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Abstract: Convolutional Neural Networks combined with autonomous drones are increasingly seen
as enablers of partially automating the aircraft maintenance visual inspection process. Such an
innovative concept can have a significant impact on aircraft operations. Through supporting aircraft
maintenance engineers detect and classify a wide range of defects, the time spent on inspection can
significantly be reduced. Examples of defects that can be automatically detected include aircraft
dents, paint defects, cracks and holes, and lightning strike damage. Additionally, this concept could
also increase the accuracy of damage detection and reduce the number of aircraft inspection incidents
related to human factors like fatigue and time pressure. In our previous work, we have applied
a recent Convolutional Neural Network architecture known by MASK R-CNN to detect aircraft
dents. MASK-RCNN was chosen because it enables the detection of multiple objects in an image
while simultaneously generating a segmentation mask for each instance. The previously obtained
F1 and F2 scores were 62.67% and 59.35 % respectively. This paper extends the previous work
by applying different techniques to improve and evaluate prediction performance experimentally.
The approaches uses include (1) Balancing the original dataset by adding images without dents;
(2) Increasing data homogeneity by focusing on wing images only; (3) Exploring the potential of
three augmentation techniques in improving model performance namely flipping, rotating, and
blurring; and (4) using a pre-classifier in combination with MASK R-CNN. The results show that a
hybrid approache combining MASK R-CNN and augmentation techniques leads to an improved
performance with an F1 score of (67.50%) and F2 score of (66.37%).

Keywords: Aircraft Maintenance Inspection; Anomaly Detection; Defect Inspection; Convolutional
Neural Networks; Mask R-CNN; Generative Adversarial Networks; Image Augmentation

1. Introduction

1.1. Automated Aircraft Maintenance Inspection

Automated aircraft inspection basically aims at automating the visual inspection process normally
carried out by aircraft engineers. It aims at detecting defects that are visible on the aircraft skin which
are usually structural defects [1]. These defects can include dents, lightning strike damage, paint
defects, fasteners defects, corrosion, cracks, just to name a few. Automatic defect detection can be
enabled by using a drone-based system that can scan the aircraft and detect/ classify a wide range
of defects in a very short time. Other alternatives would be using sensors in a smart hangar or at the
airport apron area. Automating the visual aircraft inspection process can have a significant impact on
today’s flight operations with numerous benefits including but not limited to:

• Reduction of inspection time and AOG time: The sensors either on-board a drone or in a smart
hangar can quickly reach difficult places such as the flight control surfaces in both wings and the
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empennage. This in turn can reduce the man hours and preparation time as engineers would
need heavy equipment such as cherry pickers to have more scrutiny. The inspection time can
be even further reduced if the automated inspection system is able to assess the severity of the
damage and the affected aircraft structure with reference to both aircraft manuals (AMM and
SRM), and recommend the course of action to the engineers. Time savings on inspection time
would consequently lead to reductions of up to 90% in Aircraft-On-Ground times [2].

• Reduction of safety incidents and PPE related costs: Engineers would no longer need to work
at heights or expose themselves to hazardous areas e.g. in case of dangerous aircraft conditions
or the presence of toxic chemicals. This would also lead to important cost savings on Personal
Protective Equipment.

• Reduction of decision time: Defect detection will be much more accurate and faster compared
to the current visual inspection process. For instance, it takes operators between 8 and 12 hours
to locate lightning strike damage using heavy equipment such as gangways and cherry-pickers.
This can be reduced by 75% if an automated drone-based system is used [3]. Such time savings
can free up aircraft engineers from dull tasks and make them focus on more important tasks. This
is especially desired given the projected need of aircraft engineers in various regions of the world
which is 769000 for the period 2019-2038 according to a recent Boeing study [4].

• Objective damage assessment and reduction of human error: If the dataset used by the neural
network is annotated by a team of experts who had to reach consensus on what is a damage and
what not, then detection of defects will be much more objective. Consequently, the variability
of performance assessments by different inspectors will be significantly reduced. Furthermore,
human errors such as failing to detect critical damage (for instance due to fatigue or time pressure)
will be prevented. This is particularly important given the recurring nature of such incidents. For
instance, the Australian Transport Safety Bureau (ATSB) recently reported a serious incident in
which a significant damage to the horizontal stabilizer went undetected during an inspection, and
was only identified 13 flights later [5]. In [1], it was also shown that the model is able to detect
dents which were missed the by experts during the annotations process.

• Augmentation of Novices Skills: It takes a novice 10000 hours to become an experienced
inspector. Using a decision-support system that has been trained to classify defects on a large
database can significantly augment the skills of novices.

1.2. Applications/Breakthroughs of Computer Vision

Computer vision is changing the field of visual assessment in nearly every domain. This is not
surprising given the rapid advances and growing popularity of the field. For instance, the error in
object detection by a machine decreased from 26% in 2011 to only 3% in 2016 which is less than human
error reported to be 5% [6].The main driver behind these improvements is deep learning which had a
profound impact on robotic perception following the design of AlexNet in 2012. Image classification
has therefore become a relatively easy problem to solve given that enough data is available to training
the deep learning model.

