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Abstract. In the paper, by convolution theorem for the Laplace transforms

and analytic techniques, the author finds necessary and sufficient conditions

for complete monotonicity, monotonicity, and inequalities of several functions
involving polygamma functions. By these results, the author derives a lower

bound of a function related to the sectional curvature of the manifold of the

beta distributions. Finally, the author poses several guesses and open problems
related to monotonicity, complete monotonicity, and inequalities of several

functions involving polygamma functions.
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1. Motivations

In the literature [1, Section 6.4], the function

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0

and its logarithmic derivative ψ(z) = [ln Γ(z)]′ = Γ′(z)
Γ(z) are respectively called

Euler’s gamma function and digamma function. Further, the functions ψ′(z),
ψ′′(z), ψ′′′(z), and ψ(4)(z) are known as trigamma, tetragamma, pentagamma,

2010 Mathematics Subject Classification. Primary 33B15; Secondary 26A48, 26A51, 26D07,

44A10, 53C25, 60E05, 62H10.
Key words and phrases. necessary and sufficient condition; complete monotonicity; monotonicity;
inequality; polygamma function; lower bound; sectional curvature; manifold; beta distribution;

convolution theorem for the Laplace transforms and analytic techniques; guess; open problem.
This paper was typeset usingAMS-LATEX.

1

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 November 2020                   doi:10.20944/preprints202011.0315.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

mailto: F. Qi <qifeng618@gmail.com>
mailto: F. Qi <qifeng618@hotmail.com>
mailto: F. Qi <qifeng618@qq.com>
https://qifeng618.wordpress.com
https://orcid.org/0000-0001-6239-2968
https://doi.org/10.20944/preprints202011.0315.v1
http://creativecommons.org/licenses/by/4.0/


2 F. QI

and hexagamma functions respectively. As a whole, all the derivatives ψ(k)(z) for
k ∈ {0} ∪ N are known as polygamma functions.

Recall from Chapter XIII in [9], Chapter 1 in [21], and Chapter IV in [22] that,
if a function f(x) on an interval I has derivatives of all orders on I and satisfies
(−1)nf (n)(x) ≥ 0 for x ∈ I and n ∈ {0}∪N, where N denotes the set of all positive
integers, then we call f(x) a completely monotonic function on I. Theorem 12b
in [22, p. 161] characterized that a function f(x) is completely monotonic on (0,∞)
if and only if

f(x) =

∫ ∞
0

e−xtdσ(t), x ∈ (0,∞), (1.1)

where σ(s) is non-decreasing and the integral in (1.1) converges for x ∈ (0,∞). The
integral representation (1.1) means that a function f(x) is completely monotonic
on (0,∞) if and only if it is a Laplace transform of a non-decreasing measure σ(s)
on (0,∞).

In [7, Proposition 3] and [8, Proposition 13], the sectional curvature K(x, y) of
the manifold of the beta distributions was given by

K(x, y) =
1

4

ψ′′(x)ψ′′(y)ψ′′(x+ y)
[
ψ′(x)
ψ′′(x) + ψ′(y)

ψ′′(y) −
ψ′(x+y)
ψ′′(x+y)

]
[ψ′(x)ψ′(x+ y) + ψ′(y)ψ′(x+ y)− ψ′(x)ψ′(y)]2

.

In [7, Proposition 4] and [8, Proposition 14], the following limits were computed:

lim
y→0+

K(x, y) = lim
y→0+

K(y, x) =
1

2

(
3

2
− ψ′(x)ψ′′′(x)

[ψ′′(x)]2

)
,

lim
y→∞

K(x, y) = lim
y→∞

K(y, x) =
1

4

Φ′(x)

Φ2(x)
,

lim
(x,y)→(0+,0+)

K(x, y) = 0, lim
(x,y)→(∞,∞)

K(x, y) = −1

2
,

lim
(x,y)→(0+,∞)

K(x, y) = lim
(x,y)→(∞,0+)

K(x, y) = −1

4
,

where

Φ(x) = xψ′(x)− 1 = x

[
ψ′(x)− 1

x

]
on (0,∞).

In [14, Theorem 4.1] and [16, Theorem 4], the author presented that

(1) if and only if α ≥ 2, the function Hα(x) = Φ′(x) + αΦ2(x) is completely
monotonic on (0,∞)

(2) if and only if α ≤ 1, the function −Hα(x) is completely monotonic on
(0,∞);

(3) the double inequality −2 < Φ′(x)
Φ2(x) < −1 is valid on (0,∞) and sharp in the

sense that the constants −2 and −1 cannot be replaced by any bigger and
smaller numbers respectively.

In [14, Theorem 1.1], the author found the following necessary and sufficient con-
ditions and limits:

(1) if and only if β ≥ 2, the function Hβ(x) = Φ′(x)
Φβ(x)

is decreasing on (0,∞),

with the limits

lim
x→0+

Hβ(x) =

{
−1, β = 2

0, β > 2
and lim

x→∞
Hβ(x) =

{
−2, β = 2

−∞, β > 2;
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LOWER BOUND OF SECTIONAL CURVATURE OF MANIFOLD 3

(2) if β ≤ 1, the function Hβ(x) is increasing on (0,∞), with the limits

Hβ(x)→

{
−∞, x→ 0+

0, x→∞.

In [10], the author considered the functions

Jk,λk(x) = Φ(2k+1)(x) + λk
[
Φ(k)(x)

]2
and Jk,µk(x) =

Φ(2k+1)(x)[
(−1)kΦ(k)(x)

]µk
on (0,∞) for k ∈ {0} ∪ N and λk, µk ∈ R. It is clear that J0,λ0

(x) = Hλ0
(x)

and J0,µ0(x) = Hµ0(x) for λ0 = α and µ0 = β. In [10, Theorems 3.1 and 4.1],
the author discovered the following necessary and sufficient conditions, limits, and
double inequality:

(1) if and only if λk ≥ (2k+2)!
k!(k+1)! , the function Jk,λk(x) is completely monotonic

on (0,∞);

(2) if and only if λk ≤ 1
2

(2k+2)!
k!(k+1)! , the function −Jk,λk(x) is completely mono-

tonic on (0,∞);
(3) if and only if µk ≥ 2, the function Jk,µk(x) is decreasing on (0,∞), with

the limits

lim
x→0+

Jk,µk(x) =

−
1

2

(2k + 2)!

k!(k + 1)!
, µk = 2

0, µk > 2

and

lim
x→∞

Jk,µk(x) =

−
(2k + 2)!

k!(k + 1)!
, µk = 2

−∞, µk > 2;

(4) if µk ≤ 1, the function Jk,µk(x) is increasing on (0,∞), with the limits

Jk,µk(x)→

{
−∞, x→ 0+

0, x→∞;

(5) the double inequality

− (2k + 2)!

k!(k + 1)!
<

Φ(2k+1)(x)[
Φ(k)(x)

]2 < −1

2

(2k + 2)!

k!(k + 1)!

is valid on (0,∞) and sharp in the sense that the lower and upper bounds
cannot be replaced by any larger and smaller numbers respectively.

