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Role of transposable elements in gene regulation in the human genome
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Abstract: Transposable elements (TEs), also known as mobile elements (MEs), are interspersed
repeats that constitute a major fraction of the genomes of higher organisms. As one of their
important functional impacts on gene function and genome evolution, TEs participate in regulating
the expression of genes nearby and even far away at transcriptional and post-transcriptional levels.
There are two principal ways by which TEs regulate expression of genes in the human genome.
First, TEs provide cis-regulatory sequences in the genome. TEs’ intrinsic regulatory properties for
their own expression make them potential factors for regulating the expression of the host genes.
TE-derived cis-regulatory sites are found in promoter and enhancer elements, providing binding
sites for a wide range of trans-acting factors. Second, TEs encode for regulatory RNAs. TEs
sequences have been revealed to be present in a substantial fraction of miRNAs and long non-
coding RNAs (IncRNAs), indicating their TE origin. Furthermore, TEs sequences were found to
be critical for regulatory functions of these RNAs including binding to the target mMRNA. TEs thus
provide crucial regulatory roles by being part of cis-regulatory and regulatory RNA sequences.
Moreover, both TE-derived cis-regulatory sequences and TE-derived regulatory RNAs, have been
implicated to provide evolutionary novelty to gene regulation. These TE-derived regulatory
mechanisms also tend to function in tissue-specific fashion. In this review, we aim to
comprehensively cover the studies regarding these two aspects of TE-mediated gene regulation,
mainly focusing on the mechanisms, contribution of different types of TEs, differential roles
among tissue types, and lineage specificity, based on data mostly in humans.
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1. Overview of transposable elements and their role in the human genome

Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats
constituting a major fraction of the genomes in higher organisms. The contribution of TEs in the
human genome has been updated to 52.1% using the recent versions of the reference genome
sequence and TE annotations (Tang et al., 2018). Based on the transposition mechanism, there are
two classes of TEs: class | transposons, also called retrotransposons, that transpose by copy and
paste mechanism, and class Il transposons, also called DNA transposons, that transpose by cut and
paste mechanism (Deininger et al., 2003; Kazazian, 2004; Stewart et al., 2011). Class Il TEs are
less abundant in the human genome (3.5%) and are considered DNA fossils (remnants from the
ancestral genome) as no family of DNA transposons currently remains active (Pace & Feschotte,
2007). Retrotransposons, therefore, represent the major types of TEs in the human genome due to
their replicative transposition and ongoing activity. There are different types of retrotransposons
including endogenous retroviruses (ERVs) which are characterized by the presence of long
terminal repeats (LTRs), and non-LTR retrotransposons. Non-LTR retrotransposons are further
divided into long interspersed elements (LINES), short interspersed elements (SINEsS), SVAs
(chimera of SINEs, variable number tandem repeats (VNTRs), and Alu-like), and processed
pseudogenes (also called retro-genes). Non-LTR retrotransposons are characterized by poly A tail
and target site duplication (TSD) with the former unique to this TE type but the latter common to
all TEs (Allet, 1979; Grindley, 1978). LINEs have the largest contribution in the human genome
at 17.8% followed by SINEs (10.5%), ERVs (9.1%), and SVAs (0.1%). SVAs are very young and
active class of TEs despite having only ~5000 copies in the human genome (Tang et al., 2018;
Wang et al., 2005). Processed pseudogenes result from retrotransposition of processed protein-

coding gene transcripts (MRNASs) with more than 10,000 processed pseudogenes identified in the
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human genome (Pei et al., 2012). Formation of processed pseudogenes has been revealed to be
ongoing as indicated by the report of at least 48 polymorphic retro-genes in the human genome

(Ewing et al., 2013).

The previous notion of TEs being junk or selfish DNA has been revolutionized with the revelation
of TEs’ role in genome evolution and gene function (Ayarpadikannan & Kim, 2014; Cordaux &
Batzer, 2009). TE insertions tolerated during evolution have many effects on structure and function
of human genome and shaped the evolution of human lineage (Britten, 2010). Impact of TEs on
human genome evolution has been thoroughly discussed in the earlier reviews by Ayarpadikannan
and Kim (2014) and Cordaux and Batzer (2009). To recapitulate, TEs are an important factor
responsible for rearrangements in the human genome including tandem duplications and insertion-
and recombination-based deletions (Bailey et al., 2003; Han, 2005; Sen et al., 2006). Besides large-
scale genomic rearrangements, TEs are also involved in local genomic instability and have been
found to generate microsatellites in the human genome (Ahmed & Liang, 2012; Kelkar et al.,
2007). Another impact of TEs is creation of new genes with functions essential to the host
(Elisaphenko et al., 2008; Sha et al., 2000). These molecular domestication events occurred
repeatedly during evolution of eukaryotic lineages. For examples, the centromere-associated
protein, CENP-B, is derived from a DNA transposon superfamily and is highly conserved across
mammals (Smit & Riggs, 1996); Xist gene at X-inactivation loci in the eutherian genomes shows
dual origin with the exons evolved from Lnx3 genes and different TEs (Elisaphenko et al., 2008).
In the study by Tang et al., (2018) it has been found that more than half of the human-specific TEs
(atotal of 4,607) are located in protein coding genes, non-coding RNAs (ncRNASs) and transcribed
pseudogenes, making up 134 Mbp of reference transcriptome (Tang et al., 2018). Another

important function of TEs in the human genome is their involvement in gene expression regulation.
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As will be discussed in this review, the two principal methods by which TEs regulate the
expression of genes are: function as cis-acting regulatory sequences and encoding of regulatory
RNAs. Ongoing TE insertions of certain TE subfamilies in the human genome can lead to
insertions of TEs in genic regions and alteration in the level of gene expression via different
mechanisms including alternative splicing, introduction of premature stop codon, and introduction
of polyadenylation and termination signals (Han et al., 2004; Stacey et al., 2016; Vidaud et al.,
1993). This can be considered as another way by which TEs can control gene expression level.
Our study is however mainly focused on TEs’ direct participation in gene regulation via TE-
derived cis-regulatory regions and TE-derived regulatory RNA sequences in the human genome.
In this review, we aim to comprehensively cover the major studies regarding these two aspects of
TE-mediated gene regulation in the human genome, and based on these studies’ findings to address
these questions: What is the extent of TEs’ contribution and how versatile is the role of TEs? Does
TE-mediated gene regulation tend to be tissue-specific? Does TE-mediated gene regulation lead

to evolutionary novelty? How different classes of TEs differ in contributing to gene regulation?

2. Cis-Regulatory Activities of TEs

TEs considerably contribute to the cis-regulatory regions of the human genome. It has been
observed that TEs contribute to almost half of the open chromatin regions (Jacques et al., 2013).
Although accessibility does not equate regulatory function, a recent review analyzing the
relationship between physical and functional genome concludes that chromatin accessibility plays
a wide role in defining active regulatory elements (Klemm et al., 2019). The fact that TEs
contribute ~50% of the open chromatin regions demarcates the role of TEs in gene regulation. As
established by different studies, TEs either provide alternative promoters and enhancers or increase

the activity of existing promoter (Conley et al., 2008; Franchini et al., 2011). The jumping nature
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along with the presence of intrinsic regulatory sequences in TEs for their own expression as well
as TEs’ susceptibility to recruit silencing factors for their own suppression, make them a crucial
player in controlling gene expression pattern. This section of the review will cover TEs’ cis-
regulatory activities, including TEs’ involvement in important gene regulatory elements, genes
that have been found to be controlled by TEs’ regulatory activities, spatial gene regulation by TE-
derived cis-regulating elements, conservation of the TEs-derived cis-acting elements across

species, and polymorphic TEs leading to population-specific gene expression patterns.
2.1 Contribution of TEs in different regulatory elements in the genome
2.1.1 Regulatory elements in the genome

Cis-regulatory regions (including promoters, enhancers, silencers, and insulators) are non-coding
DNA sequences that regulate gene expression by providing binding sites for trans-acting factors.
Promoters are orientation-dependent regulatory elements with respect to the genes and provide a
docking site for basic transcriptional machineries. Other regions that control transcription in the
eukaryotic genome include enhancers, silencers and insulators. Unlike promoters, enhancers and
silencers are orientation- and position-independent with respect to genes. Enhancers typically
consist of clusters of transcription factor binding sites (TFBSs) that work cooperatively to up-
regulate gene expression. Silencers in contrast down-regulate gene expression by recruiting factors
that promote close chromatin structures. Insulators are another type of regulatory elements that
protect genes from the regulatory influence of the surrounding genes. All of these regulatory
regions in the genome play a crucial role in gene regulation by interacting with a wide range of

