ap(c®b) =cRERQE®Dbfor allbe B
and ¢ € C. This coproduct is full because E is assumed to be full (as in Definition 1.1 of
[VD4.v2]).

iii) Now we prove that there is a counit ep on (P, Ap). First define ep(c®b) = pc(cSp(b)).
For all b € B and ¢ € C' we have that

(tp®@ep)Ap(c®b) = (tp®ep)(c® E®Db)
= (tPp ® ¢c)(c® E(1® Sp(b)))
=(p®@ec)(c@Eb®1)) =c®b.

On the other hand, if we define /(¢ ® b) = pp(Sc(c)b) we will find similarly
(€ @1)Ap(c®b) =c®b

for all b € B and ¢ € C. Then, from the general theory, we know that ep and &, must be
the same (see e.g. the argument we gave in the preliminary section of this paper). In the
regular case we treat later, we will give another argument for this fact (see a remark after
the proof of Proposition 3.3). This proves the existence of the counit.

iv) Take any elements b,b’ € B and ¢, € C. Then
Ap(cab)(1®1ledet) =1 E1)(celadab).
If we replace ¢ by elements of the form Sp(b”)c”, the right hand side will be

1Ee)(cab o abl).
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Next we use that B is idempotent and that the map Sp is non-degenerate. Then we can
conclude from this that Ap(P)(1p ® P) = Ep(P® P) with Ep = 1® E® 1. Similarly we
find (P® 1p)Ap(P) = (P ® P)Ep and it follows that Ep is the canonical idempotent for
(P, Ap).

It is straightforward to verify that the legs of Ep commute. Moreover
(tpR@Ap)(Ep) =1 EQRE®1

and this is clearly (1p ® Ep)(Ep ® 1p).

v) We now define Sp(c ® b) = Sp(b) ® Sc(c) for all b and ¢ and we show that all the
conditions of Theorem 2.9 of [VD-W3] are fulfilled. This will complete the proof.

We consider the candidate for the generalized inverse R; of the canonical map 77 using
this expression for Sp. We get, using formally E(1) ® E() for E, that

Ri(cabad @b)=((tp2Sp)(c® E@b)(1®1xd V)
=c® E(l) & SB(b)C/ & Sc(E(g))b/.

That this maps P ® P to itself is a consequence of the property, obtained in Proposition
1.9 of [VD4.v2], saying that £y ® Sc(E@))V isin B® B.

Using this candidate for the antipode, we can calculate the candidates for the source and
target maps e’ and e. We find

el (c®b) = (c® Eq))(Sp(b) ® Sc(E ) = cSp(b) ® 1
el (c®b) = (Sp(Eq)) ® Sc(c))(Eg) ®b) = 1® Sc(c)b

for all b € B and ¢ € C. We have again used the Sweedler type notation for E and that
E1)ySc(E)) =1 and Sp(E())E>) =1 (see Proposition 1.6 in [VD4.v2]).

Finally we have to show that

Z 65(61(1))&(2) =a and Zssp(a(l))Sp(a(g)) = Sp(a)
(a) (a)

for all a = ¢ ® b. We find
ef (c® E(1))(Eg) ® b) = cSp(E1))Eg @b=c®b
proving the first equation. And
el (c® E1))Sp(E@) ®b) = (1® Sc(c)Eq))(Sp(b) ® So(E2)) = Sp(b) @ Sc(c).

Finally, we have to show that T1R1(p ® p') = Ep(p ® p’ for all p,p’ € P where T} is the
canonical map p®p' — Ap(p)(1®p') and where R; it its generalized inverse constructed
with the antipode Sp as above. With p=c® b and p’ = ¢ ® v/ we find

TiRi(p®p') = (c® Eny @ ESpb) @ 1) (1010 @)
= (O EhWeEyo)(1loledal)
=(1E®)(cabad )
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and this is what we need because Ep = (1@ E®1). In a similar way, we find T Re(p@p') =
(p ® p')Ep where Ty is the other canonical map and Ry its generalized inverse construct
with the antipode Sp

This proves that the candidate for the antipode satisfies all the requirements needed for
Theorem 2.9 of [VD-W3| and it completes the proof. O

We now consider the regular case. The result is as expected.