In the paper [15], the author considered the functions

G(x) = xΦ(x)− 1

2
= x

[
xψ′(x)− 1

]
− 1

2
= x2

[
ψ′(x)− 1

x
− 1

2x2

]
,

Gθk(x) = G(2k+1)(x) + θk
[
G(k)(x)

]2
, Gτk(x) =

G(2k+1)(x)[
(−1)kG(k)(x)

]τk
on (0,∞) for k ∈ {0} ∪ N and θk, τk ∈ R. In [15, Theorems 3.1 and 4.1], the au-
thor presented the following necessary and sufficient conditions, limits, and double
inequalities:

(1) if and only if θk ≥ 3(2k+2)!
k!(k+1)! , the function Gk,θk(x) is completely monotonic

on (0,∞);
(2) if and only if θk ≤ 0, the function −Gk,θk(x) is completely monotonic on

(0,∞);
(3) if and only if τk ≥ 2, the function Gk,τk(x) is decreasing on (0,∞);
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4 F. QI

(4) if τk ≤ 1, the function Gk,τk(x) is increasing on (0,∞);
(5) only if

τk ≤



ψ′(1), k = 0

− ψ′′′(1)

ψ′(1)ψ′′(1)
, k = 1

k − 1

k

ψ(k−1)(1)ψ(2k+1)(1)

ψ(k)(1)ψ(2k)(1)
, k ≥ 2,

the function Gk,τk(x) is increasing on (0,∞);
(6) the following two limits are valid:

lim
x→0+

Gk,τk(x) =


−2τ0 , k = 0

6ψ′′(1), k = 1

2(2k + 1)

(k − 1)τkkτk−1

ψ(2k)(1)∣∣ψ(k−1)(1)
∣∣ , k ≥ 2

and

lim
x→∞

Gk,τk(x) =


−∞, τk > 2

−3(2k + 2)!

k!(k + 1)!
, τk = 2

0, τk < 2;

(7) the double inequality

−3(2k + 2)!

k!(k + 1)!
< Gk,2(x) <


−4, k = 0

6ψ′′(1), k = 1

2(2k + 1)

(k − 1)2k

ψ(2k)(1)∣∣ψ(k−1)(1)
∣∣ , k ≥ 2

is valid on (0,∞) and sharp in the sense that the lower and upper bounds
cannot be replaced by any greater and less numbers respectively.

In [7, Proposition 5], the sectional curvature K(x, y) was proved to be negative
and bounded from below. On 19 February 2020, Alice Le Brigant, the first author
of the papers [7, 8] told the author of this paper via e-mails and the ResearchGate
that the lower bound of K(x, y) should be − 1

2 .

Conjecture 1.1 ([8, pp. 12–13]). For x, y > 0, the sectional curvature K(x, y)

(1) has a lower bound − 1
2 , accurately, K(x, y) > − 1

2 ;
(2) is decreasing in both x and y.

In this paper, we consider the function

K(x) = K(x, x) =
1

4

ψ′′(x)

[ψ′(x)]2
2ψ′(x)ψ′′(2x)− ψ′(2x)ψ′′(x)

[ψ′(x)− 2ψ′(2x)]2
(1.2)

on (0,∞) and prove the sharp double inequality

0 > K(x) > −1

2
(1.3)

which verifies the first conjecture in Conjecture 1.1 along the half-line x = y > 0 in
the first quadrant on R2.
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2. Lemmas

The following lemmas are necessary in this paper.

Lemma 2.1. For k ∈ N, we have the limits

lim
x→0+

[
xkψ(k−1)(x)

]
= (−1)k(k − 1)! (2.1)

and

lim
x→∞

[
xkψ(k)(x)

]
= (−1)k−1(k − 1)!. (2.2)

Proof. These two limits can be found in [5, p. 9896, (13)], [11, p. 260, (2.2)], [18,
p. 1689, (3.3)], [19, p. 286, (2.6)], [20, p. 81, (41)], and [23, p. 769], for example. �

Lemma 2.2 (Convolution theorem for the Laplace transforms [22, pp. 91–92]). Let
fk(t) for k = 1, 2 be piecewise continuous in arbitrary finite intervals included in
(0,∞). If there exist some constants Mk > 0 and ck ≥ 0 such that |fk(t)| ≤Mke

ckt

for k = 1, 2, then∫ ∞
0

[ ∫ t

0

f1(u)f2(t− u)du

]
e−stdt =

∫ ∞
0

f1(u)e−sudu

∫ ∞
0

f2(v)e−svdv.

Lemma 2.3. Let

g(t) =


t

1− e−t
, t 6= 0;

1, t = 0.

Then the following conclusions are valid:

(1) the function g(t)
(a) satisfies the identity

g(t)− g(−t) = t (2.3)

on (−∞,∞);
(b) is infinitely differentiable on (−∞,∞), increasing from (−∞,∞) onto

(0,∞), convex on (−∞,∞), and logarithmically concave on (−∞,∞);

(2) the function g(2t)
g2(t) is increasing from (−∞, 0) onto (0, 1) and decreasing from

(0,∞) onto (0, 1);
(3) the double inequality

0 <
g(2t)

g2(t)
< 1 (2.4)

is valid on (0,∞) and sharp in the sense that the lower bound 0 and the
upper bound 1 cannot be replaced by any larger scalar and any smaller scalar
respectively;

(4) for any fixed t > 0, the function g(st)g((1− s)t) is increasing in s ∈
(
0, 1

2

)
.

Proof. The verification of the identity (2.3) is straightforward.
The differentiability, monotonicity, and convexity of g(t) come from utilization

of [14, Lemma 2.3].
Direct computation yields

[ln g(t)]′′ = [ln g(−t)]′′ = −
e2t − et

(
t2 + 2

)
+ 1

(et − 1)2t2

= − 1

(et − 1)2t2

∞∑
k=4

[2k − (k − 1)k − 2]
tk

k!
< 0

on (0,∞). Hence, the function g(t) is logarithmically concave on (−∞,∞).
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6 F. QI

Standard calculation shows

g(2t)

g2(t)
=

2(et − 1)

(et + 1)t
→
{

1, t→ 0

0, t→ ±∞

and [
g(2t)

g2(t)

]′
=

[
g(−2t)

g2(−t)

]′
= −2(e2t − 2tet − 1)

(et + 1)2t2

= − 4

(et + 1)2t2

∞∑
k=3

(
2k−1 − k

)
tk

k!
< 0,

on (0,∞). This implies the monotonicity of g(2t)
g2(t) and leads to the double inequal-

ity (2.4) and its sharpness.
Direct differentiation gives

d[g(st)g((1− s)t)]
ds

= tg′(st)g((1− s)t)− tg(st)g′((1− s)t)

= tg(st)g((1− s)t)
[
g′(st)

g(st)
− g′((1− s)t)
g((1− s)t)

]
= tg(st)g((1− s)t)

[
d ln g(s)

ds

∣∣∣∣
s=st

− d ln g(s)

ds

∣∣∣∣
s=(1−s)t

]
> 0

for 0 < s < 1
2 , where we used in the last step the facts that st < (1 − s)t for

0 < s < 1
2 and that g(t) is logarithmically concave on (−∞,∞). Accordingly, for

any fixed t > 0, the function g(st)g((1− s)t) is increasing in s ∈
(
0, 1

2

)
. The proof

of Lemma 2.3 is complete. �

Lemma 2.4 ([12, Theorem 6.1]). If f(x) is differentiable and logarithmically con-
cave on (−∞,∞), then the product f(x)f(x0 − x) for any fixed number x0 ∈ R is
increasing in x ∈

(
−∞, x0

2

)
and decreasing in x ∈

(
x0

2 ,∞
)
.

Lemma 2.5 ([10, Lemma 2.2]). For k ≥ 0, we have

(−1)kxk+1Φ(k)(x)→


k!, x→ 0+;

k!

2
, x→∞.

(2.5)

Lemma 2.6 ([10, Lemma 2.6]). For k,m ∈ N, the function

Vk,m(x) =
(1− x)k+m + (1 + x)k+m

(1− x)k + (1 + x)k

is increasing in x ∈ [0, 1], with Vk,m(0) = 1 and Vk,m(1) = 2m.