Computer vision has been successfully applied in the Healthcare domain. It typically deals
with tasks like object classification, detection, and segmentation which are crucial in determining for
instance whether a patient’s radiograph has a malignant tumor [7]. Many studies have demonstrated
promising results in complex diagnostics in a wide range of areas including dermatology [8], radiology
[9], ophthalmology [10], and pathology [11]. In fact, the technology has become so good in medical
imaging diagnosis that the FDA has recently approved many use cases [12] such as:

• Arterys MICA from Arterys Inc. which detects liver and lung cancer on CT and MRI (Approved
on September 2018).

• HealthPNX from Zebra Medical Vision Ltd. which alerts for pneumothorax based on Chest
X-Rays (Approved on May 2019).

• BriefCase from Aidoc Medical, Ltd which identifies linear lucencies in the cervical spine bone in
patterns compatible with fractures (Approved on July 2018).
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• Critical Care Suite from GE Medical Systems, LLC which identifies pneumothorax based on Chest
X-Rays (Approved on August 2019).

• QuantX from Quantitative Insights, Inc. which detects breast cancer (Approved on January 2020).

All these deep learning systems could support physicians by offering them a second opinion and
flagging concerning areas and abnormalities in images.

Agriculture is another popular domain where computer vision solutions combined with deep
learning algorithms are integrated into drones that can scan large fields in a matter of minutes. Images
are collected and processed to help farmers make informed decisions about their crops. The captured
images include soil and crop conditions to monitor for any stress or disease. Patricio & Rieder [13]
provide a systemic review of 25 papers that treat aspects related to disease detection, grain quality
and phenotyping of the most produced grains in the world. The classifiers used by the different
research groups include Support Vector Machines, Artificial Neural Networks, Deep Belief Networks,
Back-Propagation Neural Networks. Tian et al. [14] recently analyzed the body of work of computer
vision applications in agriculture and classified it into six main categories:

• Crop health growth monitoring.
• Prevention and control of crop diseases, pests and weeds.
• Automatic harvesting of crops.
• Agricultural product quality testing.
• Modern farm automation management.
• Monitoring of farmland information with UAV.

The authors conclude that these efforts contribute to the development of agricultural automation
with all the expected benefits: low cost, high efficiency, and high precision. However, several challenges
have also been identified which include 1) the lack of a large scale dataset; 2) the increasing need to
integrate more disciplines and agricultural requirements; and 3) ensuring the robustness and accuracy
in various complex situations. In another closely related work, Ganesh et al. 2019 [15] use mask R-CNN
to detect individual fruits and obtain pixel-wise mask for each detected fruit in the image.

Computer vision solutions have also been widely explored in production and manufacturing
environments to inspect product quality and detect defects. For instance, Yun et al. 2020 [16] propose
an automatic vision-based defect inspection system to inspect metal surface defects. Because such
defects occur rarely, the researchers had an imbalanced data problem. Therefore, they proposed to
use convolutional variational autoencoders to generate sufficient data to train the model. Ren et al.
2018 [17] also recognize that automating surface inspection is a challenging task as collecting data is
usually costly, and have proposed a generic approach that require small training data for automated
inspection. The approach builds a classifier on the features of image patches, where the features are
transferred from a pre-trained deep learning network. Then, a pixel-wise prediction is obtained by
convolving the trained classifier over input image. In another work, Weimer et al. 2016 [18] examine
different design configurations of deep convolutional neural networks, and the impact of different
hyper-parameter settings toward defect detection accuracy. Other applications of computer vision can
be found in domains such as the automotive industry [19], retail [20], and railway [21].

The Applications of computer vision and deep learning in aircraft maintenance inspection
remain very limited despite the impact this field is already making in other domains. Based on the
literature and technology review performed by the authors, it was found that only a few researchers
and organizations are working on automating aircraft visual inspection.

One of the earliest works that uses neural networks to detect aircraft defects dates back to 2017.
In this work [22] the authors used dataset images of the airplane fuselage. For each image, a binary
mask was created by an experienced aircraft engineer to represent defects. The authors have used a
convolutional neural network that was pre-trained on ImageNet as a feature extractor. The proposed
algorithm achieves about 96.37 % accuracy. A key challenge faced by the authors was an imbalanced
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dataset which had very few defect photos. To tackle this problem, the authors used data balancing
techniques to oversample the rare defect data and undersample the no-defect data.

Miranda et al. [23] use object detection to inspect airplane exterior screws with a UAV.
Convolutional Neural Networks are used to characterize zones of interest and extract screws from
the images. Then computer vision algorithms are used to assess the status of each screw and detect
missing and loose ones. In this work, the authors made use of GANs to generate screw patterns using
a bipartite approach.

Miranda et al. [24] point out to the challenge of detecting rare classes of defects given the
extreme imbalance of defect datasets. For instance, there is an unequal distribution between different
classes of defects. So, the rarest and most valuable defect samples represent few elements among
thousands of annotated objects. To address this problem, the authors propose a hybrid approach
which combines classic deep learning models and few-shot learning approaches such as matching
network and prototypical network which can learn from few samples. In [25], the authors extend this
work by questioning the interface between models in such a hybrid architecture. It was shown that by
carefully selecting the data from the well-represented class when using few-shot learning techniques,
it is possible to enhance the previously proposed solution.

1.3. Research Objective

In Bouarfa et al. [1], we have applied MASK R-CNN to detect aircraft dents. MASK-RCNN was
chosen because it enables the detection of multiple objects in an image while simultaneously generating
a segmentation mask for each instance. The previously obtained F1 and F2 scores were 62.67% and 59.35
% respectively. This paper extends the previous work by applying different techniques to improve
and evaluate prediction performance experimentally. The approaches uses include (1) Balancing the
original dataset by adding images without dents; (2) Increasing data homogeneity by focusing on
wing images only; (3) Exploring the potential of three augmentation techniques in improving model
performance namely flipping, rotating, and blurring; and (4) using a pre-classifier in combination with
MASK R-CNN.

This paper is organized as follows. Section 1 provides the introduction. Section 2 describes the
methodology. Section 3 describes the experimental set-up and presents the key results. The conclusion
is provided in section 4.

2. Methodology

This study uses Mask Region Convolutional Neural Networks (Mask R-CNN) to automatically
detect aircraft dents. Mask R-CNN is a deep learning algorithm for computer vision that can identify
multiple objects in one image. The approach goes beyond a plain vanilla CNN in that it allows the the
exact location and identification of objects of interest in their bounding.This functionality is relevant
for detecting aircraft dents which don’t have a clear defined shape. However Mask R-CNN comes at
a computational cost. For example, YOLO [26] a popular object detection algorithm is much faster
if all what needed are bounding boxes. Another drawback of Mask R-CNN is labelling the masks.
Annotating data for mask is a cumbersome and tedious process as the data labeler needs to draw
polygon for each of the object in an image.

2.1. Object detection

As with every object detection task, there exist three sub-tasks [27] (see also Figure 1):

• Extracting Regions of Interest: The image is passed to a ConvNet which returns the Region of
Interests (RoIs) based on methods like selective search (R-CNN) or RPN (Region Proposal Network
for faster R-CNN). Then, a pooling layer is extracted from the ROI to ensure all regions have the
same size.
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• Classification Task: Regions are passed on to a fully connected network which classifies them into
different image classes. In our case study, the classes are dent ‘Damage’ or background ‘aircraft
skin without damage.’

• Regression Task: A bounding box (BB) regression is used to predict the bounding boxes for each
identified region for tightening the bounding boxes.

Since aircraft dents don’t have a clearly defined shape, arriving at square/rectangular shaped
BBs is not sufficient. it’s important to identify the exact pixels in the bounding box that corresponds
to the class damage. Exact pixel location of the dent will help to identify the location and quantify
the damage. An additional step is needed: semantic segmentation (pixel-wise shading of the class of
interest) into the entire pipeline for which we will use Masked Region based CNN (Mask R-CNN)
architecture.

Figure 1. Faster R-CNN architecture based on [28]

2.2. Mask R-CNN

Mask R-CNN is an instance segmentation model, which enables the identification of pixel-wise
delineation of the object class of interest. In order to get instance segmentation for a particular image,
two main task are required (see also Figure 2):

• BB based object detection (Localization Task): uses similar architecture as faster R-CNN. The only
difference in Mask R-CNN is the ROI step. Instead of using ROI pooling, it uses ROI align to
allow the pixel to pixel preserve of ROIs and prevent information loss.

• Semantic segmentation: which allows segmenting individual objects at pixel within a scene,
irrespective of the shapes. Semantic segmentation uses a Fully Convolutional Network (FCN)
which creates binary masks around the BB objects through creating pixel-wise classification of
each region. Hence, Mask R-CNN minimizes the total loss.
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Figure 2. Mask R-CNN framework for instance segmentation [29]

2.3. Implementation

This section discusses the data preparation and the implementation of the concept on real-life
aircraft images using Mask R-CNN. The authors have adopted the code take from [27] such that it can
be used to identify dents on aircraft structures. In order to reduce the computational time to train the
Mask R-CNN, we have applied transfer learning [30] with a warm restart (shown in Figure 3) and
taken the initial weights from [31]. By pre-training the neural network on the COCO, we then re-use it
on our target data set as the lower layers are already trained on recognizing shapes and sizes. In this
way we refine the upper layers for our target data set (aircraft structures with dents).

Figure 3. Mask R-CNN framework for instance segmentation

2.4. Environment Set-Up

The most crucial element before training the model is setting up a proper environment, where
the core computations are performed. Here we resort to Google Colab in combination with Python,
Jupyter notebook. Google Colab is a free, in-the-browser, collaborative programming environment
that provides an interactive and easy to use platform for deep learning researchers and engineers
to work on their datascience projects. There is no need for the user to follow complex and tedious
procedures to install software, associated packages, worry about data management and computational
resources (CPU/GPU/TPU). All is pre-configured and the user can focus directly on the research
questions. Google colab is a perfect environment for testing Deep Learning based projects before going
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into production settings and also provides loads of extras, like documenting your work in Markdown,
Version control and Cloning.

3. Experimental Results

This section provides an overview of the performance metrics, experimental set-up, and a
summary of the key results.

3.1. Model Performance Evaluation

This section presents the evaluation criteria used to assess model performance. As explained
above, Mask R-CNN is used to detect the dents on the given aircraft images (i.e., aircraft defects). From
the point of view of the decision makers utilizing such a decision-support system, detecting the dent
area is more important than calculating the exact area of the dents accurately. Therefore, this work
focuses on accurately detecting the dents and measuring the performance by considering how well the
dent predictions are made. For this purpose, the well known prediction performance metrics such
as precision, recall and F1 scores are used. In this study, precision measures the percentage of truly
detected dents among the dent predictions by the given model (i.e, the percentage of detected dents
that were correctly classified) while recall measures what percentage of the dents predictions that are
correctly detected.