Theorem 3.3. If F is a regular separability idempotent in M (B ® C), then the weak
multiplier Hopf algebra (P, Ap), constructed in the previous proposition, is a regular weak
multiplier Hopf algebra.
Proof. There are different ways to prove this. We will use the original definitions of
regularity in both cases.

Recall that F is called regular if (E is a separability idempotent in M (C' ® B) where as
before ( is the flip map. Assume that this is the case. We then have to show that the pair
(P, A®P) is also a weak multiplier Hopf algebra. Here the algebra P is C'® B as before
while

ACOP(C ® b) = E(2) VIR c® E(l)

for b € B and ¢ € C. Define the isomorphism v: B® C — P by 7(b® ¢) = ¢®b. Then
the coproduct AP yields a coproduct A’ on B @ C' given by

A'(b@c) = b®E(2) ®E(1) X c

for b € B and ¢ € C. Because (FE is a separability idempotent in M (C ® B), it follows
from the previous proposition that (B ® C, A’) is a weak multiplier Hopf algebra. Then
this is also true for the pair (P, A®P). This completes the proof. O

Observe the following. Given b € B and ¢ € C' we have
(Sc(c)@1)E(b®1)=(1®c)E(1® Sp(b)) (3. 1)

and if we apply ¢ ® o we find that ¢(Sc(c)b) = pc(cSp(b)). This illustrates the
equality of the two forms of the counit in the formulation of Theorem 3.2. This argument
however only seems to work for a (semi-)regular separability idempotent because only in
that case we know that the elements in the equation (3.1) belong to B ® C.

In Theorem 3.2 we have associated a weak multiplier Hopf algebra to any separability
idempotent. On the other hand, we know that conversely, the canonical idempotent F of
a weak multiplier Hopf algebra is a separability idempotent in M (B ® C') where now B
and C are the source and target algebras. This is proven in Section 2 (Theorem 2.18).
What happens when we then apply the construction of Theorem 3.2 again is explained
the following proposition.

Proposition 3.4. Let (A, A) be a weak multiplier Hopf algebra. Consider the canonical
idempotent E as sitting in M (B ® C) where (B, C) is the symmetric pair of source and
target algebras. Associate a new weak multiplier Hopf algebra (P, Ap) as in Theorem 3.2.
Define v: P — M(A) by v(z®y) = xy for z € C and y € B. Then 7 is a non-degenerate
homomorphism. It satisfies Aoy = (y® ) o Ap and So~y =70 Sp.
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Proof. Because the source and target algebras B and C' are commuting subalgebras of
M(A), it follows that v is an algebra homomorphism from P to M (A). The image is CB.
Because of Proposition 2.10, we have CBA = A = ACB and so < is non-degenerate. It
extends to a unital homomorphism on the multiplier algebra of P.

For all y € B and = € C' we have
A(v(z©y)) = Alzy) = (z©y)E
while on the other hand
(Y@YAp(z@y) = (1@ (@ Ey) = (z21)E(1oy).

These expressions are the same as the element y commutes with the second leg of F.

For the antipode we find

Y(Sp(z ®y)) =v(SB(y) ® Sc(x)) = S(y)S(z) = S(zy) = S(v(z ®@y))

where we have again used that the element x of C' and the element y of B commute. [

Remark that in general, the map ~ is not injective. Take e.g. the weak multiplier Hopf
algebra constructed from a set X. The algebra A is the algebra K (X) of complex functions
with finite support and A(f)(p,¢) = 0 when p and ¢ are different while A(f)(p,p) = f(p).
This is a weak multiplier Hopf algebra. The canonical idempotent is the function X ® X
that is 1 on the diagonal and 0 everywhere else. Clearly the left and the right legs are all
of K(X). In particular B = C. The map 7 is the multiplication map from K (X x X) to
K (X) and this is not injective.

If the algebra A is unital, we can also show that yoe! = g;0y and yoel = £,0+. Indeed,
for all @ in A and z,y in C and B respectively, we have by Proposition 2.7

er(xzya) = xe(a)S(y).

If a = 1 we get e4(a) = 1 and so g;(ry) = zS(y). This means v(ef (z @ y)) = vSp(y) =
e(y(z ® y)). Similarly for e,. If the algebra is not unital, we can not argue like this
because the counital maps €, and ¢; have no obvious extensions from A to the multiplier
algebra M(A).

In [VD-W5], where we treat integrals and duality, we will consider this example again
and show that integrals on (P, Ap) automatically exist and therefore that we can obtain
a dual version of this example.

Discrete quantum groups

In what follows, we will use the term discrete quantum group for a regular multiplier Hopf
algebra (A, A) of discrete type with a (left) cointegral h satisfying the extra condition
that (h) = 1 (where ¢ is the counit). This is the case when h is an idempotent. Then
S(h) = h (where S is the antipode). Symmetrically, h is also a right cointegral.

It is shown in Proposition 3.11 of [VD4.v2] that A(h) is a separability idempotent in
M(A® A). So here B and C coincide with the original algebra A. The antipodal maps
Sp and S¢ are both nothing else but the antipode S on A. The distinguished linear
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functionals pp and pc are the right and the left integrals 1) and ¢ on (A, A), normalized
so that ¢(h) =¢(h) = 1.

Then as a consequence of Theorem 3.2, we get the following.

Proposition 3.5. Let (4, A) be a discrete quantum group and h the normalized cointe-
gral. The algebra P defined as A ® A is a regular weak multiplier Hopf algebra for the
coproduct Ap defined by Ap(a®b) = a® A(h) ® b with a,b € A. The counit £p is given
by the linear map a ® b — ¢(aS(b)). We also have ep(a ® b) = ¥(S(a)b). The canonical
multiplier Ep is 1 ® A(h) ® 1. The antipode Sp is given by Sp(a ®b) = S(b) ® S(a) when
a,b € A. The source and target algebras are

PPy=124 and ef(P)=A®1

S

and the source and target maps are given by
ePla®b)=1® S(a)b and ef(a®b)=aSh)®1

for all a,b € A. Here 1 is the identity in M (A). O
Again we have integrals and we can construct the dual. This will be done in [VD-W5].

A quantization of the groupoid associated with a group action

Let us start by considering the weak multiplier Hopf algebra associated with a groupoid
in Example 3.1.i. We can apply the result of Proposition 3.3.

Denote the space of units by X. The source and target algebras B and C' are identified
with the algebra K (X) of complex functions with finite support on X. Then the canonical
idempotent is a separability idempotent in C'(X x X)), the algebra of all complex functions
on X x X. It is the function with value 1 on the diagonal and 0 on other elements.

We get for P the algebra K (X x X) of all complex functions with finite support on X x X.
The element Ep is the function of four variables z,u,v,y in X that is 1 if u = v and 0
if u # v. The antipodal maps Sp and S¢ on B and C' are given by the identity map on
the algebra K (X). Therefore, the antipode Sp on K(X ® X) is given by the flip map. In
fact, the weak multiplier Hopf algebra we get in this way, is nothing else but the algebra
of functions on the trivial groupoid X x X where the product of two elements (z,u) and
(v,y) is only defined when u = v and then is (z,y).

It is also interesting to see what happens when we apply Proposition 3.4 in this case. We
leave it as an excercise to the reader.

We see that this has very little to do anymore with the original groupoid. And of course,
we end up with a special case of Proposition 3.2. For this, we just take any set X and
look at the above construction.

Let us now consider the groupoid that results from a group action on a set. So let X be
any set and assume that a group H acts on X, say from the left. Denote the action as
hox for x € X and h € H. Then there is a groupoid G associated as follows. One has

G ={(y,h,x) | z,y € X and h € H so that y = h>x}.
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The product of two elements (z, k,y') and (y, h, x) is defined if y = ¢’ and then
(z,k,y)(y, h,x) = (z,kh, ).
The set of units is X and the source and target maps are given by
s(y,h,x) =z and t(y, h,z) =y.

The set of units is considered as a subset of G by the embedding  — (z, e, z) where e is
the identity in H.

We can construct the weak multiplier Hopf algebras, associated with this groupoid, as
in Example 3.1. In the case where the group is trivial, we then get the example we just
mentioned above. If on the other hand, the space X is trivial (i.e. it consists only of one
point), then we get the multiplier Hopf algebras associated with the group H.

There is however another way to associate a weak multiplier Hopf algebra. It is a special
case of a construction that we will consider next.

The starting point is as in Theorem 3.2. We have a separability idempotent E in the
multiplier algebra M (B ® C) of the tensor product of two non-degenerate idempotent
algebras B and C. It need not be regular. Furthermore, we have a multiplier Hopf algebra
(Q,A). Here we assume that it is regular. We will explain why we need this condition for
the multiplier Hopf algebra.

We assume that @) acts from the left on C' and from the right on B. The actions are
denoted by g>c and b<qg when b € B, c € C and ¢ € Q. It is assumed that B is a right
@-module algebra and that C' is a left Q-module algebra. In particular, the two actions
are unital. Moreover, these data are required to satisfy

(E1)<q) ® Eg) = Eqy ® (> E)) (3. 2)

where we use the Sweedler type notation E' = E(;) ® E(3) and where the equation is given
a meaning by multiplying with an element b of B in the first factor from the left and with
an element ¢ of C' in the second factor from the right.

The underlying algebra P that we use in this example is a two-sided smash product of Q
with B and C. The construction has been studied for Hopf algebras (see e.g. [B-P-VO])
but not yet for multiplier Hopf algebras. However, the results and the arguments are
very similar to the theory of smash products as developed in [Dr-VD-Z]. Therefore, in
the following proposition, we do not give all the details. We concentrate on the correct
statements and briefly indicate how things are proven. Remark that the construction only
works fine in the case of a regular multiplier Hopf algebra. This is the reason why we need
regularity for (@, A).

Proposition 3.6. As above, assume that @ is a regular multiplier Hopf algebra, that
B is a right @-module algebra and that C is a left )-module algebra. Then the tensor
product C' ® Q ® B is an associative algebra P with the product defined as

(9)(a")

where b,b' € B, ¢,d € C and ¢,q' € Q. O
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Remark that the actions are assumed to be unital and therefore they provide the necessary
coverings in (3.3).

The proof of this result is straightforward. Also remark that the algebra P is idempotent
if this is the case for B and C.

The two-sided smash product can be considered in two ways as a twisted product in the
sense of [VD-VK]. First one considers the twisting of the algebras C' and QB (where QB
is the ordinary smash product of @ and B). In this case, the twist map is given by the
formula

qb®c»—>z ) B ¢) @ qayb

where b € B, c € C and g € ). For the second possibility, one takes the twisting of the
algebras CQ and B (where CQ is the smash product of C' and Q). Now the twist map is
given by the formula
bRcgr Y cqu) @ (baq)
(9)

where again b € B, ¢ € C and g € ). In the two cases, one now has to verify that the
twist map is compatible with the product in the two algebras (ensuring that the result
is an associative algebra). One easily verifies that the two constructions give the same
algebra and that the result is also the same as in the proposition above.

Just as in the case of smash products, one has obvious embeddings of B, C' and @ in the
multiplier algebra of P and if we identify these three algebras with their images in M (P),
we see that P is the linear span of elements cgb with b € B, ¢ € C and ¢ € ) and that we
have the commutation rules:

i) B and C commute,

ii) bg = Z( )4 )(bdQ(g)) for all b€ b and ¢ € Q,

iil) gc = Z(q (qay > c)q(z) for all c € C and q € Q.

Therefore we can view P as the algebra generated by B, C' and @) subject to these com-
mutation rules.

By definition we have that the map ¢ ® ¢ ® b — cqb is a linear bijection from C ® Q ® B
to P. However one also has various other maps that are also bijective. One can consider
e.g. the maps

b®q®c+— bgc
b®c®q+— beg
q®b®c— gbc

where always b € B, ¢ € C and ¢ € Q. This property will be used in the proof of
Proposition 3.7 below.

Also remark that this construction reduces to well-known constructions in the following
three special situations. If the multiplier Hopf algebra @ is trivial, then we obtain for P
simply the tensor product algebra C'® B. If the algebra B is trivial we obtain the smash
product C#Q@Q), constructed with the right action of @ on C' while if C is trivial, we get
the smash product Q#B, for the left action of B on C. Recall that in the original paper
[Dr-V-Z], we developed the theory for left actions. The reader can also have a look at
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Section 1 of the expanded version of [De-VD-W] found on the arXiv where the two types
of smash products are reviewed.

