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ABSTRACT. In the paper, by convolution theorem for the Laplace transforms
and analytic techniques, the author finds necessary and sufficient conditions
for complete monotonicity, monotonicity, and inequalities of several functions
involving polygamma functions. By these results, the author derives a lower
bound of a function related to the sectional curvature of the manifold of the
beta distributions. Finally, the author poses several guesses and open problems
related to monotonicity, complete monotonicity, and inequalities of several
functions involving polygamma functions.
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1. MOTIVATIONS
In the literature [I, Section 6.4], the function
I(z) z/ t*"le7tdt, R(z) >0
0
and its logarithmic derivative i(z) = [InT'(z)] = 1;,((;)) are respectively called

Euler’s gamma function and digamma function. Further, the functions ¢’(z),
V" (2), ¥"(2), and ¥*)(z) are known as trigamma, tetragamma, pentagamma,
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and hexagamma functions respectively. As a whole, all the derivatives ¢(*)(z) for
k € {0} UN are known as polygamma functions.

Recall from Chapter XIII in [9], Chapter 1 in [2I], and Chapter IV in [22] that,
if a function f(z) on an interval I has derivatives of all orders on I and satisfies
(=1)"f™) () > 0 for 2 € T and n € {0} UN, where N denotes the set of all positive
integers, then we call f(z) a completely monotonic function on I. Theorem 12b
in [22, p. 161] characterized that a function f(z) is completely monotonic on (0, c0)
if and only if

flx) = /000 e "tdo(t), =€ (0,00), (1.1)

where o(s) is non-decreasing and the integral in converges for x € (0,00). The
integral representation (1.1) means that a function f(z) is completely monotonic
on (0, 00) if and only if it is a Laplace transform of a non-decreasing measure o(s)
on (0,00).

In [7, Proposition 3] and [8, Proposition 13], the sectional curvature K(z,y) of
the manifold of the beta distributions was given by

K(z,y) = 1Y@ " +y) 58 + 5 - S

In [7, Proposition 4] and [8, Proposition 14], the following limits were computed:

: . 173 J(z)y"(x)
Jim, K(z,y) = lim K(y,z) 2<2 @R )
, : 1 9'(x)
B ) = i Kt = 1ty
1
lim K(z,y) =0, lim K(z,y) = —=,
(z,y)—(0+,01) (@9) (@,y)—(00,00) (@9) 2
1
lim K(x,y) = lim K(x,y)=—-,
(z,y)—(0%,00) (@9) (z,y)—(c0,0T) @) 4
where
1
B(o) = o'(a) 1 =) - 1]
x
on (0, 00).

In [I4] Theorem 4.1] and [I6, Theorem 4], the author presented that

(1) if and only if a > 2, the function $,(x) = ®(z) + a®?(z) is completely
monotonic on (0, 00)

(2) if and only if o < 1, the function —$),(x) is completely monotonic on
(0, 00);

(3) the double inequality —2 < ;I{:;((z)) < —1 is valid on (0, 00) and sharp in the
sense that the constants —2 and —1 cannot be replaced by any bigger and
smaller numbers respectively.

In [14, Theorem 1.1], the author found the following necessary and sufficient con-
ditions and limits:
(1) if and only if 8 > 2, the function Hg(x) = ;I:;((Z)) is decreasing on (0, 00),

with the limits

_23 BZQ

1, =2
lim Hg(z) = {0 » P and lim Hg(z) = { 52
’ —00, )

z—0+ 8>2 z—00
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(2) if B <1, the function Hg(z) is increasing on (0, c0), with the limits

—00, = —0F
0, T — 00.
In [10], the author considered the functions

HER+D) ()
[(—=Dke® ()]
on (0,00) for k € {0} UN and Mg, € R. It is clear that Jo x, () = 9, (2)
and Jo ,(x) = Hyy(z) for Ao = a and po = 5. In [10, Theorems 3.1 and 4.1],

the author discovered the following necessary and sufficient conditions, limits, and
double inequality:

T (@) = 24 (@) + A [P (2)]* and Ty, (x) =

(1) if and only if A\ > %, the function Ji x, (z) is completely monotonic
on (0, 00);

(2) if and only if A\, < %%, the function —J, », (z) is completely mono-
tonic on (0, 00);

(3) if and only if pp > 2, the function Jj ,, (z) is decreasing on (0, 00), with

the limits
1 (2k+2)!
. ) TS L M 2
hm+ T (@) = 2 kl(k+1)!
z—0 0’ L > 9
and L '
2k +2)!
| SRR =2
lim Jy ,, (z) = El(k+ 1)!
T—r00
—0Q, E > 27
(4) if p < 1, the function Jy ., (z) is increasing on (0, c0), with the limits
—o0, x— 0T
T () — ’
b (@) {O, T — 00;

(5) the double inequality

(2k +2)! O (g) 1 (2k +2)!
CE(k+1)! [0®) ()] S 2k(k+1)!

is valid on (0,00) and sharp in the sense that the lower and upper bounds
cannot be replaced by any larger and smaller numbers respectively.