Formally, Equation 1 and Equation 2 show how to calculate the precision and recall respectively
where:

• TP: denotes the true positives and is equal to the number of truly detected dents (i.e., the number
of dent predictions, which is correct according to the labeled data).

• FP: denotes the false positives and is equal to the number of falsely detected dents (i.e., the
number of dent predictions, which are not correct accordingly to the labeled data).

• FN: denotes the false negatives and is equal to the number of dents, which are not detected by
the model (i.e., the number of dents labelled in the original data but the model could not detect
them).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

In addition to the above metrics, we also consider an extra performance metric, called Fβ-score
(Fβ measure). This metric is basically a weighted combination of the Precision and Recall. Besides, the
range of the Fβ-score is between zero and one where higher values are more desired. In this study, we
took two different beta values into consideration which are 1 and 2. F1 conveys the balance between
precision and recall while F2 weighs recall higher than precision.

Fβ = (1 + β2) ∗ Precision ∗ Recall
β2 ∗ Precision + Recall

(3)

3.2. Experimental Setup

This section describes the experimental setup and characteristics of datasets used to train and test
the convolutional neural network.

3.2.1. Data Collection and Annotation

The first step in this research involves collecting images of aircraft dents from different sources.
To the best of the authors knowledge, this is the first study which aims at automatically detecting
aircraft dents. Therefore, there was no image database for aircraft dents publicly available. So a key
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first step was to develop an aircraft dents database from scratch. This was achieved by taking photos of
aircraft dents at Abu Dhabi Polytechnic Hangar (4) and combining it with online images that had one
or multiple aircraft dents. Since the total number of images was small (56 images), we have involved
highly experienced aircraft maintenance engineers during the annotation process in order to accurately
label the location of the dents in each image as shown in Figure 5.

Figure 4. Abu Dhabi Polytechnic Hangar

Figure 5. Manual Dent Annotation

3.2.2. Datasets Characteristics

The 56 collected images of aircraft dents were diverse in terms of background color; size & location
of dents; causes of dents; resolution; and distance/angle from which the photos were taken. Based on
this original dataset we have prepared4 different datasets which are described below and summarized
in Table 1.

1. Dataset 1: This dataset is a combination of the original dataset which contains 56 images of
aircraft dents [1] and a new dataset of 49 images without dents. The annotation in the original
dataset used in [1] has also been improved through involving more experts to reach consensus
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Table 1. Data Set Description

Image with dents Images without dents Scope
Dataset 1 56 49 Aircraft
Dataset 2 26 20 Wing
Dataset 3 56 0 Aircraft
Dataset 4 56 0 Aircraft
Dataset 5 56 49 Aircraft
Dataset 6 56 49 Aircraft

and later verified by another expert. Briefly, Dataset 1 has nearly balanced images with dents
and without dents (105 images in total).

2. Dataset 2: This dataset is a subset of dataset 1 and contains 46 wing images in total 26 of which
have dents, and 20 without dents.

3. Dataset 3: This dataset contains half the number of images in the original dataset which contain
images with dents only [1], combined with augmented images of the remaining half. Note that
we applied the mixed augmentation technique as shown in Figure 7.

4. Dataset 4: This dataset contains all the images with dents in the original dataset (56 images with
dents) in combination with their augmented version.

5. Dataset 5: This dataset contains half the number of images in dataset 1 combined with the
augmented images of the remaining half. This dataset contains both images with dents and
without dents.

6. Dataset 6: This dataset contains all the images with dents in dataset 1 (56 images with dents and
49 images without dents) in combination with their augmented version.

3.2.3. Training and Test Split

The main challenge in this study faced was data scarcity. In addition to using clean and clearly
labeled data, we used a 10-fold cross-validation [32] in order to have a diverse pool of training and
test data for a robust evaluation. In this approach, the original dataset was split into 10 equally sized
parts. By combining these parts in a systematic way (i.e., one for test, the rest for training), we create
10 different combinations of training and test dataset as shown in Figure 6.

Figure 6. Visualization of 10 Fold Cross Validation
Firstly the dataset is shuffled and then divided into 10 equal pieces. For each fold, one piece is reserved for testing
while the remaining ones are used for training. In this figure, the green pieces indicate those reserved for testing

while the white ones belong to those used for training. Thus, each fold has different test data.
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After training the network model on the training set of each fold and testing on the associated
test sets separately, an expert checked and compared the predictions with the labeled data for each
fold and calculate the true positives TP, false negatives FN, and false positives FP. It is worth noting
that we have used a Mask R-CNN which has already been trained to detect car dents [33]. Therefore,
even with a small dataset, we could be able to detect the areas of dents on the aircraft dataset. This
concept is also known as transfer learning.

3.2.4. Image Augmentation

Image augmentation is a technique which aims at generating new images from already existing
ones through a wide range of operations including resizing, flipping, cropping, etc. The purpose of
this approach is to create diversity, avoid overfitting, and improve generalizability [34].

In some of the experiments, three augmentation techniques are applied which are flipping, rotating
and blurring. This process leads to new images whiles keeping the dents annotations unaffected.
Hence, the approach generates new samples with the same label and annotations from already existing
ones by visually changing them. In order to prevent damaging the dents images and preserve the
image quality, it was decided to use soft augmentation techniques. The techniques were randomly
applied to the same image together using a Python library known by imgaug [35]. An example is
provided in Figure 7 to illustrate the effects of these techniques.