Then we are ready for the following example.

Proposition 3.7. Assume that B and C are non-degenerate idempotent algebras and
that F is a separability idempotent in M(B ® C). Let @ be a regular multiplier Hopf
algebra and assume that B is a right @-module algebra and C' a left @-module algebra.
Moreover assume the compatibility relation (3.2) as above.

Consider the two-sided smash product P as given in the previous proposition. Then A(q)
and F commute in the multiplier algebra of P ® P for all ¢ € @ and the two-sided smash
product P can be equipped with a coproduct Ap, defined by

Ap(cgb) = (c®@1)A(q)E(1®Db) (3. 4)

whenever b € B, c€ C and q € Q.

It makes of the pair (P,Ap) a weak multiplier Hopf algebra. The canonical idempotent
Ep is E, considered as sitting in M (P ® P). The counit ep is given by the linear map

qcb — e(q)pc(eSp(b)))

where ¢ is the distinguished linear functional on C' satisfying (1 ® p¢)E = 1 and where
Sp is used for the antipodal from B to M (C') associated with the separability idempotent
FE. The counit ep is also given by

cbq — pp(Sp(c)b)e(q)

where now p is the distinguished linear functional on B and Sp the antipodal map
from C to M(B). Here € is the counit on Q). The antipode Sp is given by Sp(cqb) =
Sp(b)S(q)Sc(c) when b € B, c € C and ¢ € Q. Here S is the antipode of the multiplier
Hopf algebra Q.

The source and target algebras for P are again the algebras B and C, as sitting in M (P)
and the source and target maps are given by

el (cqb) = (Sc(c) < q)b and ef (cqb) = c(q> Sp(b))

forall b € B, c € C' and q € (. Observe that we use the extensions of the actions to the
multiplier algebras.

Proof. First we remark that in the proof below, the coproduct, the counit, the antipode
for the regular multiplier Hopf algebra @) will be denoted as A, ¢ and S, without the
subscript (). For the coproduct, the counit and the antipode for the new weak multiplier
Hopf algebra P, we will use subscripts and write Ap, ep and Sp. We will use superscripts
for the counital maps and write £ and . For the antipodal maps associated with E we
write Sp and So. We also use pp and ¢¢ for the distinguished linear functionals on B
and C respectively.

i) First, it is not hard to show that F and A(q) for all ¢ € @ are elements of M (P ® P).
This is a consequence of the fact that the multiplier algebras of B, C' and @ all sit in
M (P) and similarly for tensor products.
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ii) We now show that E and A(g) commute in M (P ® P). Using the Sweedler notation,
both for E as before and for A(q) we get

ZE E2)q2)
= Zq (E1) 149(2)) @ E@2)q(3)
—Zq @ (1) > E))ae)
_Zq 2 E@) = A(QE.

In the above calculation, we first have used the commutation rule between B and @ (as
the first leg of F is in B), then the relation of the actions of ) on F as in formula (3.2) and
finally the commutation rule between C' and @ (as the second leg of E is in C'). Of course,
to make things precise, we need to cover at the right places with the right elements. This
can be done if we multiply from the left in the first factor with bp and from the right in
the second factor with rc, where b € B, ¢ € C and p,r € Q.

Then we can define Ap on P by the formula (3.4) in the formulation of the proposition.
Using the commutation rules, the fact that F is an idempotent, that it commutes with
elements A(q) and that A is a coproduct on @, it can be shown that Ap is a coproduct
on P. It is full.

It is also clear that F, as sitting in M (P ® P) has to be the canonical idempotent for Ap.

iii) We now prove that there is a counit and that it is given by the formulas in the
formulation of the proposition.

First define ep on P by ep(qcb) = e(q)pc(cSp(b)) for b,c,q in B, C,Q respectively. Ob-
serve that we use a different order of the elements b, c,q in this definition. Then we get
for all b, ¢, ¢ that

(tp®ep)Ap(cgb) = (tp@ep)((c® 1)A(q) E(1 ®D))
= Z cq Ewer(ae Eeb)

—ZCQ@)E e(q(2))pc(E@2)Sp (b))

= CqE(l)bSOC’(E(Z)) = cqb.

If on the other hand, we define €, on P by the formula &5(cbq) = pr(Sc(c)b))e(q), a
similar calculation will give then that

(ep @ tp)Ap(cgb) = cqb
for all b, ¢, q.
It then follows from the general theory that €, = ep and that this is the counit.

In the regular case, we consider after the proof of this proposition, we can give a direct
argument for the equality of these two expressions for the counit, just as we did in the
simpler case in Theorem 3.2 (see a remark after the proof of Theorem 3.3).
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This takes care of the counit.

iv) Let us now look at the antipode and the source and target maps. It is expected that
the antipode Sp must coincide with Sg, Sc, Sg on B, C, @ respectively.

It can be verified that Sp defined in this way, is an anti-homomorphism from P to M (P).
For this one has to argue that the definition is compatible with the commutation rules
between the component B, C, Q. We will need to use this further in our calculations.

In order to use Theorem 2.9 of [VD-W3| again to prove that (P, Ap) is a weak multiplier
Hopf algebra, we first must show that the candidates for the maps R; and Rs, constructed
with the candidate for the antipode map P ® P to itself. We do this for R;.

We have

Ri(cgb® C/q/bl) = Z CE(l)Q(l) & SP(E(Q)q(Q)b)C/quI
(9)
=Y cEmyaa) © Se(0)S(42))Sc(E)d ¢V
(9)

forc,d € C, b,V € Band q,q' € Q. Then we first use that E(;)®Sc(E(2))b” is in Bo B for
allb” € B as we proved in Proposition 1.9 of [VD4.v2]. We use that also .y q(1)®5(q(2))¢
isin Q®Q for all ¢,¢q € Q. All the time, we have to shuffle elements of B C’ and Q@ but
this will not present problems. We finally get that Ry(cqb®c'¢'t') € P® P. The argument
for Ry is similar.

In order to prove the next conditions, we first calculate the candidates for the counital
maps ESP and sg. For all b, ¢, g we find

+ (cqb) = ZSP cEyam) Ee)qe)b

—ZSP (1€d(1)) E(2)q2)b

= ZS q(1))Sc(c)SB(E1)) E2)q2)b
(9)

= S(qay)Sc(e)qeb
(@)

= Slqa))ae)(Sc(e) <qe)b
(9)
= (Sc(c) < q)b.
In a similar way find

ef (cqb) = c(q> Sp(b))

for all b, ¢, q in B, C, @ respectively. We use here the extension of an action to the multiplier
algebra. If e.g. ¢ € @ and m € M(C) we can define ¢ <m by the requirement ¢ < (mc) =
2 (g (a(1) 9m)q(a) <c (see Proposition 4.7 in [Dr-VD-Z]).

Next we verify that T1R; is given by left multiplication by E. For this, it is enough to
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verify that E(cgb® 1) = (1 ® el )Ap(cqb) for all b, ¢, q. For the left hand side we have

E(CQb &® 1) = cE(l)qb X E(2)
= cany () 942)b @ Eg)
(q)

= ca Eqb @ g2 > B
(q)

= cquEq) ® qz) > (E(2)Sp(b))
(@)

= cquyEq) @ (q2) > E2))(a3) > S (D))
(@)

= cqu)(Eq) 94e2) ® Eg)(qs) > Sp(b))
(@)

= cEqyqa) ® E)(qe) > Sp(d))
(9)

= EBuyeqn) @ Eg)(ge) > Ss(d)).
(@)

We find precisely (¢ ® e’ )Ap(cqb). In a similar way we find that Th Ry is given by right
multiplication with F.

v) Finally, the only thing left is to show that

> _pw)Se(pe)pe =p  and Y Sp(pa)pe)Se(pe) = Spp)
(p) (p)

for all p € P. We do this e.g. for the first one. We use that

> pa)See)peE = Y epa))Sp(pe)-
(p) (p)

Now, if p = cgb we get using the Sweedler notation for E that

> et (p)Sp(pe) = D e (canyEq)ae Epb
() (a)
= caq) > (S(Eq)))ae) Eb
(a)
= Z cqSB(E1y)E@2)b = cqb.
()