In the paper [15], the author considered the functions

G(z) = 2®(z) — % _ x[:cz//(:c) _ 1] B % — 2 W (z) — é B 23102 ,
G(2k+1)(x)

Go, () = GV (2) + 0, [GF) (x 2, 6. (z)= =
on (0,00) for k € {0} UN and 0y, 7, € R. In [15, Theorems 3.1 and 4.1], the au-
thor presented the following necessary and sufficient conditions, limits, and double
inequalities:
(1) if and only if 6 > 3,;(,?:7112)),’, the function Gy, g, () is completely monotonic
on (0, 00);
(2) if and only if 6 < 0, the function —Gy, g, (x) is completely monotonic on
(0, 00);
(3) if and only if 74, > 2, the function &y, -, (x) is decreasing on (0, 00);
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(4) if 7, <1, the function & ,, (x) is increasing on (0, 00);
(5) only if
¥'(1), k=0
"
_1/}7(1)’ k=1
T < Y ()Yr(1)
E—1 ¢(k71)(1)1/}(2k+1)(1)

k>2
kooop® @)y - T
the function &y, ,, () is increasing on (0, c0);
(6) the following two limits are valid:
—270 k=0
60" (1), k=
lim Q5k’-,—k (l‘) = w ( )
0" Wkt W)
(k — Dmkn=T [p=D ()" =
and
—0Q, T > 2
. ) osek+2r
0, T < 2;
(7) the double inequality
4, k=0
3(2k +2)! 69" (1), k=1
T or < Bke(r) <
kl(k+ 1)! 22k +1) (1 s

(k = 1)k [p=D(1)|"

is valid on (0, c0) and sharp in the sense that the lower and upper bounds
cannot be replaced by any greater and less numbers respectively.

In [7, Proposition 5|, the sectional curvature K(z,y) was proved to be negative
and bounded from below. On 19 February 2020, Alice Le Brigant, the first author
of the papers [7, 8] told the author of this paper via e-mails and the ResearchGate
that the lower bound of K (x,y) should be —3.

Conjecture 1.1 ([8, pp. 12-13]). For x,y > 0, the sectional curvature K (x,y)

(1) has a lower bound —%, accurately, K(z,y) > —%;

(2) is decreasing in both x and y.

In this paper, we consider the function

_ 1 9(x) 24 (2)9"(2x) — ' (22)9" (x) (1.2)
4y (2)]? [v'(x) = 2¢7(22)] '

on (0,00) and prove the sharp double inequality

K(z) = K(z,z)

1
which verifies the first conjecture in Conjecture [I.1] along the half-line z = y > 0 in

the first quadrant on R2.
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2. LEMMAS
The following lemmas are necessary in this paper.

Lemma 2.1. For k € N, we have the limits

lim [2"p*V(@)] = (=) (k - 1)! (2.1)
and
lim [25y ") (2)] = (-1)F (k- 1)L (2.2)

Proof. These two limits can be found in [B p. 9896, (13)], [11, p. 260, (2.2)], [I8.
p. 1689, (3.3)], [19] p. 286, (2.6)], [20} p. 81, (41)], and [23], p. 769], for example. O

Lemma 2.2 (Convolution theorem for the Laplace transforms [22, pp. 91-92]). Let
fi(t) for k = 1,2 be piecewise continuous in arbitrary finite intervals included in
(0,00). If there exist some constants My, > 0 and ¢ > 0 such that | fr(t)| < Myect
for k=1,2, then

/OOO [/Ot Ji(u) fo(t — u)du} e stdt = /Ooo fi(w)e™* du /Ooo Fa(0)e*dv.

Lemma 2.3. Let

t
t # 0;
gy ={1—ev 7V
1, t=0.
Then the following conclusions are valid:
(1) the function g(t)
(a) satisfies the identity
g(t) —g(=t) =t (2.3)

on (—00,00);
(b) is infinitely differentiable on (—oo,00), increasing from (—oo,00) onto
(0,00), convex on (—o0,0), and logarithmically concave on (—o0,00);
(2) the function Zgg(g is increasing from (—o0,0) onto (0,1) and decreasing from
(0,00) onto (0,1);
(3) the double inequality

g(2t)

g3 (t)
is valid on (0,00) and sharp in the sense that the lower bound 0 and the
upper bound 1 cannot be replaced by any larger scalar and any smaller scalar
respectively;

(4) for any fized t > 0, the function g(st)g((1— s)t) is increasing in s € (0,3).

)2
Proof. The verification of the identity is straightforward.
The differentiability, monotonicity, and convexity of g(t) come from utilization
of [14, Lemma 2.3].
Direct computation yields

0<

<1 (2.4)

et — et(t2 + 2) +1
(et — 122
k

_ 1 I RN L
— (et_l)%z;[g (k= 1Dk =27 <0

on (0,00). Hence, the function g(t) is logarithmically concave on (—o0o,00).

I g(t))" = mg(~1))" = -
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6 F. QI

Standard calculation shows
2t)  2(et -1 L, t=0
9(2t) _2(e'—1) | {

2 (et+ 1t |0, t— +oo

and

[g(zt)]’ B [g(?t)}' o 2(e* —2tef — 1)
)] L=t (e! +1)2¢*
4 i(Qk*hk)tk 0.

(ef + 122 2~ k!

on (0,00). This implies the monotonicity of gg%g and leads to the double inequal-

ity (2.4) and its sharpness.
Direct differentiation gives

QDI _ 1 (51)g((1 — s)0) — 19l (1~ 1)

= tg(st)g((1 — s)t) [gg((;t)) - g;/((((f = Ss)m

dlng(s)

~tals)g((1 - 50)| T

dlng(s)

ds

s—(l—s)t:|

s=st

>0

for 0 < s < 1, where we used in the last step the facts that st < (1 — s)t for
0 < s < 3 and that g(t) is logarithmically concave on (—oco,0). Accordingly, for
any fixed ¢ > 0, the function g(st)g((1 — s)t) is increasing in s € (0, 3). The proof

of Lemma [2.3] is complete. O

Lemma 2.4 ([I12], Theorem 6.1]). If f(x) is differentiable and logarithmically con-
cave on (—o0,00), then the product f(x)f(xo — x) for any fized number zo € R is

increasing i x € (—oo, “’2—0) and decreasing in x € (%0, oo).