(a) Original (b) Annotation (c) Blurring

(d) Flipping (e) Rotating (f) Mixed

Figure 7. Image Augmentation Example
The effect of each augmentation technique and the mixed one are shown. As seen in the figures, the dented area is

not visually damaged by augmentation techniques.
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3.2.5. Training Approach

Thanks to transfer learning, the ResNet part of the model can extract some visual features that can
be utilized in this study without any additional training. However, the other parts of the model must
be trained to utilize these visual features. Therefore, the heads of the model (excluding ResNet) must
be trained. Firstly, the ResNet weights are frozen, then the model is trained 15 epochs for a dataset
of approximately 50 images. Note that the number of epochs are tuned according to the size of the
dataset (e.g., 30 for a dataset of 100 images). In addition to this, the ResNet part of the model should
be also trained to get better results, because the ResNet may extract more useful visual features after
training. Therefore, the weights of the model, including ResNet, is continued training 5 more epochs
(also tuned according to the size of the dataset). Briefly, the model is trained for 15 epochs without
ResNet, then 5 more epochs with ResNet, a total of 20 epochs is trained.

3.2.6. Pre-Classifier

In Dataset 1, Dataset 5 and Dataset 6, there are some images without dents that the Mask R-CNN
model may predict some dents on. This would lead to false positives which would decrease precision.
To avoid mispredictions on images without dents, we trained an image classifier to detect whether a
given image has dent or not. This approach will significantly increase the precision value. However,
it may slightly decrease the recall value when an image with dent is predicted as without dent.
For classification, Bag of Visual Words (BoVW) [36] and Support Vector Machine (SVM) [37] are
implemented. The average performance results of the pre-classifier model are shown in Table 2.

Table 2. The Performance Results of Classification Model

Accuracy Precision Recall F1

Training 97.04% 97.0% 97.0% 97.0%

Test 88.82% 89.9% 88.8% 88.7%

For each fold, a pre-classifier was trained on corresponding train set and the metrics are calculated on
corresponding test set. In this table, the metrics are the mean of the metrics of all folds.

This approach will be used during testing. First of all, the classifier model generates BoVW vector
from a given image in test set. Then, it predicts whether the image is with dent or without dent by
classifying the BoWV vector of the image with SVM. The Mask-RCNN model will extract dented areas
from the image if it is predicted as image with dent by the classifier. Otherwise, the image will be
ignored. The approach is demonstrated in Figure 8.

Figure 8. Visualization of The Pre-Classification Approach

3.3. Results & Analysis

This section provides the experimental results showing the prediction performance of the
proposed approach.
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Table 3. Overall

Experiment ID Dataset Augmentation Classification Epoch Train Size Test Size Precision Recall F1 Score F2 Score

0 Original Dataset [1] No No 15+5 49.5 5.5 69.13% 57.32% 62.67% 59.35%

1 Dataset 1 No No 30+10 94.5 10.5 38.10% 61.27% 46.98% 54.62%

2 Dataset 1 No Yes 30+10 94.5 10.5 61.91% 60.68% 61.29% 60.92%

3 Dataset 2 No No 15+5 41.4 4.6 69.88 % 54.39% 61.17% 56.91%

4 Dataset 3 Yes No 15+5 50.4 5.6 60.32% 68.08% 63.96% 66.37%

5 Dataset 4 Yes No 30+10 100.8 5.6 72.48% 55.01% 62.55% 57.80%

6 Dataset 5 Yes No 30+10 94.5 10.5 38.85% 69.97% 49.96% 60.31%

7 Dataset 5 Yes Yes 30+10 94.5 10.5 59.17% 68.05 63.30% 66.06%

8 Dataset 6 Yes No 60+20 189 10.5 44.66% 64.56% 52.80% 59.28%

9 Dataset 6 Yes Yes 60+20 189 10.5 71.31% 64.08% 67.50% 65.41%

3.3.1. High Level Results Overview

The overall table [Table 3] demonstrates the experiments with details and the results. Besides, the
measurements are precision, recall, F1 and F2 scores. The experiment 0 is from [1]. The experiment 0
is considered as baseline experiment, and the all comparisons are made on this baseline experiment.
The highest precision is reached in experiment 5 while the highest recall is reached in experiment 6.
In addition, the highest F1 score is reached in experiment 9, and the highest F2 score is reached in
experiment 4. The details of each experiment are presented in Appendix A and discussed below.

3.3.2. Detailed Results

1. Experiment 1: Adding images without dents:

The main challenge faced was the small size of the dents dataset. To overcome this obstacle,
we ensured that the dataset is clean and accurately labeled by involving experienced aircraft
engineers. The initial dataset was also extended with new images without dents to improve
performance (See Dataset 1). The model is trained 40 epochs in total on Dataset 1. In this
experiment, a higher recall value (61.27% versus 57.32%) and lower precision value (38.10%
versus 69.13%) have been achieved compared to the baseline experiment conducted in [1]. In
this context, recall is more important than precision. Detecting an approximate location of dents
correctly is of paramount importance. Our primary aim is not to miss any dents to help human
experts analyzing thousands of images. In such a case, it may be admissible if the algorithm
may sometimes detect a dent location, which does not exist. In this case, the human expert can
give feedback to the system. The detailed results of experiment 1 are shown in Table A1 (Recall:
61.27%; Precision: 38.10%; F1-Score: 46.98%; F2-Score: 54.62%).

2. Experiment 2: Adding images without dents and testing with pre-classifier

In experiment 1, considerably lower precision value than the baseline experiment’s precision
was observed due to high False Positive. The most of False Positive predictions (predicting
an area as dent where has no dent) are made on some of the images without dents in dataset
1. Therefore, a classifier (See Section 3.2.6) which predicts whether a given image is with dent
or without dent was implemented and used on test set to avoid mispredictions on the images
without dent. Firstly, the pre-classifier predicts an image if it has dent, or not. Then, Mask-RCNN
model extracts the dented areas if the image is classified as an image with dent. Otherwise, the
Mask-RCNN model does not handle the image. In this experiment, we used the Mask-RCNN
model trained in experiment 1. The precision value of the experiment dramatically increased
from 38.10% to 61.91% by reducing some of False Positive detections. Also, this approach
increased not only F1 score (46.98% to 61.29%) but also F2 score (54.62% to 60.92%). However, the
pre-classifier predicts some of the images with dent as image without dent, so the recall value of
the experiment slightly decreased (61.27% to 60.68%). The detailed results of experiment 2 are
shown in Table A2 (Recall: 60.68%; Precision: 61.91%; F1-Score: 61.29%; F2-Score: 60.92%).
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3. Experiment 3: Filtering the dataset by focusing on only aircraft wings:

In machine learning, a specific model with a specific dataset may lead to better results than a
generic model. Therefore, a sub-dataset can be prepared by focusing on specific aircraft parts
like wing or engine to train a branched model instead of a generic model. Since aircraft dents
are often prevalent in areas like the wing leading edge, engines, and radome, this study has
focused on the wing because of the data availability. The wing dataset 2 was therefore used to
train a branched model that is able to detect wing dents. According to the results, the precision is
slightly higher than in the baseline experiment (69.88% versus 69.13%), but the recall (54.39%
versus 57.32%), F1 score (61.17% versus 62.67%) and F2 score (56.91% versus 59.35%) are slightly
lower than the baseline experiment. The results corresponding to experiment 3 are shown in
Table A3 (Recall: 54.39%; Precision: 69.88%; F1-Score: 61.17%; F2-Score: 56.91%).

4. Experiment 4: Flipping, rotating, and blurring 50% of dataset:

Image augmentation is a technique which aims at generating new images from already existing
ones through a wide range of operations including resizing, flipping, cropping, etc. The purpose
of this approach is to create diversity, avoid overfitting, and improve generalizability [34].
In experiment 4, half of the images were transformed using three augmentation techniques
namely flipping, rotating, and blurring [Section 3.2.4], while the other half remained the same
resulting into a new dataset [Dataset 3]. The recall value and F1 score is higher than the baseline
experiment (68.08% versus 57.32% and 63.96% versus 62.67%). Besides, the highest F2 score
among all experiments are obtained in this experiment, although the precision is lower than the
baseline experiment (60.32% versus 69.13%). The results of experiment 4 are shown in Table A4
(Recall: 68.08%; Precision: 60.32%; F1-Score: 63.97%; F2-Score: 66.37%).

5. Experiment 5: Flipping, rotating, and blurring the complete dataset:

Instead of partially augmenting the dataset as in experiment 4, in this experiment we augment
all images and use both original and augmented images for training. Consequently, the dataset
[Dataset 4] becomes twice the size of original dataset [Dataset 4] in training phrase. For a fair
performance evaluation, we double the number of epoch during the training (15+5 to 30+10).
Note that the same image augmentation techniques have been used (flipping, rotating and
blurring). Besides, the highest precision among all experiments is reached in this experiment
(72.48%). The results corresponding to experiment 5 are shown in Table A5 (Recall: 55.01%;
Precision: 72.48%; F1-Score: 62.55%; F2-Score: 57.80%).

6. Experiment 6: Flipping, rotating and blurring 50% of dataset containing images with and
without dent:

This experiment is combination of the augmentation approach in experiment 4 and adding the
images without dent approach in experiment 1. In other words, the same image augmentation
approach used in experiment 4 is applied on dataset 5 which contains both 56 images with dent
and 49 images without dent. The highest recall value among all experiments is reached in this
experiments while the precision is lower than the baseline experiment (38.85% versus 69.13%).
The results corresponding to experiment 6 are shown in Table A6 (Recall: 69.97%; Precision:
38.85%; F1-Score: 49.96%; F2-Score: 60.31%)

7. Experiment 7: Flipping, rotating and blurring 50% of dataset containing images with and
without dent by testing with the pre-classifier:

In the experiment 2, we used the pre-classifier (See Section 3.2.6) to increase the precision value
of the experiment 1. Likewise, we used the pre-classifier with the Mask-RCNN model trained in
experiment 6 on test set of dataset 5. This approach significantly increases the precision value, F1

and F2 scores (38.85% to 59.17%, 49.96% to 63.30% and 60.31% to 66.06%). However, the recall
value decreases (69.97% to 68.05%) due to the fact that the pre-classifier predicts some of the
images with dent as image without dent. The results corresponding to experiment 7 are shown
in Table A7 (Recall: 68.05%; Precision: 59.17%; F1-Score: 63.30%; F2-Score: 66.06%).
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8. Experiment 8: Flipping, rotating, and blurring the complete dataset containing images with
and without dent:

This experiment is combination of the augmentation approach in experiment 5 and adding
images without dent approach in experiment 1. In other words, the same image augmentation
approach used in experiment 5 is applied on dataset 6 which contains both 56 images with dent
and 49 images without dent. Besides, we also double the number of epoch during the training
for a fair performance evaluation as in experiment 5. On the other hand, the recall is higher
than experiment 5 (64.56% versus 55.01%), and the precision is higher than experiment 1 (44.66%
versus 38.10%). Additionally, the recall is also higher than the baseline experiment [1] (64.56%
versus 57.32%). The results corresponding to experiment 8 are shown in Table A8 (Recall: 64.56%;
Precision: 44.66%; F1-Score: 52.80%; F2-Score: 59.28%).

9. Experiment 9: Flipping, rotating, and blurring the complete dataset containing images with
and without dent by testing with the pre-classifier:

As in experiment 2 and experiment 7, we used the pre-classifier (See Section 3.2.6) to increase the
precision of the experiment 8. In other words, the pre-classifier approach and the Mask-RCNN
model trained in experiment 8 are utilized to decrease False Positive detection on the images
without dent. The precision considerably increased (44.66% to 71.31%) and the highest F1 score
among all experiments is achieved. Besides, F2 score increased (59.28% to 65.41%) although the
recall value slightly decreased (64.56% to 64.08%) due to misprediction made by the pre-classifier.
The results corresponding to experiment 9 are shown in Table A9 (Recall: 64.08%; Precision:
71.31%; F1-Score: 67.50%; F2-Score: 65.41%).

4. Conclusion

Aircraft maintenance programs are focused on preventing defects which makes it difficult to
collect large datasets of anomalies. Aircraft operators may have 100 images or less for a particular
defect. This makes it challenging to develop deep learning aircraft inspection systems based on small
datasets. Most of the popular tools are designed to work with big data as used by web companies e.g.
using millions of datapoints from users. When the dataset size is limited, it becomes difficult to train
the model. To address this problem, we have involved multiple experienced maintenance engineers in
annotating the dataset images and then verified the annotation by a third party. That is, we ensured
that the dataset is clean and accurately labeled and used augmentation techniques to overcome the
small data obstacle.

To train the model, we used MASK R-CNN in combination with augmentation techniques. The
model was trained with different datasets to better understand the effect on performance. In total, nine
experiments were conducted and performance was evaluated using four metrics namely Precision,
Recall, F1 and F2 scores. The experiment variables included the number of epochs, augmentation
approaches, and the use of an image pre-classifier. Overall, the highest F1 score (67.50%) corresponds
to experiment 9, and the highest F2 score (66.37%) corresponds to experiment 4. Experiment 4 used
augmentation techniques such as flipping, rotating, and blurring but only on half of the dataset, while
in Experiment 9 all images with and without dents have been augmented. In addition, a pre-classifier
was used to prevent mispredictions on images without dents in Experiment 9 (see figure 8). According
to our results, it seems that using a pre-classifier improved the prediction performance especially in
terms of F1 score. Moreover, it can be concluded that for such a small data problem, a hybrid approach
which combines MASK R-CNN and augmentation techniques leads to improved performance.

Future work should be geared towards exploring the effects of various architectures on the
performance of detecting aircraft dents. Since MASK R-CNN consists of the RESNET and FPN
layers, it would be interesting to investigate other architectures such as U-net. Furthermore, since
this study only explored three augmentation techniques, one can investigate additional techniques
such as resizing, shear, elastic distorions, and lighting. Another important line of research is AI
deployment. Developing a deep learning visual inspection system can be completed by conducting
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offline experiments under a highly controlled environment; however, getting to a deployable solution
in an MRO environment ready and then scaling it is a long way to go [38] . There need to be more
experiments to overcome a complex set of obstacles including the ability to detect defects under varying
conditions (e.g. diurnal and environmental effects) and dealing with various uncertain variables.

Appendix A

Table A1. The Results of Experiment 1: Adding images without dent

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train 94 94 94 94 94 95 95 95 95 95 94.5

Test 11 11 11 11 11 10 10 10 10 10 10.5

TP 3 5 5 59 6 23 5 8 3 4 12.1

FP 14 21 12 6 8 19 13 5 22 12 13.2

FN 5 5 3 81 0 56 2 2 2 1 15.7

Recall 37.50% 50.00% 62.50% 42.14% 100.00% 29.11% 71.43% 80.00% 60.00% 80.00% 61.27%

Precision 17.65% 19.23% 29.41% 90.77% 42.86% 54.76% 27.78% 61.54% 12.00% 25.00% 38.10%

Table A2. The Results of Experiment 2: Adding images without dents and testing with pre-classifier

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train 94 94 94 94 94 95 95 95 95 95 94.5

Test 11 11 11 11 11 10 10 10 10 10 10.5

TP 3 5 5 54 6 23 5 8 3 4 11.6

FP 8 2 6 4 3 3 5 4 7 1 4.3

FN 5 5 3 95 0 56 2 2 2 1 17.1

Recall 37.50% 50.00% 62.50% 36.24% 100.00% 29.11% 71.43% 80.00% 60.00% 80.00% 60.68%