trans-acting factors.
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Databases of gene regulatory regions: To provide a comprehensive map of gene regulatory
regions in the human genome, different approaches have been used, including identification of
open chromatin regions, localization of binding sites of transcription factors (TFs) and other gene
regulatory proteins and mapping of the chromatin states by identifying the sites of DNA
methylation and active and repressive histone marks (Bernstein et al., 2010; Gao & Qian, 2019).
In order to acquire these datasets, a wide range of high-throughput functional genomics techniques
have been utilized. For identification of open chromatin regions in the genome, the commonly
employed DNA accessibility assays include DNase-seq and FAIRE (Formaldehyde-Assisted
Isolation of Regulatory Elements)-seq (Giresi et al., 2007; Song & Crawford, 2010). For
identification of TFBSs and binding sites of epigenetically modified histones, ChIP (Chromatin
Immunoprecipitation)-seq technique is used (Robertson et al., 2007). For mapping of DNA
methylation sites in the genome, WGBS (Whole Genome Bisulfite Sequencing) and RRBS
(Reduced Representation Bisulfite Sequencing — that only targets promoters/CpG islands) are the
commonly employed assays (Kernaleguen et al., 2018). There are different databases that provide
gene regulation datasets by either reporting data of these experiments separately or by integrating
the data of different assays to define promoter and enhancer elements in the genome. Two
important databases providing the massive data of the functional genomics experiments mentioned
above are ENCODE (encyclopedia of DNA elements) project database (“The ENCODE
(ENCyclopedia Of DNA Elements) Project”, 2004) and REMC (Roadmap Epigenomics Mapping
Consortium) project database (Bernstein et al., 2010). The data encompass a wide range of tissues
and cell lines. Some of the small-scale projects are GGR (Genomics of Gene Regulation) that
includes data mainly for the A549 cell line and few primary cells, and the blueprint epigenome

project database (Martens & Stunnenberg, 2013) providing data for distinct types of
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haematopoietic cells. Based on these primary datasets, there are some secondary databases to
provide meaningful interpretation of the primary data in various ways. For example, an enhancer
database, EnhancerAtlas (Gao & Qian, 2019), provides enhancer annotations across nine different
species by combining output of multiple high-throughput experiments. It integrates the ChlP-seq
datasets of histone modifications, TFs, and other regulatory proteins that specifically bind to
enhancers; different open-chromatin datasets (DNase-seq, FAIRE-seq, and MNase-seq), as well
as the findings of some reporter assays to demarcate enhancer regions in the genome. Another
enhancer database is SEdb (Jiang et al., 2019), which is a comprehensive database of super-
enhancers (large cluster of transcriptionally active enhancers) in the human genome. Table 1

summarizes primary and secondary gene regulation databases.

Table 1: Comprehensive list of major primary and secondary gene regulation databases

Primary databases

Database Brief description Specie Reference

ENCODE Provides following functional genomics data for the | Human (“The ENCODE

(Encyclopedia of | diverse range of tissues and cell lines: (ENCyclopedia Oof

DNA Elements) DNase-seq data, FAIRE-seq data, Histone ChlIP-seq DNA Elements)
data, TF ChIP-seq data Project”, 2004)

REMC (Roadmap | Provides following functional genomics data for the | Human (Bernstein et al., 2010)

Epigenomics diverse range of tissues and cell lines:

Mapping DNase-seq data. Histone ChlP-seq data, WGBS data,

Consortium) RRBS data

GGR (Genomics of | The database is limited to only A549 cell line and few | Human, https://www.genome.g

gene regulation) primary cells. Provides following functional genomics | Mouse ov/Funded-Programs-
data: Projects/Genomics-of-
DNase-seq data, Histone ChlP-seq data, TF ChIP-seq Gene-Regulation
data

Blueprint Provides reference epigenomes of distinct types of | Human (Martens &

epigenome project | haematopoietic cells. Includes following functional Stunnenberg, 2013)
genomics data:
DNase-seq data, Histone ChlP-seq data, WGBS data

Secondary databases

Database Brief description Specie Reference
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OCHROdb Integrates DNase seq data from ENCODE, Roadmap | Human (Shooshtari et al,,
(Open Chromatin | Epigenomics, Genomics of Gene Regulation and 2018
i : : )
Database) Blueprint Epigenome to provide comparison of open
chromatin regions across multiple samples
ChIPSummitDB Determines cistrome of TFs by analyzing TF ChlP-seq | Human (Czipa et al., 2020)
data from primary databases.
SEdb Maps super-enhancer regions in the genome by | Human (Y. Jiang et al., 2019)
(Super-enhancer analyzing ChlP-seq data of H3K27ac. The current
database) version documents a total of 331 601 super-enhancers
from 542 samples.
EnhancerAtlas Identifies enhancer region by integrating datasets of 12 | The latest | (Gao & Qian, 2019)
high-throughput methods. In contrast to other enhancer | version has
databases  (SEdb, HACER, RAEdb, HEDD, | data for 9
DiseaseEnhancer, TIED, GeneHancer, SEA, DENdb and | species
dbSUPER), it combines versatile and most | including
comprehensive set of annotations. human
Genome Identifies functional regulatory elements in the genome | Human (Ernst & Kellis, 2012;
Segmentations by integrating ChIP-seq data for 8 chromatin marks, Hoffman et al., 2013)
from  ENCODE | RNA Polymerase Il, the CTCF transcription factor. It
data involves application of two unsupervised machine
learning techniques (ChromHMM and Segway) to assign
genomic states to disjoint segments in the genome.
Cistrome DB Combines raw ChlP-seq and chromatin accessibility data | Human, (Mei et al., 2017)
(Cistrome Data | from ENCODE, Roadmap and few other resources and | mouse
Browser) process it through same pipeline and quality control
metrics to achieve consistency and provides a dataset
with standardized curation, quality control and analysis
procedures.
2.1.2 Intrinsic regulatory properties of TEs

Many studies have revealed that TEs contribute to all regulatory regions described above (Brini et

al., 1993; Franchini et al., 2011; Hambor et al., 1993; Samuelson et al., 1990). Intrinsic regulatory

properties of TE sequences make them a suitable candidate for regulating gene expression. Like

other genes, TEs may harbor the primary types of regulatory sequences for their own expression:

promoters, enhancers/insulators, splice sites, and terminators. Internal regulatory sequences of the

retroelements can carried into the progeny copies (Swergold, 1990; van Regenmortel & Mahy,

2010). LTRs and LINEs carry POL 1l promoters while SINEs carry promoters for either POL 111

or POL Il (Roy et al., 2000; Swergold, 1990). SVAs contain core enhancer element (Khoury &

Gruss, 1983) within the SINE-R sequence (Ono et al., 1987). According to one of the models

proposed for SVA transcription, the internal enhancer element of SVAs acts cooperatively with

reprints202011.0548.v1
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the external promoters to promote SVA transcription (Hancks & Kazazian, 2010). While processed
pseudogenes derived from mRNA lack promoter sequences, the transcriptional regulatory signals
of 5’ untranslated region (UTR) might impart intrinsic regulatory functions to these retrogenes
(Dikstein, 2012). Nevertheless, not all TEs are equally co-opted as gene regulators, and their
abundance and replication mechanism determine the fate of their regulatory functions after
transposition as new copies or at new locations. For example, LTR retroelements retain their
regulatory sequences in the genome after the insertion, even though their coding sequences may
be deleted via frequently occurred homology-based recombination deletion between their LTRs.
In contrast, LINEs frequently undergo 5’ truncation during retrotransposition, resulting in the

deletion of its promoter regions (Chuong et al., 2017).

2.1.3 TEs contribute to regulatory elements in the genome

TEs exaptation to regulatory elements in the human genome has been well documented. For
examples, Franchini et al. (2011) discovered that an LTR retrotransposon (belonging to THE1B in
the MaLR subfamily) exaptation causes evolution of an enhancer element, which leads to neuronal
specific expression of POMC gene in mammals. LTR retroelements of the same subfamily have
also been found to be involved in abnormal expression of CSF1R gene in Hodgkin lymphoma. In
this case, transcription of CSF1R in transformed human cells was found to be initiated at an
anomaly activated LTR retroelement (Lamprecht et al., 2010). Another study showed that the
insertion of an ERV repeat in the upstream region of AMY1 gene leads to the activation of cryptic
promoters and tissue-specific expression of the gene (Samuelson et al., 1990). Two reports
established the role of Alu elements in evolution of T cell promoters and enhancers: an AluSp in
the promoter of FCER1G gene induces T cell expression; an AluY in the intron of human CD8