Lemma 2.5 ([10, Lemma 2.2]). For k > 0, we have

El, x—0T;
(—D)F2F1e®) () = { 1 (2.5)
5, xr — OQ.

Lemma 2.6 ([10, Lemma 2.6]). For k,m € N, the function
(1 _ .’E)ker + (1 + LL')ker

(1 —2)F + (1 + )"
is increasing in x € [0, 1], with Vi n(0) =1 and Vi, (1) = 2™.

kam((E) =

Lemma 2.7. Fort > u > 0, the function

[67(t7u)/2 _ efu/2] (t _ u)
(1 _ e—u/2) [1 _ e—(t—u)/Q]
is increasing in u € (0,t), with limits

lim Wi(u) =2 and lim Wi(u) = —oc.
u—0t

u—t—

Wi(u) =

Proof. 1t is easy to see that

li st —(t—u)/2 _ ,—u/2 t—
lim Wi(u) = iy e ¢ ] lim ——— % =2

u—t— 1—eu/2 ust— 1 — e=(t=u)/2
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Direct differentiation yields
e+ (et + 1)(t —u— 1)e® — 4(t — u)ett2
dW (2t,2u) +(t—u+1)ett 4 (t —u+ 1)t — 2t
du (ev —1)2(et — ev)2
2W1 (t7 u)
(e — 1)2(et — eu)2’

lim Wi (t,u) =0,

u—t—
dWl (ta ’LL)
du

[I>

=e"[4e® + (3t — 3u — 4)e** (1 + €")
—4(2t = 2u — 1)e" + (t —u)(1 4 €')e’]

2 " Wo(t, u)

—0, u—t,

dW2 (t, U)

- 12e3% 4 (6t — 6u — 11)(1 + e')e"

—4(2t — 2u — 3)e!t" — el (1 +€')
— (e* —1)e!
>0,

d*Woy(t, u)

T de"[9e® + (3t — 3u —T)(1 + e")e" — €' (2t — 2u — 5)]

2 4e"W3(t,u)

— 8€2t(€t — 1), u—t

>0,
dWs(t
# = 18¢*" + (3t — 3u — 10)(1 + e*)e* + 2¢°
u
— 8el(e —1),u =t~
>0,
d*Wa(t
# — "[36¢" + (3t — 3u — 13)e’ + 3t — 3u — 13]
2 " Wy(t,u)
— et(23et - 13), u—t
>0,
dW4(t, u) w
—aq = 3(12e" —ef — 1)
—3(1le* = 1), u—t"
>0,
d*Wy(t, u) "
— g = 3e
>0

for t > 0 and u € (0,t). Accordingly, all the functions W (¢, u) for 2 < ¢ < 4 are
positive, increasing, and convex in u € (0,t¢). Therefore, the function Wi (¢, u) is
positive and increasing in w € (0,¢). Hence, the function W;(u) is increasing in

€ (0,t). As a result, the inequality W;(u) < 2 is sharp for ¢ > 0 and u € (0,t).
The proof of Lemma, is complete. O
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Lemma 2.8. Fork € {0} UN and a > 0, we have
lim (251 [p®) (2 + a) — p®)(2)]) = (—1)"kla. (2.6)

Tr—r00

For k,¢ € N and a > 0, we have

Jim (2 [0 (2) D (2) — D ()9 (2)])
= (—D)FE -1 -DUE—-0) (2.7
and
Jim (&M [ (@)D (@ + a) = D (@)™ (@ + a)])
= (=D (k = DI = DIk — Oa.  (2.8)
Proof. Tt is straightforward that
lim (25T [p®) (2 + a) — ¥ (2)])

T—0o0

r+a
= lim [x’“‘l/ w(k"’l)(u)du]

T—0o0

a
= lim [a:k“/ z/J(kH)(x—Fu)du]
0

T—00

:/ lim [a:k+lw(k+1)(m+u)]du
0

Tr—r00

a !
= / lim [(z + w)F D (g 4 w)] lim —————du
0 Tr—00

200 (.CL' —|—u)k+1
:/ (—1)*kldu
0

= (=1)*kla,
where we used the limit ([2.2)).
It is also straightforward that

lim (2% [p® (@)D (z) — pED ()90 (2)])

T—r00

= lim ([z Rap(k) ( IE: e+1¢(e+1)(x)] _ [xk+1¢(k+1)(x)] [,I%(e)(x)])

= (=D R = D= = (“D)FR(=D (- 1)
= (DR - 1) = k(- 1)Y
= (=D (k= D= DIk —0)
and
lim (¥ [0 (2)9 O (2 + a) — O (2)p®) (2 + a)])

T—00

O(z+a O (g
e S22 24)

ot a0 ()]

N JE%"((x +a)k [xk¢(k) (“7)] [(x + a)kw(k)( )] /x [://J)(k)iuﬂ du)

= Jimn [ W’”( >] Tim [(2+ ) ™) (2 + a)]

/ YD @ 4+ w)yp® (@ +u) — O (@ + ) (@ + ) d“]
WP +u)P

X lim{
T—00 x—}—a

o [ )

d0i:10.20944/preprints202011.0315.v1
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M D (@ )y (@ 4 u) = O (@ + ) D (@ + )]
o [EEmTaleEm)E
= (=) k- DI = DIk - O)a,

where we used the limits (2.2) and (2.7). The proof of Lemma [2.8]is complete. [

du

3. NECESSARY AND SUFFICIENT CONDITIONS OF COMPLETE MONOTONICITY

For verifying the lower bound in the double inequality (1.3), we find a lower
bound for the second factor in (1.2]) and more.

Theorem 3.1. Let p > m >n > q > 0 be integers such that m+n = p+q and let
e L T
|60 @)[[40) ()] = cpomomq[ 0P (@) [P (@)], g =1

for cpmmn,g € R and x € (0,00). Then
(1) for ¢ >0, if and only if

Epomnaicpomna (2)

(m —1)!(n —1)!

(-1t a=0

Cpmyn,g <
pommned (m—1)I(n—-1)! 0> 1
(p—Dlg—-1)!" =7

the function Fy o n.gicpmn.q(T) is completely monotonic in x € (0, 00);
(2) for ¢ > 1, if and only if cpmn,q > ’Z!!;!, the function —Fp m n.gicp.mn.q(T)
is completely monotonic in x € (0,00);

(3) the double inequality
_mtnonl g
(m—=Dln =11 = P (z)yp) ()
for m,n € N and the double inequality
(m—Dn—-1)" ™ ()™ (z)  mln!
p—Dg—1)! = ¢@(2)p@(x) = plg!
form,n,p,qg e N withp>m>n>q>1and m+n=p+q are valid on

(0,00) and sharp in the sense that the lower and upper bounds cannot be
replaced by any larger and smaller scalars respectively.

<0 (3.1)

(3.2)

Proof. The sufficient conditions were proved in [3, Theorem 4.1].
The first derivative of the function Fp i n.gicp mn, () is

OFp,mn,0:¢p.m.n.0 (%)

oxr

= (=)™ [ (@) (2) + ) (@) ()]

_ Cp’m’n’o(_l)pﬂdj(p-lrl) ()

and, for ¢ > 1,

an,m,n,q;cp,m,n,q (:I:)

ox

= (=)™ [ (@)™ (@) + U (@)Y ()]
_ prm’n,q(_l)erq [¢(p+1)(x)¢(q) (z) + ¢(p) (x)w(‘”l)(x)] )

If £F) mmn.gicpmnq(®) is completely monotonic, then +F) . . (%;¢pmmngq) < 0
which are equivalent to

< (=)™ [ (@)™ () + ™) () (D (2)]

Cpm,n,0 = (—1)PTigp(p+1) (1)
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mm+2w(m+1) (x)l.n—kl,l/}(n) (ZE) + xm+1,l/1(m) (x)xn+2w(n+1) (:E)
xm+n+3—p—2(_1)m+n+p+lwp+21/}(p+1)(I)
£ YD (2)am () () + 2 (@)am ) ()
xm+n+1—p—1(_1)m+n+p+1xp+1w(p+l)(x)

l,m+2,¢)(m+1) ($)33n+11/1(n) (:Z‘,') + $m+1¢(m) (z)mn+2w(n+1) (33)
)P 260 ()

£ H YD ()2 (@) £ 2 (a)am ) ()
— Pt yp(PH+1) (1)

(—1)™+2(m + D=1l 4+ (—1)™ il (—1)"+2(n 4 1)!

~ (o 2) (D72 + 1]
(D)™l (1)L (n — 1) + (=1)™ " (m — 1)(=1)"n!
—(=1)Pp! ’

, x— 0T
%

T — 0

= {m!(n — D!+ (m—1)n!

and

< (=0 [ (@) (@) 4+ ) (2)p D (2)]
Cp,m,n,q = (—1)pta [w(p+1)(g;)¢(q)(a;) + () (aj)'(/)(Q-‘rl)(;p)]
220D ()5 L) () a0 ()2 ()
P+ 2eh(0+1) () 24+ 14h (@) () + 2P T1eh®) (2)20+24p(a+1) ()
D ()a ) () ) () LD (a)
mp+1¢(p+1)(x)xqq/)(q) (x) + xpzp(p)(m)xqﬂw(qﬂ)(m)
(=)™ F2(m + D)I(=1)" n! + (=)™ Hm!(=1)" T2 (n + 1)!
(=1)PT2(p + DI(=1)a+ gl + (=1)PHipl(=1)a+2(g + 1)!
(—1)mm!(=1)" " t(n— )+ (=)™ L (m — 1){(—1)"n!
(=Drpl(=1)7=1 (g — D! + (=1)P~ (p — D(-1)2¢! ~
(m+1)In! +m!(n+1)!
(p+ D!g! +pl(g+1)!
ml(n— 1)+ (m —1)n!
plg—1!+(p—1)lq!

z—0F

T — 0

m!n!
plg!

Y (m-1(n—1)
(p—Dlg—1)!

for m+n = p+¢q, where we used the limits (2.1)) and (2.2) in Lemma Moreover,
for p > m > n > g > 0 such that m +n = p + ¢, we have

p/m—1_1<1 @>1<:)m!n! (m—1)!(n—1)!

= > :
nfg—1 —m Pq plgd ~ (p—Dl(g—1)!