Precision 27.27% 71.43% 45.45% 93.10% 66.67% 88.46% 50.00% 66.67% 30.00% 80.00% 61.91%

Table A3. The Results of Experiment 3: Filtering the dataset by focusing on only aircraft wings

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 41 41 41 41 41 41 42 42 42 42 41.4

Test Size 5 5 5 5 5 5 4 4 4 4 4.6

TP 2 3 5 6 15 1 1 1 9 1 4.4

FP 2 0 2 1 5 1 5 0 0 1 1.7

FN 1 2 1 2 12 2 3 1 11 1 3.6

Recall 66.7% 60.0% 83.3% 75.0% 55.6% 33.3% 25.0% 50.0% 45.0% 50.0% 54.39%

Precision 50.0% 100.0% 71.4% 85.7% 75.0% 50.0% 16.7% 100.0% 100.0% 50.0% 69.88%
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Table A4. The Results of Experiment 4: Flipping, rotating and blurring 50% of dataset

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train Size 50 50 50 50 50 50 51 51 51 51 50.4

Test Size 6 6 6 6 6 6 5 5 5 5 5.6

TP 34 8 5 22 5 9 5 4 25 27 14.4

FP 2 12 5 13 5 4 2 16 18 4 8.1

FN 26 2 4 3 1 4 0 1 52 49 14.2

Recall 56.7% 80.0% 55.6% 88.0% 83.3% 69.2% 100.0% 80.0% 32.5% 35.5% 68.08%

Precision 94.4% 40.0% 50.0% 62.9% 50.0% 69.2% 71.4% 20.0% 58.1% 87.1% 60.32%

Table A5. The Results of Experiment 5: Flipping, rotating and blurring the complete dataset

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train 50 50 50 50 50 50 51 51 51 51 50.4

Test 6 6 6 6 6 6 5 5 5 5 5.6

TP 13 6 6 17 5 9 4 2 20 30 11.2

FP 1 3 6 4 2 4 1 3 6 1 3.1

FN 45 4 3 8 1 5 1 3 57 46 17.3

Recall 22.41% 60.00% 66.67% 68.00% 83.33% 64.29% 80.00% 40.00% 25.97% 39.47% 55.01%

Precision 92.86% 66.67% 50.00% 80.95% 71.43% 69.23% 80.00% 40.00% 76.92% 96.77% 72.48%

Table A6. The Results of Experiment 6: Flipping, rotating and blurring 50% of dataset containing
images with and without dent

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train 94 94 94 94 94 95 95 95 95 95 94.5

Test 11 11 11 11 11 10 10 10 10 10 10.5

TP 4 8 6 72 6 23 7 8 3 4 14.1

FP 17 18 11 13 13 13 17 8 9 17 13.6

FN 4 2 2 86 0 56 0 2 2 1 15.5

Recall 50.00% 80.00% 75.00% 45.57% 100.00% 29.11% 100.00% 80.00% 60.00% 80.00% 69.97%

Precision 19.05% 30.77% 35.29% 84.71% 31.58% 63.89% 29.17% 50.00% 25.00% 19.05% 38.85%

Table A7. The Results of Experiment 7: Flipping, rotating and blurring 50% of dataset containing
images with and without dent by testing with the pre-classifier

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train 94 94 94 94 94 95 95 95 95 95 94.5

Test 11 11 11 11 11 10 10 10 10 10 10.5

TP 4 8 6 39 6 23 7 8 3 4 10.8

FP 11 7 7 6 6 3 9 2 3 2 5.6

FN 4 2 2 109 0 56 0 2 2 1 17.8

Recall 50.00% 80.00% 75.00% 26.35% 100.00% 29.11% 100.00% 80.00% 60.00% 80.00% 68.05%

Precision 26.67% 53.33% 46.15% 86.67% 50.00% 88.46% 43.75% 80.00% 50.00% 66.67% 59.17%
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Table A8. The Results of Experiment 8: Flipping, rotating, and blurring the complete dataset containing
images with and without dent

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train 188 188 188 188 188 190 190 190 190 190 189

Test 11 11 11 11 11 10 10 10 10 10 10.5

TP 4 7 6 47 5 26 6 8 3 3 11.5

FP 11 14 10 7 17 8 14 12 3 4 10

FN 4 3 2 100 0 53 1 2 2 2 16.9

Recall 50.00% 70.00% 75.00% 31.97% 100.00% 32.91% 85.71% 80.00% 60.00% 60.00% 64.56%

Precision 26.67% 33.33% 37.50% 87.04% 22.73% 76.47% 30.00% 40.00% 50.00% 42.86% 44.66%

Table A9. The Results of Experiment 9: Flipping, rotating, and blurring the complete dataset containing
images with and without dent by testing with the pre-classifier

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Train 188 188 188 188 188 190 190 190 190 190 189

Test 11 11 11 11 11 10 10 10 10 10 10.5

TP 4 7 6 40 5 26 6 8 3 3 10.8

FP 7 5 3 3 3 0 5 4 0 1 3.1

FN 4 3 2 107 0 53 1 2 2 2 17.6

Recall 50.00% 70.00% 75.00% 27.21% 100.00% 32.91% 85.71% 80.00% 60.00% 60.00% 64.08%

Precision 36.36% 58.33% 66.67% 93.02% 62.50% 100.00% 54.55% 66.67% 100.00% 75.00% 71.31%
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