gene acts as a T cell enhancer. Both these Alu sequences harbor the binding motifs of Lyf-1 TF,
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which drives T cell-specific expression (Brini et al., 1993; Hambor et al., 1993). Transcription of
the AluSq from its POL 11l promoter prevents the human epsilon globin gene from regulation by
the activities of the other upstream promoters, showing Alu as an insulator (Wu et al., 1990).
Another study identified a TFBS for retinoic acid response element (RARE) in an AluS inserted in
the promoter of human KRT18 gene, leading to differential expression in tissues (Neznanov et al.,
1993). A study by Kim et al. (2011) identified alternative promoters derived from L1 and SVA

elements in CHRM3 and WDRG66 genes, respectively (Kim & Hahn, 2011).

Recently, the contribution of TEs in the promoters of genes expressed by POL Il was determined
using ENCODE and RepeatMasker annotations for TFBSs and TEs, respectively, by analyzing
promoters as the 1500 bp regions upstream of the transcription start sites (TSSs) (Kellner &
Makatowski, 2019). Out of the 35,007 promoters, 75% were found to have TE-derived sequences
with some promoters found to have as many as ten TEs. The percentage is almost similar to the
result of a previous study (83%) that took into account the 2000 bp sequences upstream of TSSs
(Thornburg et al., 2006). The difference might be due to the variation in the length of upstream
sequences analyzed, as it has been reported that TE density increases with the distance from TSS
(Kellner & Makatowski, 2019). In a recent work by Zeng et al., (2018), TE enrichment was
determined in different regulatory regions by measuring ‘P(TE|RE)’, the probability of nucleotide
in the regulatory element being from the TE. Interestingly, P(TE|RE) was found to be higher in
repressors than promoters, reaching 0.2 and 0.5 for promoters and repressors, respectively (Zeng
et al., 2018). The role of TEs as gene repressors has also been supported in other studies that
showed that TEs can repress nearby genes by spreading local heterochromatin (Brattas et al., 2017;
Liu et al., 2018). The study by Brattas et al, investigating the ERV expression pattern in human

brain revealed that TRIM28, a corepressor protein, binds on the docking site on ERV and
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consequently regulates the nearby genes (Brattas et al., 2017). L1-mediated transcriptional

repression of neighboring genes has also been observed in human cell lines (Liu et al., 2018).

In summary, TEs’ co-evolution with the regulatory elements in the genome has thus been well-
established. Studies have revealed TE sequences embedded in regulatory elements, as well as the
regulatory role of these TEs. Besides their contribution in canonical promoters, TEs have also been
found to create alternative promoters for certain genes. From the studies mentioned in this section,
it can be concluded that TEs are the reservoir of diverse regulatory functions and play an important

role in evolution of different types of regulatory elements.

2.1.4 Contribution of TEs to TFBSs

Studies have documented the binding of TFs to TEs and showed TEs have TF-binding sequence
motifs (Kellner & Makatowski, 2019; Sundaram et al., 2014; Sundaram & Wysocka, 2020). TE
sequences widespread in the human genome could provide binding sites for many classes of TFs
(Kellner & Makatowski, 2019). In the study by Sundaram et al., (2014), TF binding regions (TF
ChlIP-seq binding peaks) of 26 TFs were analyzed in two human cell lines (K562 and GM12878),
and it was observed that 20% of the TF binding peaks belonging to wide range of TFs were found
to be derived from TEs (Sundaram et al., 2014). TEs contribute to TFBSs by providing ready-to-
use TFBSs immediately after insertion and by generating novel TFBSs via post-insertion random
mutations. Presence of TF-binding motifs in TES prior to their insertion has been indicated in the
work conducted by Ito et al. (2017). The study determined TFBSs in the LTR retroelement
(HERV-TFBSs) and later determined TF-binding motifs that were found in a substantial fraction
of HERV-TFBSs at the same consensus position (named ‘HERV/LTR-shared regulatory element

— HSRE’ by the author). HSREs were found in 2% of all the TFBSs in the genome (lto et al.,
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2017). In addition to the use of existing TFBSs, creation of TFBSs in TEs after their insertion has
also been reported. For example, methylated CpGs of human Alu sequences can undergo
deamination (C->T mutation) to create binding site for c-Myc TF (Zemojtel et al., 2011). Another
study revealed that a single C to T substitution in the Alu sequence leads to functional binding site
for Lyf-1 TF (Hambor et al., 1993). Deamination of CpG in Alu sequences has also been found to
originate binding sites for RAR (Rayan et al., 2016). Likewise, deamination of methylated CpG
sequences to TpG in human LTRs has been shown to create binding sites for p53 (Zemoijtel et al.,
2011). The role of mutations in TEs in providing new regulatory sequences is supported by
genome-wide studies analyzing TE-derived TSSs in the human transcript libraries, which showed
that old L2 elements are more likely to contribute to promoters than new L1s (Faulkner et al.,

2009).

Occurrence of TFBSs across TEs in the human genome is not random. Binding sites of a TF are
enriched in copies of specific TE families. A total of 710 such TF-TE relationships have been
identified (Sundaram et al., 2014). Non-random association of TEs with TFBSs is also indicated
by TEs providing combinatorial interaction of TFs. TEs provide clusters of binding sites for TFs
that work cooperatively in gene regulation. For example, MIR family of SINEs that have affinity
for estrogen receptor o (ERa) also provide binding sites for ERa co-factors (Testori et al., 2012).
The non-random association of TEs with TFBSs signifies the role of TEs in shaping gene

regulation networks.

TEs are considered as a source of a large number of TFBSs in the human genome. It has been
observed that TFs with a greater number of TF ChiP-seq peaks not only have a greater number of
TE-derived peaks as expected, but also have a greater fraction of TE-derived peaks indicating TES

being responsible for generation of TFBSs (Sundaram et al., 2014). In another study analyzing the
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role of genome expansion in the evolution of gene regulation (Marnetto et al., 2018), it has been
indicated that TFs increase their targets in the genome through genome expansion mainly by repeat
elements. The study determined the age of human genomic regions and their TFBS distribution by
applying parsimony model to genome-wide alignment of 100 vertebrates. It was found that binding
sites of a TF were enriched in genomic regions of a given age, which suggests that new genomic
sequences provide new targets for existing TFs (Marnetto et al., 2018). In concordance with the
role of TEs in expanding TFBSs, TE-derived TFBSs are considered as the marker of gene
regulation evolution. In the study conducted by Nikitin et al., (2019), evolution of transcriptional
regulation was determined for different genes and pathways using retroelement-derived TFBS as
a metric. Genes enriched for TE-derived TFBSs and the associated pathways were considered to

have high evolutionary rates.

Functional significance of TE-derived TFBSs in the human genome has been highlighted in several
folds. First, functionally important positions of TE-derived TFBSs that interact with TFs are more
conserved than other adjacent positions, indicating the sign of functional constraints on these
TFBSs (Polavarapu et al., 2008). Second, TEs that are de-repressed in cancers have been found to
harbor binding sites for oncogenic TFs including C/EBP, E2F1, and MYC (Jiang & Upton, 2019).
In the study conducted by Kellner and Makatowski (2019), 6.8% of TFBSs present in the promoter
elements were found to be derived from TEs. Presence of TE-derived TFBSs in the promoter
regions indicates their regulatory function. Moreover, TE sequences not associated with genes but
harboring TF binding motifs could participate in gene regulation by acting as competitors of the

genes’ regulatory sequences in binding to TFs.

2.1.5 Differential contribution of TEs by type in regulatory regions
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The contribution of TEs to the regulatory elements in the human genome varies among TE types.
The study by Zeng et al. (2018) determined the proportion of nucleotides belonging to different
types of TEs in regulatory regions. It revealed that Alu elements contribute most to all types of
regulatory regions, while L1s were found to be least likely in the regulatory regions. The authors
of the study reasoned that the large size of L1s and even truncated L1 copies might disrupt the
genic regions of the genome, and therefore L1 insertions in the regulatory elements have not been
evolutionary favored. Furthermore, as L1s on average are older than Alu elements, a more
significant contribution of Alu elements than L1s in different types of regulatory elements was
considered as indicative of the idea that clade-specific and species-specific TEs are more likely to
contribute in gene regulation. This finding is also supported by the study of Nikitin et al. (2018),
which revealed that SINE-derived TFBSs are more in number than LINE-derived TFBSs in gene
neighboring regions (5 Kb surrounding TSS), while it is the way around for regions outside the
gene neighborhood. Another support has been provided by the recent study by Kellner and
Makalowski (2019), which indicated that SINESs are more frequent in promoters (1.5 Kb upstream
of TSS) than non-promoter regions, while it is the opposite for LINEs. Hence, multiple studies

have shown in different ways that SINEs contribute more to regulatory regions than LINES.