Hence, necessary conditions are proved.
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The double inequalities (3.1)) and (3.2)) come from the positivity of the functions
+Fymon.gicp.mon.q () and their sharpness can be concluded from the limits

) (m+n) (. ) pmtntlyy(mtn) (o )
o, ¢<i> (x)1/1((”))(x) = I T (aﬁx"*ldf(”)) @) o e =0
lim Pm+n) () — lim x g (mtn) () ~_(m+n-1)
z=o0 (M) (z)p(M) (z) w00 amp(m) (z)znyp(M) (x) (m—1)l(n— 1)
P @YD) _ o m (@)am ) (@) _ i
o0 W e aPtLeh(®) () z1t14)(D) (z) - plg!”’
L@@ e @a g @) (= Dl = 1)

where we used the limits (2.1) and (2.2) in Lemma 2.1 once again. The proof of
Theorem [3.1] is complete. O

Theorem 3.2. For k € N and z € (0,00), let

Y ()
[~ )P

Frome (@) = 0@ (@) + [0 P (@)]° and  Frg, (x) =

Then the following conclusions are true:

(1) if and only if n > %%, the function Fi n, (x) is completely monotonic
on (0,00);

(2) if and only if g < 0, the function —Fy,, (x) is completely monotonic on
(0,00);

(3) if and only if ¥, > 2, the function Fk g, (x) is decreasing on (0,00);

(4) if and only if O < Qkkjll, the function k.9, (x) is increasing on (0,00);

(5) the following limits are valid:

(2K 2k +1
Ry R
. _ 2k 41
wll{g_*_ gk,ﬂk (l‘) - 07 ﬂk A 1
o < 2k+1
) k & + 1
and ( )
2k —1)!
U =2
| [k -1z "
0, B0 () =) oo, B> 2
0, Y < 25
(6) the double inequality
1 (2k)! Y ()

2 (k—1)k! < [(—1)k+1p(k) ()] <0 (3.3)

is valid on (0,00) and sharp in the sense that the lower and upper bounds

cannot be replaced by any greater and less numbers respectively.

Proof. Taking ¢ = 0, m = n = k, and p = 2k in Theorem 3.1 leads to that the
function

[w(k)(x>]2 + C2k,k,k,o¢(2k)(l‘)
(k=17

is completely monotonic on (0, 00) if and only if cog .r0 < =TT This result is
equivalent to that the function Fj ,, (x) is completely monotonic on (0, 00) if and
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only if ny > [Ei]:)l')]'z = %(k(_zlg:w For completeness, in what follows, we will prove

this result in details once again.
If F.n,(x) is completely monotonic on (0, c0), then its first derivative

(Fen ()] = ¥ (@) + 2mp™ (2)p* D (2) < 0

which can be rewritten as

1 w(2k+1)($) 1 x2k+1¢(2k+1)(x)
T TS D @) (@) 2 [ ()] gD ()]
1 (—1)2%(2k)! 1 (2K

2 (—1)F1(k — DI(=1)kk! — 2 (k — 1)k!
as ¢ — 0o, where we used the limit (2.2).
If —Fi n, (z) is completely monotonic on (0, 00), then its first derivative

1 1/1(2k+1)(x) 1 $[$2k+21/}(2k+1)(m)]

<= - 0
=T @) (@) 2 0 @) ()]
as © — 01, where we used the limit (2.1).
From the integral representation
o0 tn
n o n+1 —zt
W) = ([ e (3.4)

for R(z) > 0 and n € N, see [1, p. 260, 6.4.1], it follows that (—1)*+1(*)(z) for all
k € N are completely monotonic on (0,00). Further considering the fact that the
sum of finite completely monotonic functions is also completely monotonic, we see
that the necessary condition 7, < 0 is also sufficient for —Fj ,, () to be completely
monotonic on (0, 00).

By Lemma and the integral representation , we obtain

oo 2 IS
‘Fkﬂ?k (fﬂ) =Nk |:/ tklg(t)emdt] _ / ﬁkilg(t)eimdt
0 0

= /000 [/Ot uF =t —w)g(u)g(t — u)du} e~ tdt — /00 t2*=Lg(t)e*dt

0
[Tl LA ) g(u)g(t — u)du — 1g(0)] e

where, by logarithmic convexity of ¢g(¢) in Lemma 2.3 and by Lemma

/Ot uF 7t — ) g(u)g(t — u)du < ¢? (;) /Ot uF 7t — w) du

— g2 <t> 2k—1 /1 sk—l(l _ s)k—lds
2 0

=g’ <;>t2k—13(k, k)
e ()

[t = 0 guge - wde = 90)g(0) [ a0
0 0

[(k — D 50y
BT

and

g(t).

Accordingly, we acquire
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t
" / (- ) g (w)g(t - u)du — 25 g (1)

0
< [(k_l)!]z o 9(t) 1,06-1 2 E
S o 27y |t 9°\ 3

( ) g (5)
and

R O (e ]

Therefore, the sharp double inequality (2.4) implies that

- / WP — w)* g (u)g(t — u)du — 1251g(t) < 0

on (0,00) only if 7, < 0, while

- / W — ) g(u)g(t — w)du — 12 g(t) > 0

on (0,00) only if 9 > [Eik;)lr)]! = 1(k(211€§:k, Consequently, the function Fy ., ()

while —F ,, () is com-

is completely monotonic on (0,00) only if nx > 5 (kilg,k,,

pletely monotonic on (0, 00) only if 7 < 0.
Direct computation gives

L (@) = (L Y @0 (@) — 9O @)y D ()
S [(—1)k+1ep(R) (g)]Px+1 :

