Preprint
Article

Analysis of Impact Characteristics and Detection of Internal Defects for Unidirectional Carbon Composites with Respect to Fiber Orientation

Altmetrics

Downloads

327

Views

171

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

11 November 2020

Posted:

12 November 2020

You are already at the latest version

Alerts
Abstract
.With the increasing use of carbon fiber reinforced plastics in various area, carbon fiber composites based on prepregs have attracted attention in industries and academia research. However, prepreg manufacturing processes are costly, and the strength of structures varies depending on the orientation and defects (pores and delamination). For non-contact evaluation of internal defects, we proposed lock-in infrared thermography to investigate orientation angles after a compression test. We also conducted a drop-weight impact test to study the behaviour of the composites after impact according the fibers orientation for composite fabricated using unidirectional carbon fiber prepregs. Using CAI tests, we determined the residual compressive strength and confirmed the damage modes using a thermal camera. The results of the drop weight impact tests show that the specimen laminated at 0° suffered the largest damage because of susceptibility of the resin to impact. In contrast, the specimens oriented in of 0°/90° and +45°/–45° directions transferred more than 90% of the impact energy back to the impactor because of the lamination of fibers in the orthogonal directions. Furthermore, the specimens that underwent complete damage in the impact tests were subjected to the lock-in method and showed internal delamination and cut fibers. With the finite elements analysis, the damage of each ply could be observed. Moreover, the temperature differences in the residual compression tests were not significant.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated