You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

A broadband signal recycling scheme for saturating the quantum limit from optical losses

Altmetrics

Downloads

197

Views

165

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

13 November 2020

Posted:

16 November 2020

You are already at the latest version

Alerts
Abstract
Quantum noise limits the sensitivity of laser interferometric gravitational-wave detectors. Given the state-of-the-art optics, the optical losses define the lower bound of best possible quantum-limited detector sensitivity. In this work, we come up with the configuration which allows to saturate this lower bound by converting the signal recycling cavity to be a broadband signal amplifier using an active optomechanical filter. We will show the difference and advantage of such a broadband signal recycling scheme compared with the previous white-light-cavity scheme using the optomechanical filter in [Phys.Rev.Lett.115.211104 (2015)]. The drawback is that the new scheme is more susceptible to the thermal noise of the mechanical oscillator. To suppress the radiation pressure noise which rises along with the signal amplification, squeezing with input/output filter cavities and heavier test mass are used in this work.
Keywords: 
Subject: Physical Sciences  -   Optics and Photonics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated