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Abstract: Cancer cells are adept at reprogramming energy metabolism and the precise manifestation
of this metabolic reprogramming exhibits heterogeneity across individuals (and from cell to cell). In
this study, we analyzed the metabolic differences between interpersonal heterogeneous cancer
phenotypes. We used divergence analysis on gene expression data of 1156 breast normal and tumor
samples from The Cancer Genome Atlas (TCGA) and integrated this information with a genome-
scale reconstruction of human metabolism to generate personalized, context-specific metabolic
networks. Using this approach, we classified the samples into four distinct groups based on their
metabolic profiles. Enrichment analysis of the subsystems indicated that amino acid metabolism,
fatty acid oxidation, citric acid cycle, androgen and estrogen metabolism and ROS detoxification
distinguished these four groups. Additionally, we developed a workflow to identify potential drugs
that can selectively target genes associated with the reactions of interest. MG-132 (a proteasome
inhibitor) and OSU-03012 (a celecoxib derivative) were the top-ranking drugs identified from our
analysis and known to have anti-tumor activity. Our approach has the potential to provide
mechanistic insights into cancer-specific metabolic dependencies, ultimately enabling the
identification of potential drug targets for each patient independently, contributing to a rational

personalized medicine approach.

Keywords: Breast cancer, genome-scale metabolic models, constraint-based analysis, divergence
analysis, gene expression, metabolism, drug targets, personalized metabolic networks.

1. Introduction

The physiological state of a cell is influenced by underlying metabolic processes which exhibit
high degrees of heterogeneity across patients and across cells. Cancer cells reprogram their energy
metabolism as is needed to meet the energy demands of proliferation and migration. The mechanisms
of invasion and metastasis are complex and mortality is mainly caused by progression of cancer to
metastatic state [1]. Alteration of interactions between cancer cells and their microenvironment leads
to diverse outcomes in the programmed behavior of the cells. Tumor cells exhibit heterogeneous
metabolic profiles, with differential utilization of metabolites such as glucose, lactate, glutamine and
glycine [2]. Some of the metabolic and genetic changes that are reported in tumor cells are enhanced
glycolysis, differential expression of lactate dehydrogenase A (LDH) which is linked with cancer

growth and metastasis, mutations in metabolic enzymes such as isocitrate dehydrogenase 1 (IDH1),
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succinate dehydrogenase (SDH) and fumarate hydratase (FH) involved in initiating tumors [3]. These
findings suggest that metabolism is fundamental in determining the cell fate in cancer and should be
explored further. Various omics measurements from diverse cancer cell lines have made it easier to
study the physiological changes. Integration of these omics measurements with computational

models increases the accuracy of predictions.

Transcriptome analysis provides a genome-wide snapshot of differential gene activity,
providing important information about key genes that modulate metabolism at the system level.
Transcriptomes are complex data types with a high degree of person-to-person heterogeneity that
can obfuscate the underlying biological signal, hindering their use in practice. To partially address
this issue, we have recently introduced “divergence analysis” [4], a simplified and personalized data
representation that captures the departure of omics profiles from a normal reference baseline.
Divergence analysis of breast cancer samples in TCGA [4] has been useful in measuring the degree
of divergence for genes and other genomic features in cancer versus the normal baseline phenotype,
as well as one cancer phenotype versus another. Divergence is a single sample property (unlike e.g.
a differentially expressed gene) and our previous work has shown that divergence encoding largely
preserves biological signals and helps removing unwanted noise from the data [4]. It is therefore
helpful for data preprocessing before complex system-level analyses, including metabolic network

modeling.

Combining biological data and modeling enables us to study complex interactions in a biological
system. Integrating transcriptomics data onto a genome-scale metabolic network to perform
network-level simulations is a useful step to regularize the data and attempt to infer metabolic states
from the combined evidence of the enzymes that are expressed in the transcriptome as a whole. Many
computational methods for metabolic modeling have been developed [5,6]. Genome-scale metabolic
models (GSMs) provide comprehensive information about known genes, metabolites and reactions
in organisms and are useful to infer metabolic differences between conditions [7-9]. These models
have been used to predict changing metabolic landscapes in cancers and also predict candidate drug
targets and biomarkers of cancer [10-13].

The main contributions of the present work are three-fold: (1) we generate context-specific
metabolic networks for 1156 cancer and normal samples by integrating their divergence profiles with
a global human metabolic network reconstruction; (2) we develop a framework for identifying key
metabolic and regulatory signatures and used it to classify the samples in breast cancer based on their
metabolic state; (3) we perform in silico gene knockout in these 1156 context-specific metabolic
networks and identify genes that can perturb the system, many of which correspond to known drug
targets. Thus, our study provides a novel assessment of metabolic network analysis based on
divergence encoding. Herein, we have employed this strategy for breast cancer, but our method can

be extended to other cancers and metabolically perturbed diseases to identify key metabolic

signatures and potential drug targets.

2. Results

2.1 Understanding metabolic differences in cancer samples using personalized metabolic networks
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In this study, we used gene expression estimates, encoded as binarized divergence indicators or as
TPM values, from 1156 cancer and normal samples from TCGA (https://www.cancer.gov/tcga), and
integrated them with a human metabolic model (Recon 3D) [14] to obtain personalized metabolic
networks for each sample. This approach allowed us to predict distinct metabolic signatures for each
individual sample and classify them according to their metabolic phenotype. In this study, we have
referred to personalized metabolic networks generated from divergence and transcriptome analysis
as ‘divergent networks’ and ‘normalized networks’, respectively. An overview of work done in this

study is represented in Figure 1.
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Figure 1: Overview of the study design. The breast cancer expression dataset from TCGA was
converted to ternary format using divergence analysis (shown in the middle panel) [4]. The
divergence values were integrated with human reconstruction and pruned to obtain personalized
metabolic networks. The right side of the figure panel shows the identification of metabolic
subgroups in the samples using unsupervised clustering. From our analysis we identified important
reactions and genes in cancer versus normal and used this information to associate drugs that can

target them (bottom panel on right).

2.2 Classifying cancer samples based on their metabolic profile

We used genes present in human reconstruction (Recon 3D) and mapped the divergence values for
solid tissue normal, primary tumor and metastatic samples. Principal component analysis of
metabolic gene expression in these samples showed two clusters but the normal samples could not
be differentiated from cancerous ones (Figure 2a). This suggested that expression profiling is not
sufficient to distinguish the samples and classify them. We performed a similar analysis with TPMs
and failed to identify a clear clustering of the samples (Supplementary figure 4). To obtain a better
understanding of perturbations in the system, we integrated divergence and TPM values with the
human metabolic model using iMAT method and generated context-specific metabolic networks for
1156 primary tumor, metastatic and normal tissue samples. We observed distinct clusters for cancer
(primary and metastatic) and normal samples, using fluxes measured for reactions in the context-
specific networks (Figure 2b). The primary and metastatic samples were mixed in the cancer cluster.
This suggested that metabolic networks were able to distinguish various phenotypes and can be used

to understand mechanistic changes in the system.
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(a) Class comparison: We compared the reaction fluxes for cancer and normal samples in the dataset
and classified reactions in each context-specific network as active or inactive based on their flux
measurement (described in methods section). In order to identify active reactions in the context-
specific networks, we used the information of reaction fluxes from all 1156 context-specific
metabolic networks. If a reaction was present in the network, it was assigned a state of 1, while
the remaining reactions were assigned a state of 0 indicating that they were absent in the context-
specific metabolic network. Statistical analysis of active reactions in divergent networks
identified 471 reactions (p-value < 0.05) that were significantly different in cancer versus normal.
These reactions belonged to the following pathways: androgen and estrogen metabolism, bile
acid synthesis, cholesterol metabolism, citric acid cycle, drug metabolism, eicosanoid
metabolism, exchange reactions, fatty acid oxidation, glutathione metabolism,
glycerophospholipid metabolism, glycolysis, steroid metabolism, transport, tyrosine
metabolism, urea cycle, and vitamin metabolism. Supplementary Table 1 represents the list of

subsystems that were enriched in cancer versus normal.

(b) Class discovery: We used an unsupervised machine learning method to classify the cancer samples
based on their metabolic state. Using K-means clustering on the simulated reaction fluxes, we
obtained four distinct clusters of cancer samples (Figure 2c). The number of clusters was
determined by the elbow method; see Supplementary figure 2. The cancer clusters were then
labeled from 1-4 and normal tissue samples were assigned as cluster 0. We performed a detailed
analysis of the four clusters to identify, if any, associations with standard clinical and pathological
tumor characteristics. This analysis showed that the metabolic clusters were significantly
associated with PAMS50 molecular subtypes and ER status (chi-squared p-value < 0.001),
distinguishing the luminal A and B samples from basal-like samples, and also ER positive and
negative samples to a greater extent. Specifically, cluster 2 was enriched for luminal subtypes
(luminal A and B) and predominantly accounted for ER positive samples, while cluster 3 was
enriched in basal-like and ER negative tumors. (Figure 3 and Supplementary file 1). The
metabolic clusters of tumor and normal samples were used for identifying important reactions

and sub-systems in these clusters.

In addition to identifying differences between cancer and normal phenotypes, we extended our
analysis to subsystems that are enriched for each identified cluster. The heatmap of enriched
subsystems in cancer versus the normal samples, as shown in Figure 2d, indicated that glycine, serine,
alanine and threonine metabolism and C5-branched dibasic acid metabolism were enriched in all the
clusters. Fatty acid oxidation, propanoate metabolism, citric acid cycle and glycosphingolipid
metabolism were enriched for cluster 1, 3 and 4, whereas cluster 2 showed selective enrichment for
peptide metabolism and exchange reactions. Androgen and estrogen metabolism, chondroitin
sulphate degradation and ROS detoxification were selectively enriched for cluster 3 samples,
indicating that each cluster had a distinct metabolic profile and we can probe their metabolic
differences. We compared the reactions in each cluster with respect to those in normal samples and
identified 254, 1388, 581, and 324 reactions that were significant in cluster 1-4 respectively
(Supplementary figure 3).
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Figure 2: Cluster analysis of genes and reactions

a) PCA of metabolic genes (divergent values) of 1156 breast cancer samples from TCGA. Samples
are colored as brown, green and pink based on normal, primary or metastasis phenotype,
respectively.

b) PCA of 1156 samples clustered based on metabolic reaction fluxes and colored with respect to
sample type. Samples are colored as brown, green and pink based on normal, primary or
metastasis phenotype, respectively.

c) Four clusters of cancer samples indicating distinct metabolic profiles. The clusters have been
labelled as 1, 2, 3 and 4.

d) Heatmap representing enriched subsystem for each cluster when compared to normal samples.
Orange fields indicate significant subsystems with p-value <0.05 and the gray fields indicate

non-significant subsystems with p-value > 0.05.

We extended our analysis to identify which types of samples were enriched in each of the clusters.
We mapped information of PAM (Prediction Analysis of Microarray) 50 classifier for breast tumor
intrinsic subtyping, known ER status, triple negative status of samples, American Joint Committee
on Cancer (AJCC) stage and vital status for samples in the cluster and obtained interesting results
and performed chi-squared statistics for these clusters. We found that cluster 2 had a higher
proportion of HER2-enriched, luminal A and luminal B samples whereas cluster 4 had higher
proportion of basal-like samples (Figure 3a). When we looked at the ER status of the samples, we
observed that Cluster 2 had a higher proportion of ER positive samples and cluster 4 had a higher
number of samples that were ER negative (Figure 3b). Cluster 2 and 4 had a higher proportion of
samples with known cases of triple negative status (Figure 3c). For samples with known AJCC stages,

we observed that cluster 2 had a higher proportion of samples that belonged to stage II (Figure 3d).
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This suggests that samples belonging to cluster 2 have a distinct metabolic profile and are able to

distinguish tissue type and known markers of breast cancer.
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Figure 3: PCA plots of metabolic clusters considering (a) PAMS50; (b) ER status; (c) triple negative
status and (d) AJCC stage of the samples.

To further analyze these clusters, we measured the recurrence free survival and overall survival
(deceased versus living) and observed differences between the 4 clusters. Based on the analysis,
samples in cluster 1 and 4 had better survival than cluster 2 and 3. So, we combined clusters 1 and 4,
and clusters 2 and 3 to identify differences in survival rate. The plot of Kaplan-Meier estimates in
Figure 4 shows differences between the group of clusters. This indicates that the clusters with

metabolic differences also have different survival and recurrence rates.
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Figure 4: Plots of Kaplan-Meier estimates for (a) overall survival and (b) recurrence of cancer in the

individuals. Cluster 1 and 4 are denoted by red line and cluster 2 and 3 in blue line.
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Our analyses of personalized metabolic networks showed differences in the metabolic profile of the
individuals such that they could be broadly categorized into four clusters and also indicated
variations at reactions level, subsystems level and also the survival and recurrence rate. We further
identified how metabolic genes contributed to these variations and probed genes that caused

perturbations in the system.

2.3 Identifying candidate druggable genes

Deletion of a set of metabolic genes from the models can either have profound effect on the system
or no effect at all. In order to predict the genes that cause perturbations in the system, we carried out
in silico gene deletion in our personalized metabolic networks. About 53 out of 1884 metabolic genes
upon single-gene deletion had a significant effect in the system (p < 0.05) upon single gene deletion
analysis. Table 1 represents a concise list of genes, the subsystems these genes belong to and drug
target information of these genes as reported in the Human Protein Atlas (HPA). The last column has

information whether there are known FDA-approved drugs targeting the gene.

Subsystem Gene Drug target
Cholesterol metabolism SOAT1 FDA approved
Valine, Ic.aucme, and isoleucine MUT FDA approved
metabolism

FDA approved
Citric acid cycle SDHA, SDHB, SDHC, SDHD (SDHD), Potential

drug target

C5-branched dibasic acid

. SUCLA2, SUCLG1, SUCLG2 Potential drug target
metabolism

Lysine metabolism DLD, DLST Potential drug target

ATPS family, COX family, UQCR
family, CYC1, CYTB

Oxidative phosphorylation Potential drug target

Pyrimidine synthesis UPRT
Sphingolipid metabolism SGMS1
Transport, mitochondrial SLC25A10

Glycerophospholipid

i CEPT1, PCYT2, PDHX
metabolism

Table 1: List of genes identified as important from in silico gene knockout analysis and mapped to
their subsystems and known drug target information from Human Protein Atlas (HPA). Drug target
information for the genes is provided in the last column (FDA-approved drugs or potential drug

target) using the information from HPA.

Metabolic genes like Sterol O-Acyltransferase 1 (SOAT1), methylmalonyl-CoA mutase (MUT) and
isozymes of succinate dehydrogenase (SDHA, SDHB, SDHC, and SDHD) have known FDA
approved drugs that can target them. Some of the other genes, identified from our analysis, like uracil
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phosphoribosyltransferase (UPRT), sphingomyelin synthase 1 (SGMS1), solute carrier protein
(SLC25A10), choline/ethanolamine phosphotransferase (CEPT), phosphate cytidylyltransferase 2
(PCYT2) and pyruvate dehydrogenase complex component X (PDHX) did not have drug target
information. These genes are involved in diverse metabolic processes as indicated by the subsystems
in Table 1. This analysis compared the genes in cancer versus normal samples that alter the system

upon deletion and also provided information of the drugs that can target them.

In addition to performing systems-level analysis, we developed a method that can be used for
predicting drug effects for each personalized metabolic network or can be used for known
phenotypes in the system. In this analysis, we queried a list of genes causing an effect in the system
against drug databases and that gave us information of drugs having higher influence in the system.
Using the drug response data from the Genomics of Drug Sensitivity in Cancer (GDSC) [15], we also
identified drugs that have an influence in the cells when the genes are mutated. Table 2 lists the drugs
and their targets based on the number of samples (out of 1156 total samples) that identified the genes
reported from our in silico gene deletion analysis. These drugs have been tested on 1,001 cancer cell
lines including 51 BRCA cell lines. The top-ranking drug, MG-132, is a proteasome inhibitor and
blocks the proteolytic activity of the 26S proteasome complex. This drug has been found to be
effective in inhibiting the proliferation of BRCA cells. OSU-03012 is a celecoxib and has been shown
to have anticancer and antimicrobial activity. The drug in combination with PDE5 inhibitors had

shown enhanced anti-tumor activity.

# significant
Drug Brand name Target samples (out Cohort
of 1156)

MG-132 Proteasome 599 BRCA

0OSU-03012 PDPK1 (PDK1) 474 All cell lines
PAC-1 CASP3 agonist 94 All cell lines
GSK-1904529A IGF1R 89 All cell lines
PF-562271 FAK 31 All cell lines
Q311 ARFGAP 28 All cell lines
Trametinib Mekinist MAP2K1 (MEK1), MAP2K2 (MEK2) 28 All cell lines

BRSK2, FLT4, MARK4, PRKCD, .

XMD11-85h RET. SPRK1 23 All cell lines
(5Z)-7-Oxozeaenol MAP3KY (TAK1) 14 All cell lines
GSK-650394 SGK3 12 All cell lines
Tipifarnib Zar”e;t:ﬁ’ég%%%g' Famesyl-transferase (FNTA) 12 Al cell lines
Vinorelbine Navelbine Microtubules 8 All cell lines
5-Fluorouracil DNA antimetabolite 5 All cell lines

Table 2: Information about drugs ranked based on their influence on genes identified from our in
silico analysis. The target information and the number of samples in which these genes are observed

are also indicated in the table.


https://paperpile.com/c/p0Q8hB/Snjql
https://doi.org/10.20944/preprints202011.0474.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 November 2020 d0i:10.20944/preprints202011.0474.v1

90of 15

From our analysis, it is possible to identify drug combinations that are predicted to have more effect
in cancer versus normal samples. Also, we have generated personalized drug profiles for each
individual in the study, thus enabling us to predict which drug or drug combination will have a

higher drug score in the individual.

3. Discussion

We have generated a personalized metabolic network for each sample in the study using divergence
values; classified the samples into different clusters based on their metabolic profile; and identified
drug/chemical moieties that can target metabolic genes identified from our analysis. We have applied
these steps to breast cancer samples and identified four distinct clusters based on their metabolic
profile. From the in silico gene deletion analysis we identified metabolic genes that are altered in
cancer versus normal conditions. Genes belonging to cholesterol metabolism; valine, leucine,
isoleucine metabolism; as well as citric acid cycle had known FDA-approved drugs targeting them.
We also carried out N-of-1 analysis and identified drug responses in each sample in our study. We
identified proteasome inhibitors (MG-132), COX-2 inhibitor (OSU-03012), CASP3 agonists and
inhibitor of IGF-1R (GSK-1904529A) that targeted genes identified from gene deletion analysis of
personalized metabolic networks of cancer samples. We have provided evidence that a metabolic
analysis is able to provide deeper understanding of the metabolic alterations in cancer. There are

three primary findings from this study that are described below.

First, we used individual RNAseq profiles to build personalized metabolic networks to estimate
candidate metabolic network states in breast cancer and control samples from TCGA
(https://www.cancer.gov/tcga). We first used the divergence approach [4] to identify genes that
diverged high or low based on RNAseq data normalized as transcript per millions (TPM). We then
integrated this information with a genome-scale human metabolic network [14] to estimate candidate
metabolic network states that would be supported by the observed high and low expression of the
corresponding enzyme-encoding genes. We used the divergence method for computing values
because it has the advantage of removing noise, while keeping important signals in the dataset.
Similar results could be obtained using continuous data, but the level of noise in the count is
considerable, making it difficult to find anything useful. Whereas transcriptomic data is useful in
giving us a snapshot of the extent to which genes are expressed, we need to integrate this information
with computational models in order to gain mechanistic insights into the processes that are affected
in the system. In this study, we leveraged our knowledge of metabolic networks and integrated
divergence data to understand the metabolic landscape in breast cancer. Our workflow also allows
us to carry out N-of-1 analysis and generate personalized metabolic networks for each sample in the
study.

Second, we identified four distinct metabolic clusters of breast cancer samples from TCGA. Cluster 2
had higher proportion of samples that were HER2-enriched, luminal A and B samples, ER positive
samples and triple negative samples compared to cluster 1, 3 and 4. Cluster 4 had a high proportion
of samples that were basal-like in origin, ER negative and also triple negative status. Thus, the
metabolic clustering analysis gave us information of the metabolic profile of the samples that was not

evident from the transcriptome data alone.
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Third, from our in silico gene deletion analysis, we identified Sterol O-Acyltransferase 1 (SOAT1),
methylmalonyl-CoA mutase (MUT) and isozymes of succinate dehydrogenase (SDHA, SDHB,
SDHC, and SDHD) as having a significant effect (p-value < 0.05) in cancer as compared to normal
samples. These genes had known FDA-approved drug targets that inhibited them. From our drug
response analysis, we identified MG-132, a cell-permeable proteasome inhibitor, that has been known
to inhibit proliferation of BRCA cells [16,17]. This drug has been known to induce down-regulation
of anti-apoptotic proteins Bcl-2 and XIAP and up-regulates expression of pro-apoptotic protein Bax
and caspase-3 in glioma cells [18]. We also identified OSU-03012 from our drug response analysis.
This drug has been reported to have anti-cancer activity [19] and mediates antitumor effects via the
inhibition of PDK1 [20]. The effect of this drug in breast cancer can be tested. PAC-1, identified from
our analysis, is an activator of procaspase-3 and induces apoptosis in tumor cells [21]. Our framework

provides a list of drugs that can be tested for their effectiveness in breast cancer.

Tumor cells are known to reprogram energy metabolism [22], and metabolic aberrations such as the
Warburg effect are considered a hallmark of cancer [23]. Tumor cells exhibit heterogeneous metabolic
profiles, with differential utilization of metabolites such as glucose, lactate, glutamine and glycine
[2]. Some of the metabolic dysregulation that are reported in tumor cells are enhanced glycolysis,
amino acid metabolism, fatty acid metabolism [3,24], that are profoundly dysregulated in cancer and
have been linked with mutated genes. Bioavailability of certain metabolites, such as asparagine, has
been shown to have an influence on metastatic potential of breast cancer. These studies have shown
that metabolism is altered in cancer and it is a fundamental process that needs to be studied in-depth.
Tumor cells exhibit variable metabolic profiles making it challenging to decode the heterogeneous

metabolic landscape in cancer.

Our framework is generalizable and can be used for generating personalized metabolic networks that
will help in categorizing the samples based on their metabolic profile and identifying drug targets

that will have an effect on the system.

4. Materials and Methods

Expression data and divergence analysis

We downloaded RNA-Seq data from TCGA breast cancer samples (https://www.cancer.gov/tcga),
which consists of 1100 tumor (primary and metastatic) and 56 normal tissue samples. Expression
counts summarized at the gene-level were retrieved from the “firehose” data portal. For metabolic
model integration with gene expression and to obtain context-specific models for each sample, we
used transcript per million (TPM) values that we then simplified into a ternary encoding (up, no

change, down) using the divergence method [4].

Divergence analysis is a method for digitizing high dimensional omics data into a binary or ternary
representation for simplified analysis. This representation aims to remove inherent population
variation in an omics sample to reveal features that are divergent from normal behavior as estimated
from a baseline population. In the univariate version of divergence which was utilized here, after
transforming the data to the rank space (by replacing the original RNA-Seq counts in each sample

profile by their ranks within the profile) and estimating baseline regions, a gene that is differentially
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expressed above the baseline region is represented by 1 and one that is differentially expressed below
the baseline region in represented by -1, with the remaining genes at 0. In this analysis, half of the
normal breast samples were used as the reference population to estimate baseline behavior and the
divergence coding was computed for each gene for the remaining normal as well as the tumor
samples. This step enabled converting the continuous gene expression value to ternary values for

genes in the dataset.

Integration of expression data to generate personalized metabolic networks

For our analysis, we used the latest genome-scale reconstruction of known human metabolism,
Recon3D, that is a multi-compartment model consisting of 10600 reactions, 5835 metabolites, 2248
metabolic genes as well as 102 subsystems [14]. Gene-protein-reaction (GPR) associations in the
genome-scale metabolic models (GEMs) were used for integrating omics information with the
models. TPM and divergence values were calculated for RNA-Seq data from TCGA. These values
were integrated with the Recon3D model [14] using iMAT [25] (Supplementary figure 1). In this way,
we generated 1156 context-specific metabolic networks and predicted a reaction rate (“flux’) for each
reaction in the network. Reactions related to biomass synthesis and ATP synthase were considered
as core reactions and retained for generation of context-specific metabolic networks. We performed
flux balance analysis (FBA) using COBRA toolbox v 3.0 [26] and evaluated flux distribution using
linear programming (LP) solvers [27], using an objective function that was previously reported for
cancer cells [28]. We used Ham’s media composition [14] for constraining exchange reactions in the
context-specific networks. Using fastFV A [29] the flux values for reactions supporting 90% of biomass
production were calculated and used to classify reactions as active or inactive in the context-specific
networks. The workflow represented in Figure 1 provides an overview of analyses performed.
COBRA toolbox v3.0 was implemented in MATLAB R2018a and academic licenses of Gurobi
optimizer v7.5 and IBM CPLEX v12.7.1 were used to solve LP and MILP problems in this study.

Classification of context-specific metabolic networks into metabolic subgroups

We carried out flux variability analysis for all context-specific metabolic networks using fastFVA [29].
Maximum flux values for reactions were used for unsupervised machine learning methods to identify
metabolic clusters of cancer samples (Supplementary figure 2). K-means clustering was performed in
R using the package cluster and factoextra for cluster and visualization. We computed the distance
matrix using Pearson correlation. In order to ascertain the optimal number of clusters, we used the
“elbow method” that takes into account the total within-cluster sum of squares (wss). Supplementary
figure 2 represents the curve obtained for wss according to the number of clusters k. We distinctly
observed four clusters for cancer metabolic networks using K-means clustering [30]. The cancer
clusters were then labeled from 1-4 and normal tissue samples were assigned as cluster 0 for our

analysis.

Using Fisher’s exact test, we identified reactions that were statistically significant in cancer versus
normal and also in clusters 1-4 (cancer clusters). The list of active reactions in each cancer cluster was
compared with normal tissue samples to determine subsystems that were enriched in each cluster.
We also examined the clusters with important phenotypes such as PAM50, ER status of the
individual, triple negative status, tissue source site, year of initial pathological diagnosis, and

pathological state (Supplementary file 1).
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Identifying target genes in the context-specific networks

We performed in silico gene deletion analysis using the singleGeneDeletion function in COBRA
toolbox [26]. The total number of genes in the Recon3D model was 2248 of which 1883 were unique
genes. We deleted genes in the context-specific metabolic networks one at a time and measured the
ratio of growth rate of the knockout model versus the wild type model. Genes with growth rate ratio
(grRatio) < 0.9 were considered to have impact on the system and were used as input for drug target
prediction. A grRatio of 0.9 suggests that the knock-out model was able to attain 90% of its growth
compared to the original model. A Wilcoxon rank-sum test was carried out to identify genes that had
significant effect on the system upon knock-out in cancer versus normal context-specific networks.
Information from the Human Protein Atlas [31] and the Pathology Atlas [32] was used for biological
annotation of these genes and identification of these genes as FDA approved drug targets or potential

drug targets based on HPA.

Drug target identification for genes shortlisted from metabolic networks

We calculated statistical associations between in vitro drug sensitivity data and the personalized
target gene sets, as shown in Supplementary file 2. Specifically, we used the drug response data from
Genomics of Drug Sensitivity in Cancer (GDSC) [15] which contains IC50s for 265 anti-cancer drugs
across 1,001 cancer cell lines including 51 BRCA cell lines. GDSC also included a genomic and
molecular characterization of these 1,001 cell lines. We used the binarized mutation data of more than
19,000 genes, including only protein changing mutations [15,33]. For each of the 1,165 samples, we
created a binary vector across the 1,001 GDSC cell lines indicating whether a cell line has at least one
mutated gene in the essential gene set of the sample under investigation. A Spearman rank correlation
coefficient was computed between the binary vector and the continuous IC50 drug response values
for each of the drugs (n=265). We selected drugs for which at least one of the samples the P-value is
smaller than le-3 (uncorrected). Negative correlation coefficients indicate that mutated cell lines (i.e.

those that have mutations in metabolic genes) are more sensitive (low IC50) to a drug.

Statistical analysis

Fisher’s exact test was the statistical method for identifying significant active reactions from the
models. For identifying differentially expressed genes in cancer versus normal, we used Wilcoxon
rank-sum test. To account for the multiple testing in these analyses we calculated the Benjamini-
Hochberg False Discovery Rate correction and a BH-FDR < 0.05 was considered as significant.

Software

The R/Bioconductor package 'divergence' was used for the divergence computation. We used the
COBRA toolbox v3.0 [26] in MATLAB 2018a for analyzing the metabolic networks. Academic licenses
of the Gurobi optimizer v7.5 and IBM CPLEX v12.7 were used to solve LP and MILP problems. PCA
and K-means clustering were done using R 3.5.0 (codename “Joy in Playing”). For K-means clustering

we used the package “cluster’ and ‘factoextra’ for clustering and visualization.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1,
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Supplementary Figure 1: Schematic representation of the iMAT algorithm, operating on reactions
(arrows), metabolites (squares) and genes (diamonds). The representative model has reactions
labeled with R, metabolites with M and genes with G. The gene expression data is mapped to genes
in the model and the user defines a cutoff of gene expression that decides which reactions are retained
or eliminated from the model. The genes are colored from green to red denoting higher and lower

expression values, respectively.

Supplementary figure 2: Elbow plot to identify optimum number of clusters of cancer samples.

Number of clusters k and total within the sum of squares are represented in x- and y-axis respectively.

Supplementary figure 3: Volcano plots for number of significant reactions identified for each cluster
after Bonferroni correction and BH-FDR correction

Supplementary figure 4: PCA of normalized TPM values for metabolic genes
Supplementary file 1: Results of cluster-based analysis

Supplementary file 2: Drug sensitivity results for 1156 samples
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