Lemma 2.7. For t > u > 0, the function

Wt(u) =

[
e−(t−u)/2 − e−u/2

]
(t− u)(

1− e−u/2
)[

1− e−(t−u)/2
]

is increasing in u ∈ (0, t), with limits

lim
u→t−

Wt(u) = 2 and lim
u→0+

Wt(u) = −∞.

Proof. It is easy to see that

lim
u→t−

Wt(u) =
limu→t−

[
e−(t−u)/2 − e−u/2

]
1− e−u/2

lim
u→t−

t− u
1− e−(t−u)/2

= 2.
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Direct differentiation yields

dW (2t, 2u)

du
=

2

[
e4u + (et + 1)(t− u− 1)e3u − 4(t− u)et+2u

+(t− u+ 1)et+u + (t− u+ 1)e2t+u − e2t

]
(eu − 1)2(et − eu)2

,
2W1(t, u)

(eu − 1)2(et − eu)2
,

lim
u→t−

W1(t, u) = 0,

dW1(t, u)

du
= eu

[
4e3u + (3t− 3u− 4)e2u(1 + et)

− 4(2t− 2u− 1)et+u + (t− u)(1 + et)et
]

, euW2(t, u)

→ 0, u→ t−,

dW2(t, u)

du
= 12e3u + (6t− 6u− 11)(1 + et)e2u

− 4(2t− 2u− 3)et+u − et(1 + et)

→ (e2t − 1)et

> 0,

d2W2(t, u)

du2
= 4eu

[
9e2u + (3t− 3u− 7)(1 + et)eu − et(2t− 2u− 5)

]
, 4euW3(t, u)

→ 8e2t
(
et − 1

)
, u→ t−

> 0,

dW3(t, u)

du
= 18e2u + (3t− 3u− 10)(1 + et)eu + 2et

→ 8et(et − 1), u→ t−

> 0,

d2W3(t, u)

du2
= eu

[
36eu + (3t− 3u− 13)et + 3t− 3u− 13

]
, euW4(t, u)

→ et
(
23et − 13

)
, u→ t−

> 0,

dW4(t, u)

du
= 3
(
12eu − et − 1

)
→ 3

(
11et − 1

)
, u→ t−

> 0,

d2W4(t, u)

du2
= 36eu

> 0

for t > 0 and u ∈ (0, t). Accordingly, all the functions W`(t, u) for 2 ≤ ` ≤ 4 are
positive, increasing, and convex in u ∈ (0, t). Therefore, the function W1(t, u) is
positive and increasing in u ∈ (0, t). Hence, the function Wt(u) is increasing in
u ∈ (0, t). As a result, the inequality Wt(u) < 2 is sharp for t > 0 and u ∈ (0, t).
The proof of Lemma 2.7 is complete. �
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8 F. QI

Lemma 2.8. For k ∈ {0} ∪ N and a ≥ 0, we have

lim
x→∞

(
xk+1

[
ψ(k)(x+ a)− ψ(k)(x)

])
= (−1)kk!a. (2.6)

For k, ` ∈ N and a ≥ 0, we have

lim
x→∞

(
xk+`+1

[
ψ(k)(x)ψ(`+1)(x)− ψ(k+1)(x)ψ(`)(x)

])
= (−1)k+`(k − 1)!(`− 1)!(k − `) (2.7)

and

lim
x→∞

(
xk+`+1

[
ψ(k)(x)ψ(`)(x+ a)− ψ(`)(x)ψ(k)(x+ a)

])
= (−1)k+`(k − 1)!(`− 1)!(k − `)a. (2.8)

Proof. It is straightforward that

lim
x→∞

(
xk+1

[
ψ(k)(x+ a)− ψ(k)(x)

])
= lim
x→∞

[
xk+1

∫ x+a

x

ψ(k+1)(u)du

]
= lim
x→∞

[
xk+1

∫ a

0

ψ(k+1)(x+ u)du

]
=

∫ a

0

lim
x→∞

[
xk+1ψ(k+1)(x+ u)

]
du

=

∫ a

0

lim
x→∞

[
(x+ u)k+1ψ(k+1)(x+ u)

]
lim
x→∞

xk+1

(x+ u)k+1
du

=

∫ a

0

(−1)kk!du

= (−1)kk!a,

where we used the limit (2.2).
It is also straightforward that

lim
x→∞

(
xk+`+1

[
ψ(k)(x)ψ(`+1)(x)− ψ(k+1)(x)ψ(`)(x)

])
= lim
x→∞

([
xkψ(k)(x)

][
x`+1ψ(`+1)(x)

]
−
[
xk+1ψ(k+1)(x)

][
x`ψ(`)(x)

])
= (−1)k−1(k − 1)!(−1)``!− (−1)kk!(−1)`−1(`− 1)!

= (−1)k+`−1[(k − 1)!`!− k!(`− 1)!]

= (−1)k+`(k − 1)!(`− 1)!(k − `)
and

lim
x→∞

(
xk+`+1

[
ψ(k)(x)ψ(`)(x+ a)− ψ(`)(x)ψ(k)(x+ a)

])
= lim
x→∞

(
xk+`+1ψ(k)(x)ψ(k)(x+ a)

[
ψ(`)(x+ a)

ψ(k)(x+ a)
− ψ(`)(x)

ψ(k)(x)

])
= lim
x→∞

(
x`+1

(x+ a)k
[
xkψ(k)(x)

][
(x+ a)kψ(k)(x+ a)

] ∫ x+a

x

[
ψ(`)(u)

ψ(k)(u)

]′
du

)
= lim
x→∞

[
xkψ(k)(x)

]
lim
x→∞

[
(x+ a)kψ(k)(x+ a)

]
× lim
x→∞

[
x`+1

(x+ a)k

∫ a

0

ψ(`+1)(x+ u)ψ(k)(x+ u)− ψ(`)(x+ u)ψ(k+1)(x+ u)

[ψ(k)(x+ u)]2
du

]
= [(k − 1)!]2

∫ a

0

lim
x→∞

[
x`+1

(x+ a)k
(x+ u)2k

xk+`+1

]
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× lim
x→∞

xk+`+1
[
ψ(`+1)(x+ u)ψ(k)(x+ u)− ψ(`)(x+ u)ψ(k+1)(x+ u)

]
[(x+ u)kψ(k)(x+ u)]2

du

= (−1)k+`(k − 1)!(`− 1)!(k − `)a,

where we used the limits (2.2) and (2.7). The proof of Lemma 2.8 is complete. �

3. Necessary and sufficient conditions of complete monotonicity

For verifying the lower bound in the double inequality (1.3), we find a lower
bound for the second factor in (1.2) and more.

Theorem 3.1. Let p > m ≥ n > q ≥ 0 be integers such that m+n = p+ q and let

Fp,m,n,q;cp,m,n,q (x) =

{∣∣ψ(m)(x)
∣∣∣∣ψ(n)(x)

∣∣− cp,m,n,q∣∣ψ(p)(x)
∣∣, q = 0∣∣ψ(m)(x)

∣∣∣∣ψ(n)(x)
∣∣− cp,m,n,q∣∣ψ(p)(x)

∣∣∣∣ψ(q)(x)
∣∣, q ≥ 1

for cp,m,n,q ∈ R and x ∈ (0,∞). Then

(1) for q ≥ 0, if and only if

cp,m,n,q ≤


(m− 1)!(n− 1)!

(p− 1)!
, q = 0

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
, q ≥ 1,

the function Fp,m,n,q;cp,m,n,q (x) is completely monotonic in x ∈ (0,∞);

(2) for q ≥ 1, if and only if cp,m,n,q ≥ m!n!
p!q! , the function −Fp,m,n,q;cp,m,n,q (x)

is completely monotonic in x ∈ (0,∞);
(3) the double inequality

− (m+ n− 1)!

(m− 1)!(n− 1)!
<

ψ(m+n)(x)

ψ(m)(x)ψ(n)(x)
< 0 (3.1)

for m,n ∈ N and the double inequality

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
<
ψ(m)(x)ψ(n)(x)

ψ(p)(x)ψ(q)(x)
<
m!n!

p!q!
(3.2)

for m,n, p, q ∈ N with p > m ≥ n > q ≥ 1 and m+ n = p+ q are valid on
(0,∞) and sharp in the sense that the lower and upper bounds cannot be
replaced by any larger and smaller scalars respectively.

Proof. The sufficient conditions were proved in [3, Theorem 4.1].
The first derivative of the function Fp,m,n,q;cp,m,n,q (x) is

∂Fp,m,n,0;cp,m,n,0(x)

∂x
= (−1)m+n

[
ψ(m+1)(x)ψ(n)(x) + ψ(m)(x)ψ(n+1)(x)

]
− cp,m,n,0(−1)p+1ψ(p+1)(x)

and, for q ≥ 1,

∂Fp,m,n,q;cp,m,n,q (x)

∂x
= (−1)m+n

[
ψ(m+1)(x)ψ(n)(x) + ψ(m)(x)ψ(n+1)(x)

]
− cp,m,n,q(−1)p+q

[
ψ(p+1)(x)ψ(q)(x) + ψ(p)(x)ψ(q+1)(x)

]
.

If ±Fp,m,n,q;cp,m,n,q (x) is completely monotonic, then ±F ′p,m,n,q(x; cp,m,n,q) ≤ 0
which are equivalent to

cp,m,n,0 Q
(−1)m+n

[
ψ(m+1)(x)ψ(n)(x) + ψ(m)(x)ψ(n+1)(x)

]
(−1)p+1ψ(p+1)(x)
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=


xm+2ψ(m+1)(x)xn+1ψ(n)(x) + xm+1ψ(m)(x)xn+2ψ(n+1)(x)

xm+n+3−p−2(−1)m+n+p+1xp+2ψ(p+1)(x)

xm+1ψ(m+1)(x)xnψ(n)(x) + xmψ(m)(x)xn+1ψ(n+1)(x)

xm+n+1−p−1(−1)m+n+p+1xp+1ψ(p+1)(x)

=


xm+2ψ(m+1)(x)xn+1ψ(n)(x) + xm+1ψ(m)(x)xn+2ψ(n+1)(x)

(−x)[xp+2ψ(p+1)(x)]

xm+1ψ(m+1)(x)xnψ(n)(x) + xmψ(m)(x)xn+1ψ(n+1)(x)

−xp+1ψ(p+1)(x)

→


(−1)m+2(m+ 1)!(−1)n+1n! + (−1)m+1m!(−1)n+2(n+ 1)!

−
(
limx→0+ x

)
[(−1)p+2(p+ 1)!]

, x→ 0+

(−1)mm!(−1)n−1(n− 1)! + (−1)m−1(m− 1)!(−1)nn!

−(−1)pp!
, x→∞

=


∞
m!(n− 1)! + (m− 1)!n!

p!

=


∞
(m− 1)!(n− 1)!

(p− 1)!

and

cp,m,n,q Q
(−1)m+n

[
ψ(m+1)(x)ψ(n)(x) + ψ(m)(x)ψ(n+1)(x)

]
(−1)p+q

[
ψ(p+1)(x)ψ(q)(x) + ψ(p)(x)ψ(q+1)(x)

]
=


xm+2ψ(m+1)(x)xn+1ψ(n)(x) + xm+1ψ(m)(x)xn+2ψ(n+1)(x)

xp+2ψ(p+1)(x)xq+1ψ(q)(x) + xp+1ψ(p)(x)xq+2ψ(q+1)(x)

xm+1ψ(m+1)(x)xnψ(n)(x) + xmψ(m)(x)xn+1ψ(n+1)(x)

xp+1ψ(p+1)(x)xqψ(q)(x) + xpψ(p)(x)xq+1ψ(q+1)(x)

→


(−1)m+2(m+ 1)!(−1)n+1n! + (−1)m+1m!(−1)n+2(n+ 1)!

(−1)p+2(p+ 1)!(−1)q+1q! + (−1)p+1p!(−1)q+2(q + 1)!
, x→ 0+

(−1)mm!(−1)n−1(n− 1)! + (−1)m−1(m− 1)!(−1)nn!

(−1)pp!(−1)q−1(q − 1)! + (−1)p−1(p− 1)!(−1)qq!
, x→∞

=


(m+ 1)!n! +m!(n+ 1)!

(p+ 1)!q! + p!(q + 1)!

m!(n− 1)! + (m− 1)!n!

p!(q − 1)! + (p− 1)!q!

=


m!n!

p!q!

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!

for m+n = p+q, where we used the limits (2.1) and (2.2) in Lemma 2.1. Moreover,
for p > m ≥ n > q > 0 such that m+ n = p+ q, we have

p/m− 1

n/q − 1
=

q

m
< 1⇐⇒ mn

pq
> 1⇐⇒ m!n!

p!q!
>

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
.

Hence, necessary conditions are proved.
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The double inequalities (3.1) and (3.2) come from the positivity of the functions
±Fp,m,n,q;cp,m,n,q (x) and their sharpness can be concluded from the limits

lim
x→0+

ψ(m+n)(x)

ψ(m)(x)ψ(n)(x)
= lim
x→0+

xm+n+1ψ(m+n)(x)

xm+1ψ(m)(x)xn+1ψ(n)(x)
lim
x→0+

x = 0,

lim
x→∞

ψ(m+n)(x)

ψ(m)(x)ψ(n)(x)
= lim
x→∞

xm+nψ(m+n)(x)

xmψ(m)(x)xnψ(n)(x)
= − (m+ n− 1)!

(m− 1)!(n− 1)!
,

lim
x→0+

ψ(m)(x)ψ(n)(x)

ψ(p)(x)ψ(q)(x)
= lim
x→0+

xm+1ψ(m)(x)xn+1ψ(n)(x)

xp+1ψ(p)(x)xq+1ψ(q)(x)
=
m!n!

p!q!
,

lim
x→∞

ψ(m)(x)ψ(n)(x)

ψ(p)(x)ψ(q)(x)
= lim
x→∞

xmψ(m)(x)xnψ(n)(x)

xpψ(p)(x)xqψ(q)(x)
=

(m− 1)!(n− 1)!

(p− 1)!(q − 1)!
,

where we used the limits (2.1) and (2.2) in Lemma 2.1 once again. The proof of
Theorem 3.1 is complete. �

Theorem 3.2. For k ∈ N and x ∈ (0,∞), let

Fk,ηk(x) = ψ(2k)(x) + ηk
[
ψ(k)(x)

]2
and Fk,ϑk(x) =

ψ(2k)(x)

[(−1)k+1ψ(k)(x)]ϑk
.

Then the following conclusions are true:

(1) if and only if ηk ≥ 1
2

(2k)!
(k−1)!k! , the function Fk,ηk(x) is completely monotonic

on (0,∞);
(2) if and only if ηk ≤ 0, the function −Fk,ηk(x) is completely monotonic on

(0,∞);
(3) if and only if ϑk ≥ 2, the function Fk,ϑk(x) is decreasing on (0,∞);

(4) if and only if ϑk ≤ 2k+1
k+1 , the function Fk,ϑk(x) is increasing on (0,∞);

(5) the following limits are valid:

lim
x→0+

Fk,ϑk(x) =



− (2k)!

[(k)!]
2k+1
k+1

, ϑk =
2k + 1

k + 1

0, ϑk >
2k + 1

k + 1

−∞, ϑk <
2k + 1

k + 1

and

lim
x→∞

Fk,ϑk(x) =


− (2k − 1)!

[(k − 1)!]2
, ϑk = 2

−∞, ϑk > 2

0, ϑk < 2;

(6) the double inequality

− 1

2

(2k)!

(k − 1)!k!
<

ψ(2k)(x)

[(−1)k+1ψ(k)(x)]2
< 0 (3.3)

is valid on (0,∞) and sharp in the sense that the lower and upper bounds
cannot be replaced by any greater and less numbers respectively.

Proof. Taking q = 0, m = n = k, and p = 2k in Theorem 3.1 leads to that the
function [

ψ(k)(x)
]2

+ c2k,k,k,0ψ
(2k)(x)

is completely monotonic on (0,∞) if and only if c2k,k,k,0 ≤ [(k−1)!]2

(2k−1)! . This result is

equivalent to that the function Fk,ηk(x) is completely monotonic on (0,∞) if and
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only if ηk ≥ (2k−1)!
[(k−1)!]2 = 1

2
(2k)!

(k−1)!k! . For completeness, in what follows, we will prove

this result in details once again.
If Fk,ηk(x) is completely monotonic on (0,∞), then its first derivative

[Fk,ηk(x)]′ = ψ(2k+1)(x) + 2ηkψ
(k)(x)ψ(k+1)(x) ≤ 0

which can be rewritten as

ηk ≥ −
1

2

ψ(2k+1)(x)

ψ(k)(x)ψ(k+1)(x)
= −1

2

x2k+1ψ(2k+1)(x)

[xkψ(k)(x)][xk+1ψ(k+1)(x)]

→ −1

2

(−1)2k(2k)!

(−1)k−1(k − 1)!(−1)kk!
=

1

2

(2k)!

(k − 1)!k!

as x→∞, where we used the limit (2.2).
If −Fk,ηk(x) is completely monotonic on (0,∞), then its first derivative

ηk ≤ −
1

2

ψ(2k+1)(x)

ψ(k)(x)ψ(k+1)(x)
= −1

2

x
[
x2k+2ψ(2k+1)(x)

]
[xk+1ψ(k)(x)][xk+2ψ(k+1)(x)]

→ 0

as x→ 0+, where we used the limit (2.1).
From the integral representation

ψ(n)(z) = (−1)n+1

∫ ∞
0

tn

1− e−t
e−ztdt (3.4)

for <(z) > 0 and n ∈ N, see [1, p. 260, 6.4.1], it follows that (−1)k+1ψ(k)(x) for all
k ∈ N are completely monotonic on (0,∞). Further considering the fact that the
sum of finite completely monotonic functions is also completely monotonic, we see
that the necessary condition ηk ≤ 0 is also sufficient for −Fk,ηk(x) to be completely
monotonic on (0,∞).

By Lemma 2.2 and the integral representation (3.4), we obtain

Fk,ηk(x) = ηk

[∫ ∞
0

tk−1g(t)e−xtdt

]2

−
∫ ∞

0

t2k−1g(t)e−xtdt

= ηk

∫ ∞
0

[∫ t

0

uk−1(t− u)k−1g(u)g(t− u)du

]
e−xtdt−

∫ ∞
0

t2k−1g(t)e−xtdt

=

∫ ∞
0

[
ηk

∫ t

0

uk−1(t− u)k−1g(u)g(t− u)du− t2k−1g(t)

]
e−xtdt,

where, by logarithmic convexity of g(t) in Lemma 2.3 and by Lemma 2.4,∫ t

0

uk−1(t− u)k−1g(u)g(t− u)du ≤ g2

(
t

2

)∫ t

0

uk−1(t− u)k−1du

= g2

(
t

2

)
t2k−1

∫ 1

0

sk−1(1− s)k−1ds

= g2

(
t

2

)
t2k−1B(k, k)

=
[(k − 1)!]2

(2k − 1)!
t2k−1g2

(
t

2

)
and ∫ t

0

uk−1(t− u)k−1g(u)g(t− u)du ≥ g(0)g(t)

∫ t

0

uk−1(t− u)k−1du

=
[(k − 1)!]2

(2k − 1)!
t2k−1g(t).

Accordingly, we acquire
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ηk

∫ t

0

uk−1(t− u)k−1g(u)g(t− u)du− t2k−1g(t)

≤
[
ηk

[(k − 1)!]2

(2k − 1)!
− g(t)

g2
(
t
2

)]t2k−1g2

(
t

2

)
and

ηk

∫ t

0

uk−1(t− u)k−1g(u)g(t− u)du− t2k−1g(t) ≥
(
ηk

[(k − 1)!]2

(2k − 1)!
− 1

)
t2k−1g(t).

Therefore, the sharp double inequality (2.4) implies that

ηk

∫ t

0

uk−1(t− u)k−1g(u)g(t− u)du− t2k−1g(t) ≤ 0

on (0,∞) only if ηk ≤ 0, while

ηk

∫ t

0

uk−1(t− u)k−1g(u)g(t− u)du− t2k−1g(t) ≥ 0

on (0,∞) only if ηk ≥ (2k−1)!
[(k−1)!]2 = 1

2
(2k)!

(k−1)!k! . Consequently, the function Fk,ηk(x)

is completely monotonic on (0,∞) only if ηk ≥ 1
2

(2k)!
(k−1)!k! , while −Fk,ηk(x) is com-

pletely monotonic on (0,∞) only if ηk ≤ 0.
Direct computation gives

F′k,ϑk(x) = (−1)k+1ψ
(2k+1)(x)ψ(k)(x)− ϑkψ(2k)(x)ψ(k+1)(x)

[(−1)k+1ψ(k)(x)]ϑk+1
.

Taking p = 2k + 1, q = k, m = 2k, and n = k + 1 in Theorem 3.1 yields that the
function

(−1)k+1
[
ψ(2k)(x)ψ(k+1)(x)− c2k+1,2k,k+1,kψ

(2k+1)(x)ψ(k)(x)
]

and its negativity are completely monotonic on (0,∞) if and only if

c2k+1,2k,k+1,k ≤
(2k − 1)!k!

(2k)!(k − 1)!
=

1

2

and

c2k+1,2k,k+1,k ≥
(2k)!(k + 1)!

(2k + 1)!k!
=

k + 1

2k + 1

respectively. Therefore, when ϑk ≥ 2, the derivative F′k,ϑk(x) ≤ 0 on (0,∞); when

ϑk ≤ 2k+1
k+1 , the derivative F′k,ϑk(x) ≥ 0 on (0,∞). For completeness, in what

follows, we will prove these sufficient conditions in details once again.
If F′k,ϑk(x) ≤ 0, then

ϑk ≥
ψ(2k+1)(x)ψ(k)(x)

ψ(2k)(x)ψ(k+1)(x)

=

[
x2k+1ψ(2k+1)(x)

][
xkψ(k)(x)

]
[x2kψ(2k)(x)][xk+1ψ(k+1)(x)]

→ (−1)2k(2k)!(−1)k−1(k − 1)!

(−1)2k−1(2k − 1)!(−1)kk!
, x→∞

= 2,

where we used the limit (2.2).
If F′k,ϑk(x) ≥ 0, then

ϑk ≤
ψ(2k+1)(x)ψ(k)(x)

ψ(2k)(x)ψ(k+1)(x)
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=

[
x2k+2ψ(2k+1)(x)

][
xk+1ψ(k)(x)

]
[x2k+1ψ(2k)(x)][xk+2ψ(k+1)(x)]

→ (−1)2k+2(2k + 1)!(−1)k+1k!

(−1)2k+1(2k)!(−1)k+2(k + 1)!
, x→ 0+

=
2k + 1

k + 1
,

where we used the limit (2.1).
By the integral representation (3.4), we acquire

ψ(2k+1)(x)ψ(k)(x)

ψ(2k)(x)ψ(k+1)(x)
=

∫∞
0

t2k+1

1−e−t e
−xtdt

∫∞
0

tk

1−e−t e
−xtdt∫∞

0
t2k

1−e−t e
−xtdt

∫∞
0

tk+1

1−e−t e
−xtdt

=

∫∞
0
t2kg(t)e−xtdt

∫∞
0
tk−1g(t)e−xtdt∫∞

0
t2k−1g(t)e−xtdt

∫∞
0
tkg(t)e−xtdt

=

∫∞
0

[∫ t
0
u2k(t− u)k−1g(u)g(t− u)du

]
e−xtdt∫∞

0

[∫ t
0
u2k−1(t− u)kg(u)g(t− u)du

]
e−xtdt

.

By changing the variable u = (1+v)t
2 , we have∫ t

0
u2k(t− u)k−1g(u)g(t− u)du∫ t

0
u2k−1(t− u)kg(u)g(t− u)du

=

∫ 1

0

[
(1 + v)k+1 + (1− v)k+1

](
1− v2

)k−1
g
(

1+v
2 t
)
g
(

1−v
2 t
)
dv∫ 1

0

[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k
g
(

1+v
2 t
)
g
(

1−v
2 t
)
dv

→
∫ 1

0

[
(1 + v)k+1 + (1− v)k+1

](
1− v2

)k−1
dv∫ 1

0

[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k
dv

=
23kB(2k + 1, k)

23kB(2k, k + 1)

= 2

as t→ 0+, where we used the formula∫ 1

0

[
(1 + x)µ−1(1− x)ν−1 + (1 + x)ν−1(1− x)µ−1

]
dx = 2µ+ν−1B(µ, ν)

= 2µ+ν−1 Γ(µ)Γ(ν)

Γ(µ+ ν)

(3.5)

for <(µ),<(ν) > 0 in [4, p. 321, 3.214]. Let

Sk(t) =

∫ 1

0

[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k
g

(
1 + v

2
t

)
g

(
1− v

2
t

)
dv

− 1

2

∫ 1

0

[
(1 + v)k+1 + (1− v)k+1

](
1− v2

)k−1
g

(
1 + v

2
t

)
g

(
1− v

2
t

)
dv

=

∫ 1

0

Tk−1(v)
[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k−1
g

(
1 + v

2
t

)
g

(
1− v

2
t

)
dv,

where

Tk(v) =


1− v2 − 1

2

(1− v)k+2 + (1 + v)k+2

(1− v)k + (1 + v)k
, k ∈ N

1− 3v2

2
, k = 0
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with Tk(0) = 1
2 for k ∈ {0}∪N, Tk(1) = −2 for k ∈ N, and T0(1) = −1. Combining

this with Lemma 2.6, we reveal that Tk(v) for k ∈ {0} ∪ N is decreasing on [0, 1]
and has only one zero v0 ∈ (0, 1). Employing the fourth conclusion in Lemma 2.3
yields

Sk(t) =

∫ v0

0

Tk−1(v)
[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k−1
g

(
1 + v

2
t

)
g

(
1− v

2
t

)
dv

+

∫ 1

v0

Tk−1(v)
[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k−1
g

(
1 + v

2
t

)
g

(
1− v

2
t

)
dv

≥ g
(

1 + v0

2
t

)
g

(
1− v0

2
t

)∫ v0

0

Tk−1(v)
[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k−1
dv

+g

(
1 + v0

2
t

)
g

(
1− v0

2
t

)∫ 1

v0

Tk−1(v)
[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k−1
dv

= g

(
1 + v0

2
t

)
g

(
1− v0

2
t

)∫ 1

0

Tk−1(v)
[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k−1
dv

= 0,

where, by the formula (3.5),∫ 1

0

Tk−1(v)
[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k−1
dv

=



∫ 1

0

1− 3v2

2
dv, k = 1∫ 1

0

[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k
dv

−1

2

∫ 1

0

[
(1− v)k+1 + (1 + v)k+1

](
1− v2

)k−1
dv, k ≥ 2

=

{
0, k = 1

23kB(2k, k + 1)− 23k−1B(2k + 1, k), k ≥ 2

= 0

for k ∈ N. This means that∫ t
0
u2k(t− u)k−1g(u)g(t− u)du∫ t

0
u2k−1(t− u)kg(u)g(t− u)du

< 2.

on (0,∞) for k ∈ N. Accordingly, if ϑk ≥ 2,

(−1)k+1
[
ϑkψ

(2k)(x)ψ(k+1)(x)− ψ(2k+1)(x)ψ(k)(x)
]

= ϑk

∫ ∞
0

[∫ t

0

u2k−1(t− u)kg(u)g(t− u)du

]
e−xtdt

−
∫ ∞

0

[∫ t

0

u2k(t− u)k−1g(u)g(t− u)du

]
e−xtdt

=

∫ ∞
0

[
ϑk −

∫ t
0
u2k(t− u)k−1g(u)g(t− u)du∫ t

0
u2k−1(t− u)kg(u)g(t− u)du

]
×
[∫ t

0

u2k−1(t− u)kg(u)g(t− u)du

]
e−xtdt

is positive on (0,∞). In other words, when ϑk ≥ 2, the first derivative F′k,ϑk(x) is

negative on (0,∞). Consequently, when ϑk ≥ 2, the function Fk,ϑk(x) is decreasing
on (0,∞).
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It is not difficult to verify that[
(1 + v)k+1 + (1− v)k+1

](
1− v2

)k−1 −
[
(1 + v)k−1 + (1− v)k−1

](
1− v2

)k
= 2v

[
(1 + v)k − (1− v)k

](
1− v2

)k−1
> 0

for v ∈ (0,∞) and k ∈ N. This implies that∫ t
0
u2k(t− u)k−1g(u)g(t− u)du∫ t

0
u2k−1(t− u)kg(u)g(t− u)du

≥ 1

on (0,∞) for k ∈ N. Therefore, when ϑk ≤ 1 < 2k+1
k+1 , the function Fk,ϑk(x) is

increasing on (0,∞).
By Lemma 2.1, we obtain

lim
x→0+

Fk,ϑk(x) =
limx→0+

[
x2k+1ψ(2k)(x)

](
limx→0+ [(−1)k+1xk+1ψ(k)(x)]

)ϑk lim
x→0+

x(k+1)ϑk−(2k+1)

=
(−1)2k+1(2k)!

[(k)!]ϑk
lim
x→0+

x(k+1)ϑk−(2k+1)

=



− (2k)!

[(k)!]
2k+1
k+1

, ϑk =
2k + 1

k + 1
;

0, ϑk >
2k + 1

k + 1
;

−∞, ϑk <
2k + 1

k + 1

and

lim
x→∞

Fk,ϑk(x) =
limx→∞

[
x2kψ(2k)(x)

](
limx→∞[(−1)k+1xkψ(k)(x)]

)ϑk lim
x→∞

x(ϑk−2)k

=
(−1)2k−1(2k − 1)!

[(k − 1)!]ϑk
lim
x→∞

x(ϑk−2)k

=


− (2k − 1)!