Taking p=2k+1,q=%k, m =2k, and n = k + 1 in Theorem 3.1 yields that the
function

(—1)k+t [1/1(%) (2)p* ) (z) — 02k+1,2k,k+1,k¢(2k+1)(x)w(k)(x)]

and its negativity are completely monotonic on (0,00) if and only if
(2k — 1)IK! 1

G R L
Cokt1,2k, k41,6 = CE)(k—-1)! 2

and
Ck)I(k+1)!  k+1
2k + 1)k 2k+1

respectively. Therefore, when 9 > 2, the derivative S;C’ﬂk () <0 on (0,00); when

Cok41,2k,k+1,k =

Y < 2,5111, the derivative §} 4 (z) > 0 on (0,00). For completeness, in what

follows, we will prove these sufficient conditions in details once again.
If S;Cyﬂk (x) <0, then
D (2)) M) (2)
Uk 2 R ) (a)
B [x2k+1¢(2k+1)( )][ (x)]
[x2k¢(2k)(x)][karl,L/](kJrl)( )]

(1% @2R)!I(=D)" ' (k - 1)!
DR 2k — DI(—1)Fk!

T — 0

=2

)

where we used the limit (2.2).
If §} 9, (¥) > 0, then

5y < V@V @)
VPR @) (@)
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[w2k+2¢(2k+1)(x)] [mkﬂw(lc) ()]
(226145 (2R) ()][zF 2 (4D ()]
( 1)2k+2(2k+ 1) ( )k+1k|
(=12 2R (=1)F+2(k + 1)V
_2k+1
 k+ 17
where we used the limit (2.1).
By the integral representation (3.4), we acquire

YD () ®) () [ e [ et

@)D () [ 152: et [ B ey

B f()oo tQk xtdtf tk 1 () —xtdt

B f‘”t?k—lg( Je—tdt [ thg(t)ertdt
fo [ Luk (t — u)h- Lg(u)g(t — u)du]e~"tdt
fo Uo u2k—1 t—u)kg(u)g(t—u)du]e—xtdt.

By changing the variable u = @, we have

w2t (¢ — )t (w)g(t — w)du
fo u2k=1(t —u)kg(u)g(t — u)du
IO (0] (- ) () g ()
f0[1+v)k1+1_vk1](1 ) (l'u 1—v
L R la+ o) - ot - )’“ "dv
S (o] (1)
23k B(2k + 1, k)

~ 23FB(2k, k + 1)
=2

_)

x— 0T

as t — 07, where we used the formula

1
/0 [(1+ o)l — ) (U4 ) (1 - x)“il]dx =21 B(u, v)

e Lty @Y
L(p+v)
for R(p), R(v) > 01in [ p. 321, 3.214]. Let
Sk(t) = /0 [(A+v)* (1 —0)" (1= vz)kg(l —; vt)g<1_Tvt> dv
! -
- %/0 [(1+v)F 4+ (1 —0)" (1 - vz)k_lg<1 _gvt>g<1 5 t>dv
! —
- [ @i+ ot 1+<1—v>k1](1—v2>’“‘lg(1§”t>g<17t>d”’
where
TR N €k e ol O
o) — ! 2 A-ofr(ror  FEN
1 — 302

k=0
2 9

d0i:10.20944/preprints202011.0315.v1
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with T, (0) = § for k € {0} UN, Ty (1) = =2 for k € N, and Tp(1) = —1. Combining
this with Lemma [2.6] we reveal that T} (v) for & € {0} UN is decreasing on [0, 1]
and has only one zero vy € (0,1). Employing the fourth conclusion in Lemma 2.3
yields

sku):/WTk L) [(1+ o) (1= 0)F 1] (1—vz)k_lg<1;vt)g(1; )dv

¥ / R T [ e T L

9<1+U0t>g<1 5 ) Th 1 (0)[(1+0)" (1= 0)* 1] (1 = 0%) " do

+g(1+“0t)g(1 t) Ty (0)[(140)*1 + (1 — 0¥ (1 — 0?)* v
= g(l 2”°t>g<1 _2”‘) t) /0 T () [(1+0)F "+ (1= 0)F 1] (1 —0%) " do
=0,

where, by the formula (3.5),

/ E0 (L4 o) (1= 0)* 1] (1 —0?) o
0

11— 302
/ do, k=1
2
01 k
= / [(1+ )l 41— v)k_l] (1—v%)"dv
0
1
f% / [(1— o) + (14 v)F1] (1 - v2)k71dv, k>2
0

0, k=1
- {23k3(2k, k+1)— 2% 1B(2k +1,k), k>2
=0
for k € N. This means that
gugk(t —u)*lg(u)g(t — u)du
Jyuk=1(t — u)eg(u)g(t — u)du
on (0,00) for k € N. Accordingly, if 9y > 2,
(=1 [ox w@’“)( Jo Y (@) = P (@) ()]

= ﬁk [ w? Lt —w)kg(u)g(t — u)du} e~ "tdt

/ [/ u)*g(u)g(t - u)du}ewtdt

[ o u( u)klg(u)g(tu)du]
f u2b=1(t —u)kg(u)g(t — u)du

X[/o =1t —u)kg(u )g(tu)du}e”dt

is positive on (0,00). In other words, when ¥5 > 2, the first derivative §), ,, () is

negative on (0, 00). Consequently, when ¥, > 2, the function §x g, (x) is decreasing
n (0,00).

< 2.
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It is not difficult to verify that
1+ () (=) [ 10
=w[(1+v)" - (1-v)*(1- 02)]%1 >0
for v € (0,00) and k € N. This implies that
¢ u?k (t — u)F—

k
0
fot u2k=1(t — u)

>1

(u)g(t — u)du
(uw)g(t —u)du

on (0,00) for k € N. Therefore, when ¥, < 1 < 2,5%11, the function §9, (x) is
increasing on (0, 00).
By Lemma 2.1, we obtain
tm, o [P @]
; Ve k1) (k) T oo
(limy g+ [(=1)FF1aktLy®) (z)])
(71)2k+1(2k5)'

g
kg

(k+1)95—(2k+1)

zli}ngr Sk7ﬂk (I) -

_EDTRR) L (kD)9 (2k4)
()7 om0+
(2k)! _2k+1
[(k)‘] Zkkrll ’ k= k+1°
_ 2k +1
=450, Vg > —;
TR
90 < 2k +1
o0, k L +1
and
li 2k ,/,(2k)
lim gk,ﬁk (x) _ lmx—>oo[13 1/) (:Z?)] . lim x(ﬁ,rz)k
T—00 (limIHoo[(—l)k"'lxkl/J(k) (33)]) k z—00
2k—1
(== (2k —1)! lim P2k
GO
(2k —1)! _o.
[CEEIEE
—00, Y > 2;
0, Vg < 2.
The proof of Theorem is complete. O

4. A COMPLETELY MONOTONIC FUNCTION INVOLVING TETRAGAMMA FUNCTION

For verifying the lower bound in the double inequality (1.3), we establish an
upper bound for the third factor in (1.2) and more.

Theorem 4.1. If and only if v > 2, the function
2
I(x) = v[§'(z) — 2¢/(22)]" — 29/ ()" (22) + o' (22)¢" ()
is completely monotonic on (0,00). Consequently, the double inequality

0 < 2 (@)P"(22) — P (22)¢"(2)
[V (x) — 29’ (22)]?
is valid on (0,00) and sharp in the sense that the lower bound 0 and the upper bound
2 cannot be replaced by any greater number and any less number.

<2 (4.1)

d0i:10.20944/preprints202011.0315.v1
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Proof. Utilizing the duplication formula
1 1 1
9(22) = SU(2) + 2w<z 4 2) 2

in [1, p. 259, 6.3.8] gives

and

Then
4I,(z) = l/[z/}'(x) - (:Jc + ;)] 2 — ' (x)y” (x + ;) + (x + ;)W’(ax). (4.4)

By the integral representation (3.4) and Lemma 2.2, we obtain

AT, () = y[/oo (- e—t/Q)e—“dt] T /Omg(t)e—“dt/ooo te2g(t)e~tdt

N / 216"t / tg(t)e"tdt
0 0

— /ooo [/ ) g(t —u)[1 — e~ (=02 du] .
/0 V —u)e (Tt U)du}e—wt w
AT u><tu>g<tu)du]emdt

[ O )

X (1 — e—u/2) [1 _ e_(t—“)/Q]g(u)g(t _ u)du] ety

Employing Lemma 2.7 and the positivity of g(¢) yields that, when v > 2 the
function 41, (x) is completely monotonic on (0, co).
By (4.4), if I, (x) is completely monotonic on (0, 00), then its first derivative is

41 (2) = 20 [w’(w) —v (m + 1)] [1/’"@) i (“"” * ;ﬂ

v (es D) oo D

<0

which is equivalent to

X
Y

o= NI= Nl
—
8
[\

+

|
B

where we used the limits (2.6 and (2.8)) in Lemma 2.8.
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Since K (x,y) < 0 was proved in [7, Proposition 5], by the express (1.2), the lower
bound in is immediate. The upper bound of (4.1) comes from the complete
monotonicity of the function I, (x). The sharpness of the double inequality (4.1)
can be deduced from the limits

i 200" (22) — @' (20)9" (2)

0 [We) - 20

TN AL et )l G YU €
0 W) -+ )]

I GO ) I ) A A Co
z—0+ [$21/)/( ) _ xzdjl (ac + %)]2 z—0+
0P (4) — ()1
[(—1)%1! = 0]?
=0

and

i 2¥ (@)Y (22) — ¢/ (22)y" (x)

z—00 [V (x) — 29/ (2x)]?
()" (x+ 3) — ¢ (v + 3 )w"( )
e [v/(2) —v' (2 + 1))’

i EEN ) e

) - (et )]

_ (-2 -1 -2)5
EEE

=2,

where we used the formulas (4.2)) and (4.3), the limit (2.1) in Lemma 2.1, and the
limits (2.6) and (2.8) in Lemma 2.8. The proof of Theorem is complete. O

5. THE LOWER BOUND OF SECTIONAL CURVATURE
In this section, we prove the double inequality (1.3) and its sharpness.

Theorem 5.1. For z > 0, the double inequality 0> K(z) > —3 is valid on (0, 00)
and sharp in the sense that the lower bound —35 and the upper bound O cannot be
replaced by any larger scalar and any smaller scalar respectively.

Proof. By the double inequality for k =1 in Theorem 3.2, we obtain

V" (x)
[¢' (z)]?
n (0,00). Combining this double inequality with the double inequality (4.1) gives
P (x) 24" (2)¢"(22) — ' (22)Y" (x)
[¢' (z)]? [ (z) — 2¢'(22)]?