The other formula is proven in a similarly way. This completes the proof. O
Of course, the result in Theorem 3.2 is a special case of the above. Just remark that we
have to reformulate the formulas in Theorem 3.3 by considering the algebra P, defined as
C ® B as the algebra generated by B and C, subject to the commutation of elements of B
and elements of C' as in i) above. Elements in P are then linear combinations of products
cb with b € B and ¢ in C. The coproduct Ap is now given as Ap(cb) = (c® 1)E(1 ® b)
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in M(P® P). Also Ps; and P, are identified with M (B) and M (C), as sitting in M (P)
whereas the source and target maps are

eP(eb) = Sc(e)b and el (cb) = cSp(b)
when b € B and c € C.

Consider now the regular case. The following is again expected.

Proposition 3.8. If F is a regular separability idempotent, then (P,Ap) is a regular
weak multiplier Hopf algebra.

Proof. We could give a direct argument as for the proof of Theorem 3.3. However, here
we choose another, simpler way.

If F is regular, we know that the antipodal maps Sp and S¢ are anti-isomorphisms from
B to C' and from C' to B respectively. Because @ is also assumed to be a regular multiplier
Hopf algebra, also its antipode S'is bijective from @ to itself. This all implies that Sp will
map P into itself and that it will be bijective. This is equivalent with saying that (P, Ap)
is a regular weak multiplier Hopf algebra. O
We finish by giving another argument for the equality of the two expressions for the counit
in the regular case.

For all b, ¢, ¢ we have, using again the Sweedler type notation for F,
Eqyb®c(g> Eg) = (E1) <q)b @ cE(y).
This implies that
Eqy @ c(g> (E)Sp(b))) = ((Sc(c)Eqy) <q)b @ Ey).
If we apply pp ® @c, we find
po(clq>Sp(b))) = ¢((Sc(c) <q)b). (3. 5)

for all b, ¢, q. This is one equation we will use.

If again we start with equation (3.2), apply ¢p on the first factor and use fullness of E
we find that pp(b<q) = £(q)¢p(b). Similarly, if we apply pc on the second leg, we will
get oo (grc) = e(q)pc(c). In other words, the distinguished linear functionals 5 and ¢¢
are invariant under the actions of Q.

Define ep and €/, as in the proof of Proposition 3.7. We will use the above results to give
a proof of the equality of these counits.

We find on the one hand

ep(cqb) = Z‘EP(Q(z)(S_l(Q(U) > c)b)
(@)
=Y elg@)ec((S™ (gq) > ) (b))
(@)

= 0o ((S(q) > ¢)Sp (b))

35


https://doi.org/10.20944/preprints202011.0293.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2020 d0i:10.20944/preprints202011.0293.v1

while on the other hand
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So, we need to show that

pc((S7Ha) > )Sa(b)) = ¢r(Sc(c)(baS7(q))) (3. 6)
for all b, ¢, q.
For the left hand side of (3.6) we find

po((STHa) > e)Ss(D) =Y welqe > (S ga)) > ) SB(b))
()

= @c(c(gr Sp(b)).

We have used that ¢¢ is invariant under the action of Q). For the right hand side of (3.6)
we get,

pB(Sc(c)(b<157(q)) =D en((Selc) (bS5 (ge) <qq)
(@)

= »B(Sc(c) <q)b).
Here we have used that ¢p is invariant under the action of Q.
Then the equation (3.6) follows from the equation (3.5)

Again, the argument does not seem to work if E is not regular. Fortunately, we do not
need it as we have obtained the equality in another way.

We have not included examples of weak multiplier Hopf *-algebras. In fact, the basic
examples (Example 3.1) are weak multiplier Hopf *-algebras for the obvious involutive
structures. If in the example of Theorem 3.2, the algebras B and C are *-algebras and if
E is self-adjoint, then the associated pair (P, Ap) will be a weak multiplier Hopf *-algebra
for the involutive structure on B ® C' obtained from the ones on the factors B and C.
For a discrete quantum group (as in Proposition 3.5), we obtain a weak multiplier Hopf
*-algebra if the original discrete quantum group is a multiplier Hopf *-algebra of discrete
type. Finally, if in Proposition 3.7 we start with a self-adjoint separability idempotent and
and with appropriate actions of a multiplier Hopf *-algebra, again we will end up with a
weak multiplier Hopf *-algebra.

All these statements are more or less straightforward and we leave the verification as an
exercise to the reader.

4. Conclusions and further research
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In this paper, we have studied the source and target maps, as well as the source and target
algebras, associated with a weak multiplier Hopf algebra. We have obtained results in the
general case in Section 2. And we have payed special attention to the regular case. It is
still not clear if the nicer results, obtained in the regular case, can be pushed forward to
the non-regular case so that also there, better results can be shown. We expect however
that this will not be easy, neither to prove these results if they are true, nor to find counter
examples if they are not.

In fact, non-regular examples are not so easy to construct. Of course, there are the
examples of Hopf algebras with a non-invertible antipode. But at this moment, we do not
know of examples of multiplier Hopf algebras with a non-regular coproduct, that is with
a coproduct A on a non-degenerate algebra A so that elements of the form A(a)(b® 1)
and (1 ® c¢)A(a) do not always are in A® A for a,b,c € A. More research here is needed.

Section 3 of the paper is devoted to examples. All of the examples we give are generaliza-
tions of known examples of finite-dimensional weak Hopf algebras. The duals of some of
these examples, included in [VD-W5], are probably not yet considered, even in the case
of finite-dimensional weak Hopf algebras. Nevertheless, it would still be desirable to find
more examples and in particular, examples that are not simply generalizations of known
examples of weak Hopf algebras. We refer also to the modification procedure as explained
in [VD5] to construct new examples of regular weak multiplier Hopf algebras.

The separability elements for non-unital algebras play an important role in Section 3. It
is certainly worthwhile to carry out a more thorough study of these separable non-unital
algebras and the associated separability idempotents (and to relate our approach with
other approaches in the literature). This is partly done already in [VD4.vl]. A new
version of this paper contains more information [VD4.v2]. However, there is still the open
question of the existence of non-regular separability idempotents as posed in Section 5 of
[VD4.v2].

Some of the examples suggest certain generalizations of the theory. Consider e.g. a multi-
plier Hopf algebra (A, A) of discrete type. Denote by h a left cointegral. Either it can be
normalized so that (h) = 1 and hence h? = h (where ¢ is the counit), or we have (h) = 0
and then h? = 0. The first case is considered in Proposition 3.5 of this paper. The other
case does not fit into this theory because h and hence A(h) is not an idempotent. Still,
it has most of the other properties of a separability idempotent. The two antipodal maps
exist. Indeed, on one side we simply have

(1®a)A(h) = (S(a) ® 1)A(h).

The other side is different because h is not necessarily a right cointegral. However, by the
uniqueness of cointegrals, there is a homomorphism 7 : A — C defined by ha = ~y(a)h for
all a. Then

Ah)(a®1)=A(h)(1® S (a))

where S'(a) = >2(,) 7(a))S(ag)). This is discussed in Section 5 of [VD4.v2].

Finally, as we mentioned already in the introduction, the material studied in this paper re-
lates intimately with other research. On the one hand there is the study of weak multiplier
bialgebras as introduced in [B-G-L]). We also have [K-VD] where a Larson-Sweedler type
theorem is proven. Roughly it says that a weak multiplier bialgebra with enough integrals
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is a weak multiplier Hopf algebra. Here we have properties of the source and target maps
and source and target algebras, proven in the context of weak multiplier bialgebras and
separability idempotents.

The other obvious link with the literature is the theory of multiplier Hopf algebroids as de-
veloped in [T-VD1]. In particular, there is the paper [T-VD2]| where the relation between
weak multiplier Hopf algebras and multiplier Hopf algebroids is studied. It seems inter-
esting to observe that there are various possible reasons why a multiplier Hopf algebroid
does not have an underlying weak multiplier Hopf algebra.

We would like to emphasize again the importance of this paper, with the results on the
source and target algebras and source and target maps for the study of integrals on weak
multiplier Hopf algebras and the construction of the dual in the case enough such integrals
exist. We refer to [VD-W5].
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