[(k − 1)!]2
, ϑk = 2;

−∞, ϑk > 2;

0, ϑk < 2.

The proof of Theorem 3.2 is complete. �

4. A completely monotonic function involving tetragamma function

For verifying the lower bound in the double inequality (1.3), we establish an
upper bound for the third factor in (1.2) and more.

Theorem 4.1. If and only if ν ≥ 2, the function

Iν(x) = ν
[
ψ′(x)− 2ψ′(2x)

]2 − 2ψ′(x)ψ′′(2x) + ψ′(2x)ψ′′(x)

is completely monotonic on (0,∞). Consequently, the double inequality

0 <
2ψ′(x)ψ′′(2x)− ψ′(2x)ψ′′(x)

[ψ′(x)− 2ψ′(2x)]2
< 2 (4.1)

is valid on (0,∞) and sharp in the sense that the lower bound 0 and the upper bound
2 cannot be replaced by any greater number and any less number.
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Proof. Utilizing the duplication formula

ψ(2z) =
1

2
ψ(z) +

1

2
ψ

(
z +

1

2

)
+ ln 2

in [1, p. 259, 6.3.8] gives

ψ′(2z) =
1

4

[
ψ′(z) + ψ′

(
z +

1

2

)]
(4.2)

and

ψ′′(2z) =
1

8

[
ψ′′(z) + ψ′′

(
z +

1

2

)]
. (4.3)

Then

4Iν(x) = ν

[
ψ′(x)− ψ′

(
x+

1

2

)]2

− ψ′(x)ψ′′
(
x+

1

2

)
+ ψ′

(
x+

1

2

)
ψ′′(x). (4.4)

By the integral representation (3.4) and Lemma 2.2, we obtain

4Iν(x) = ν

[∫ ∞
0

g(t)
(
1− e−t/2

)
e−xtdt

]2

−
∫ ∞

0

g(t)e−xtdt

∫ ∞
0

te−t/2g(t)e−xtdt

+

∫ ∞
0

e−t/2g(t)e−xtdt

∫ ∞
0

tg(t)e−xtdt

= ν

∫ ∞
0

[∫ t

0

g(u)
(
1− e−u/2

)
g(t− u)

[
1− e−(t−u)/2

]
du

]
e−xtdt

−
∫ ∞

0

[∫ t

0

g(u)(t− u)e−(t−u)/2g(t− u)du

]
e−xtdt

+

∫ ∞
0

[∫ t

0

e−u/2g(u)(t− u)g(t− u)du

]
e−xtdt

=

∫ ∞
0

[∫ t

0

(
ν −

[
e−(t−u)/2 − e−u/2

]
(t− u)(

1− e−u/2
)[

1− e−(t−u)/2
])

×
(
1− e−u/2

)[
1− e−(t−u)/2

]
g(u)g(t− u)du

]
e−xtdt.

Employing Lemma 2.7 and the positivity of g(t) yields that, when ν ≥ 2, the
function 4Iν(x) is completely monotonic on (0,∞).

By (4.4), if Iν(x) is completely monotonic on (0,∞), then its first derivative is

4I ′ν(x) = 2ν

[
ψ′(x)− ψ′

(
x+

1

2

)][
ψ′′(x)− ψ′′

(
x+

1

2

)]
− ψ′(x)ψ′′′

(
x+

1

2

)
+ ψ′

(
x+

1

2

)
ψ′′′(x)

≤ 0

which is equivalent to

ν ≥ 1

2

ψ′(x)ψ′′′
(
x+ 1

2

)
− ψ′

(
x+ 1

2

)
ψ′′′(x)[

ψ′(x)− ψ′
(
x+ 1

2

)][
ψ′′(x)− ψ′′

(
x+ 1

2

)]
=

1

2

x5
[
ψ′(x)ψ′′′

(
x+ 1

2

)
− ψ′

(
x+ 1

2

)
ψ′′′(x)

](
x2
[
ψ′(x)− ψ′

(
x+ 1

2

)])(
x3
[
ψ′′(x)− ψ′′

(
x+ 1

2

)])
→ 1

2

(−1)1+3(1− 1)!(3− 1)!(1− 3) 1
2[

(−1)11! 1
2

][
(−1)22! 1

2

] , x→∞

= 2,

where we used the limits (2.6) and (2.8) in Lemma 2.8.
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Since K(x, y) < 0 was proved in [7, Proposition 5], by the express (1.2), the lower
bound in (4.1) is immediate. The upper bound of (4.1) comes from the complete
monotonicity of the function Iν(x). The sharpness of the double inequality (4.1)
can be deduced from the limits

lim
x→0+

2ψ′(x)ψ′′(2x)− ψ′(2x)ψ′′(x)

[ψ′(x)− 2ψ′(2x)]2

= lim
x→0+

ψ′(x)ψ′′
(
x+ 1

2

)
− ψ′

(
x+ 1

2

)
ψ′′(x)[

ψ′(x)− ψ′
(
x+ 1

2

)]2
= lim
x→0+

x
[
x2ψ′(x)

]
ψ′′
(
x+ 1

2

)
− ψ′

(
x+ 1

2

)[
x3ψ′′(x)

][
x2ψ′(x)− x2ψ′

(
x+ 1

2

)]2 lim
x→0+

x

=
0(−1)21!ψ′′

(
1
2

)
− ψ′

(
1
2

)
(−1)32!

[(−1)21!− 0]2
0

= 0

and

lim
x→∞

2ψ′(x)ψ′′(2x)− ψ′(2x)ψ′′(x)

[ψ′(x)− 2ψ′(2x)]2

= lim
x→∞

ψ′(x)ψ′′
(
x+ 1

2

)
− ψ′

(
x+ 1

2

)
ψ′′(x)[

ψ′(x)− ψ′
(
x+ 1

2

)]2
= lim
x→∞

x4
[
ψ′(x)ψ′′

(
x+ 1

2

)
− ψ′

(
x+ 1

2

)
ψ′′(x)

]
x4
[
ψ′(x)− ψ′

(
x+ 1

2

)]2
=

(−1)1+2(1− 1)!(2− 1)!(1− 2) 1
2[

−(−1)11! 1
2

]2
= 2,

where we used the formulas (4.2) and (4.3), the limit (2.1) in Lemma 2.1, and the
limits (2.6) and (2.8) in Lemma 2.8. The proof of Theorem 4.1 is complete. �

5. The lower bound of sectional curvature

In this section, we prove the double inequality (1.3) and its sharpness.

Theorem 5.1. For x > 0, the double inequality 0 > K(x) > − 1
2 is valid on (0,∞)

and sharp in the sense that the lower bound − 1
2 and the upper bound 0 cannot be

replaced by any larger scalar and any smaller scalar respectively.

Proof. By the double inequality (3.3) for k = 1 in Theorem 3.2, we obtain

−1 <
ψ′′(x)

[ψ′(x)]2
< 0

on (0,∞). Combining this double inequality with the double inequality (4.1) gives

−2 <
ψ′′(x)

[ψ′(x)]2
2ψ′(x)ψ′′(2x)− ψ′(2x)ψ′′(x)

[ψ′(x)− 2ψ′(2x)]2
< 0

which is equivalent to

−1

2
<

1

4

ψ′′(x)

[ψ′(x)]2
2ψ′(x)ψ′′(2x)− ψ′(2x)ψ′′(x)

[ψ′(x)− 2ψ′(2x)]2
= K(x) < 0

on (0,∞), where we used the expression (1.2) for K(x).
By the limit (2.1), we obtain

lim
x→0+

K(x) =
1

4
lim
x→0+

[x3ψ′′(x)]([x2ψ′(x)][(2x)3ψ′′(2x)]− [(2x)2ψ′(2x)][x3ψ′′(x)])

[x2ψ′(x)]2[x2ψ′(x)− (2x)2ψ′(2x)/2]2
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= 0.

By the limit (2.2), we obtain

lim
x→∞

K(x) =
1

4
lim
x→∞

x2ψ′′(x)

[xψ′(x)]2
lim
x→∞

x4
[
2ψ′(x)ψ′′(2x)− ψ′(2x)ψ′′(x)

]
(x2[ψ′(x)− 2ψ′(2x)])2

=
1

4
lim
x→∞

x4
[
2ψ′(x)ψ′′(2x)− ψ′(2x)ψ′′(x)

]
(x2[ψ′(x)− 2ψ′(2x)])2

= −1

2
,

where, by the second limit in (2.5),

x2
[
ψ′(x)− 2ψ′(2x)

]
= x2[ψ(x)− ψ(2x)]′ = x2

[∫ x

2x

ψ′(u)du

]′
= x2

[∫ 1

2

xψ′(xv)dv

]′
= x2

∫ 1

2

[
ψ′(xv) + xvψ′′(xv)

]
dv

= x2

∫ 1

2

Φ′(xv)dv =

∫ 1

2

1

v2
(xv)2Φ′(xv)dv

→
∫ 1

2

1

v2
lim

xv→∞

[
(xv)2Φ′(xv)

]
dv = −1

2

∫ 1

2

1

v2
dv =

1

4

and, by the formulas (4.2) and (4.3) and by the limits (2.2) and (2.7),

x4
[
2ψ′(x)ψ′′(2x)− ψ′(2x)ψ′′(x)

]
=
x4

4

[
ψ′(x)ψ′′

(
x+

1

2

)
− ψ′

(
x+

1

2

)
ψ′′(x)

]
=
x4

4
ψ′(x)ψ′

(
x+

1

2

)[
ψ′′
(
x+ 1

2

)
ψ′
(
x+ 1

2

) − ψ′′(x)

ψ′(x)

]
=
x4

4
ψ′(x)ψ′

(
x+

1

2

)∫ x+1/2

x

[
ψ′′(u)

ψ′(u)

]′
du

=
x4

4
ψ′(x)ψ′

(
x+

1

2

)∫ 1/2

0

[
ψ′′(x+ u)

ψ′(x+ u)

]′
du

=
x4

4
ψ′(x)ψ′

(
x+

1

2

)∫ 1/2

0

ψ′′′(x+ u)ψ′(x+ u)− [ψ′′(x+ u)]2

[ψ′(x+ u)]2
du

=
1

4
[xψ′(x)]

[(
x+

1

2

)
ψ′
(
x+

1

2

)]
×
∫ 1/2

0

(x+ u)4
(
ψ′(x+ u)ψ′′′(x+ u)− [ψ′′(x+ u)]2

)
[(x+ u)ψ′(x+ u)]2

x3

(x+ u)2
(
x+ 1

2

)du

→ 1

4
[(−1)1−1(1− 1)!]2

∫ 1/2

0

(−1)1+2(1− 1)!(2− 1)!(1− 2)

[(−1)1−1(1− 1)!]2
du

=
1

8

as x→∞. The proof of Theorem 5.1 is complete. �

6. Several remarks, guesses, and open problems

Finally, we list several remarks, guesses, and open problems related to mono-
tonicity, complete monotonicity, and inequalities of several functions involving
polygamma functions.
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Remark 6.1. Theorem 3.1 has been generalized to divided cases in the papers [2, 23].

Remark 6.2. Basing on the double inequalities (3.1) and (3.2), we guess that,

(1) for m,n ∈ N, the function

Qm,n(x) =
ψ(m+n)(x)

ψ(m)(x)ψ(n)(x)
(6.1)

should be decreasing on (0,∞);
(2) for m,n, p, q ∈ N such that p > m ≥ n > q and m+n = p+ q, the function

Qm,n(x) =
ψ(m)(x)ψ(n)(x)

ψ(p)(x)ψ(q)(x)

should be decreasing on (0,∞).

Remark 6.3. The necessary and sufficient condition η1 ≥ 1 in Theorem 3.2 for the
function F1,η1(x) to be completely monotonic on (0,∞) has been established in [20,
Theorem 3]. For more information on results related to the function F1,η1(x), please
refer to the papers [11, 19], the review and survey articles [12, 17], and a number
of closely related references therein.

Remark 6.4. Motivated by Theorem 3.2 in this paper, [6, Theorem 1], and the
fifth and sixth problems in [17, Sections 12.5 and 12.6], we pose a new and more
reasonable open problem as follows. For n ∈ N and σk,m ∈ R, let

Fn(x) =
∑
`m=n

σ`,m
[
ψ(`)(x)

]m
.

It is clear that σ1,1 ≥ 0 is a necessary and sufficient condition for the function F1(x)
to be completely monotonic on (0,∞). When n = 2, since

F2(x) = σ1,2

[
ψ′(x)

]2
+ σ2,1ψ

′′(x),

we conclude from [20, Theorem 3] and Theorem 3.2 that both the condition σ2,1 ≥
σ1,2 > 0 and the condition σ1,2 ≥ 0 and σ2,1 < 0 are necessary and sufficient for
F2(x) to be completely monotonic on (0,∞). Theorem 3.2 in this paper means
that, when σ`,m = 0 for all (`,m) 6∈ {(2k, 1), (k, 2)}, the function F2k(x) for k ∈ N
is completely monotonic on (0,∞) if and only if σ2k,1 < 0 and σk,2 ≥ 0, or if and

only if σ2k,1 > 0 and
σk,2
σ2k,1

≥ 1
2

(2k)!
(k−1)!k! .

When n ≥ 3, what are the necessary and sufficient conditions on σk,m such that
the function Fn(x) is completely monotonic on (0,∞)?

Remark 6.5. For `,m ∈ N with ` 6= m, real numbers b > 0 and c ≥ 0 with
(b, c) 6= (1, 0), and ξ`,m ∈ R, find necessary and sufficient condition on ξ`,m such
that the function

ψ(`)(x)ψ(m)(bx+ c)− ξ`,mψ(m)(x)ψ(`)(bx+ c)

is completely monotonic in x ∈ (0,∞).

Remark 6.6. Motivated by Theorem 4.1, we guess that the functions

2ψ′(x)ψ′′(2x)− ψ′(2x)ψ′′(x)

[ψ′(x)− 2ψ′(2x)]2
=
ψ′(x)ψ′′

(
x+ 1

2

)
− ψ′

(
x+ 1

2

)
ψ′′(x)[

ψ′(x)− ψ′
(
x+ 1

2

)]2
and

Y (x) =
4ψ′(x)ψ′′′(2x)− ψ′(2x)ψ′′′(x)

[ψ′(x)− 2ψ′(2x)][ψ′′(x)− 4ψ′′(2x)]

=
ψ′(x)ψ′′′

(
x+ 1

2

)
− ψ′

(
x+ 1

2

)
ψ′′′(x)[

ψ′(x)− ψ′
(
x+ 1

2

)][
ψ′′(x)− ψ′′

(
x+ 1

2

)]
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should be increasing on (0,∞) and the double inequality 0 < Y (x) < 4 should be
valid on (0,∞) and sharp in the sense that the lower bound 0 and the upper bound
4 cannot be replaced by any larger number and any smaller number respectively.

Remark 6.7. This paper is a slightly revised version of the preprint [13] and the
fifth one in a series of articles including [10, 14, 15, 16].
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