-1< <0

-2 < <0

which is equivalent to

11 ¢"x) 29/ (2)y"(2x) — ' (22)¢" (x)
—— <= =K
2SI W) - 2P <0
n (0,00), where we used the expression (1.2) for K(x).
By the limit (2.1), we obtain

i Ko(e) = & g @I ()]0 (22)) — [(20)* (22 ()
e T LG (720 @)2[20/(z) — (20)29 (22) /2]
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=0.
By the limit (2.2), we obtain

L a0 (2e) — (200 (@)
2O = L B e B T @) - 2 o)
1 @00 - v 20 @)
4 200 (2?[¢'(2) — 2¢'(22)])?
1
-
where, by the second limit in ,

2 (@) — 200 (22)] = 2[(x) — Y(@)] = 2 [ ; z//(u)du}

1 !/

2 ol
A o]

! 1
= ;1;2/ @' (zv)dv = /2 1}12 (20)2® (zv)dv

1 (1 1

- / o m [(w0)* e (zv)]dv = —§L —dv=7
and, by the formulas (4.2) and (4.3) and by the limits (2.2) and (2.7),

ot (20 (2)y" (22) — ¢ (22)9" (x))]

- %4 [¢'(x)¢” (x + 1) — 4 (m + ;)w“(x)}

1
*132 /.”L”U Tv /,l"U v
= /2[w< ) + zvy” (2v)]d

2
a2
= oo (e 3) [T o
(o) [ o]
= (s g) [,

_ i[w’(m)][ v+ ;)wl(“ ;ﬂ

/1/2 (z +u)* (¢ (x + w)" (x +u) — [ (z + u)]?) z?
0 [( + uw)y (x + u))? (x+u)2(x+ %)

1 1-1 o (V2121 -2 - 1)1 -2)
— Z[(—l) (1-1) /0 e du
1
"8
as x — 0o. The proof of Theorem is complete. O

6. SEVERAL REMARKS, GUESSES, AND OPEN PROBLEMS

Finally, we list several remarks, guesses, and open problems related to mono-
tonicity, complete monotonicity, and inequalities of several functions involving
polygamma functions.
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Remark 6.1. Theorem 3.1 has been generalized to divided cases in the papers [2], 23].

Remark 6.2. Basing on the double inequalities (3.1) and (3.2), we guess that,
(1) for m,n € N, the function

_ ()

M (@) (2)
should be decreasing on (0, c0);

(2) for m,n,p,q € N such that p > m > n > ¢ and m+n = p+ ¢, the function

_ (@)™ (x)

= )

should be decreasing on (0, 00).

Qm.n(x) (6.1)

Qm,n(:r')

Remark 6.3. The necessary and sufficient condition 77; > 1 in Theorem 3.2 for the
function Fi ,, (x) to be completely monotonic on (0, co) has been established in [20,
Theorem 3]. For more information on results related to the function F1 ,, (z), please
refer to the papers [11, 19], the review and survey articles [12, [17], and a number
of closely related references therein.

Remark 6.4. Motivated by Theorem 3.2 in this paper, [0, Theorem 1], and the
fifth and sixth problems in [17, Sections 12.5 and 12.6], we pose a new and more
reasonable open problem as follows. For n € N and oy, € R, let

F,(z) = Z Tom [1/1(5) (x)]m
Im=n
It is clear that o1 1 > 0 is a necessary and sufficient condition for the function F;(z)
to be completely monotonic on (0,00). When n = 2, since

Fy(w) = 01,2 [0/ (2)]" + 02,10 (a),

we conclude from [20, Theorem 3] and Theorem 3.2 that both the condition o9 1 >
01,2 > 0 and the condition 015 > 0 and 021 < 0 are necessary and sufficient for
Fy(z) to be completely monotonic on (0,00). Theorem 3.2 in this paper means
that, when o4, = 0 for all (¢,m) & {(2k,1), (k,2)}, the function Fp(z) for k € N
is completely monotonic on (0, 00) if and only if o1 < 0 and oy2 > 0, or if and
only if o951 > 0 and ;2:21 > %(k(fi]lc;:k,

When n > 3, what are the necessary and sufficient conditions on oy ,,, such that
the function F),(x) is completely monotonic on (0, 00)?

Remark 6.5. For £,m € N with £ # m, real numbers b > 0 and ¢ > 0 with
(b,¢) # (1,0), and &, € R, find necessary and sufficient condition on &, such
that the function

PO ()™ (b + ¢) — Emp™ ()9 (bx + ¢)

is completely monotonic in x € (0, c0).
Remark 6.6. Motivated by Theorem 4.1, we guess that the functions
20/ ()¢ (22) — ' (20)9"(z) _ ' (@) (2 + 3) — ' (@ + 3)V" (@)

W@ =20 T ) - v (a+ 3]
and
4’ ()9 (2x) — ' (22)9" (x)
[ (z) — 29" (22)][9" () — 49" (22)]
’(//(33)’(/}/”(33 + %) _ ,(/}/(1, + %)w///($>
[V'(2) = (z+ )] [V"(2) = ¢" (2 + 3)]

Y(z) =
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should be increasing on (0, 00) and the double inequality 0 < Y (z) < 4 should be
valid on (0, c0) and sharp in the sense that the lower bound 0 and the upper bound
4 cannot be replaced by any larger number and any smaller number respectively.

Remark 6.7. This paper is a slightly revised version of the preprint [I3] and the
fifth one in a series of articles including [10, 14, 15, 16].
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