Although the presence of Alu elements in regulatory elements signifies the role of lineage-specific
TEs in gene regulation, it has been found that ancient repeat elements including L2 and MIRs show
a higher nucleotide proportion in enhancers despite having lower sequence contribution to the
genome (Zeng et al., 2018). In another study, analysis of TE-derived TFBSs showed that ancient
TE families like MIRs and L2s are more enriched for TE-derived TFBSs (have more TFBSs than
expected based on their genome frequencies) than younger families like Alu elements and L1s

(Polavarapu et al., 2008). As suggested by the authors, the presence of ancient TEs in these TFBSs
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highlights the functional conservation of TE-originated regulatory sites (Polavarapu et al., 2008).
Based on these findings, it can be said that although the exaptation of younger TEs to regulatory
elements evolves gene regulation, certain classes of regulatory elements are enriched for older TE

families indicating functional conservation of TE-originated regulatory sites.

Besides SINEs and LINEs, LTRs are also considered as an important TE class playing a role in
gene regulation as they retain their regulatory sequences after their integrations, and they are the
most dominant TE class in open chromatin regions of the human genome (Jacques et al., 2013).
Moreover, ERVS/LTRs are the most diverse class of human TEs, providing various regulatory
elements and TFBSs (Ito et al., 2017). The study by Thornburg et al., also showed that unlike
LINEs, SINEs and DNA elements, LTRs are enriched for binding sites of the majority of TF
classes (Thornburg et al., 2006). Investigating the regulatory properties of different classes of
LTRs has therefore remained an important area in TE-mediated gene regulation. However, studies
analyzing the number of TE-derived TFBSs for different types of TEs in upstream gene regions,
have not found the major contribution of LTRs, which implies that LTRs might be involved in
regulating distant genes. These studies analyzing upstream gene regions for different TE types
have revealed that SINEs are the major contributors followed by LINEs and then LTRs (Kellner

& Makatowski, 2019; Nikitin et al., 2018).

In summary, we reviewed in this section TEs’ contribution to the major regulatory elements in the
genome, highlighting some important functional aspects of TE-mediated gene regulation like
activation of cryptic promoters by TEs and combinatorial interactions of TFs contributed by TEs.
The role of TEs has been observed in promoters, enhancers, and silencers in the human genome.
This diversity of TE-mediated gene regulation can be linked to a wide variety of TFBSs provided

by TEs and different types of intrinsic regulatory properties present in TEs for their own regulation.
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Nevertheless, studies experimentally verifying the functional role of TEs in regulatory elements
are still limited, and future work in this direction can employ reporter gene expression under the
control of promoters with and without the TE-derived sequences to elucidate TEs’ specific roles

in gene regulation.

2.2 Genes regulated by TE-derived cis-regulatory sequences

Many genes in the human genome have their expression known to be controlled by TE-derived
regulatory sequences. Some studies focusing on specific genes have identified TE-derived
regulatory elements by using a reporter gene expression approach or by identifying alternative
transcripts initiated at TE sequences. A few of these studies were already highlighted in the
previous sections, and as examples, POMC, CSF1R, FCERL1G, and CD8 genes are regulated by
TE-derived regulatory elements (Brini et al., 1993; Franchini et al., 2011; Hambor et al., 1993,;

Lamprecht et al., 2010; Samuelson et al., 1990).

Genome-wide analysis has also been conducted by different research groups to identify TEs in the
gene upstream regulatory elements. The study by Kellner et al. (2019) showed that 75% of the
35,007 genes transcribed by POL Il have TE-derived sequences in their promoter regions, which
represents enrichment over the genome average. This coincides with the TEs’ preferential insertion
in the upstream gene regions (Sultana et al., 2017). The same study further identified that for two
protein-coding genes, PCBD1 and PPP1R3A, almost the entire promoters are derived from TE
sequences (Kellner & Makatowski, 2019). The study by Nikitin et al. (2018) showed that among
the protein-coding genes, USP176L26, USP17L13, and USP17L12 genes (encoding ubiquitin

associated peptidase) most strongly associate with TE-derived TFBSs.
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TEs can also regulate the far away genes by acting as enhancer elements. Raviram et al. (2018)
analyzed 3D genomic interactions to determine the genes regulated by ERVs. They used
Chromosome Conformation Capture (3C) methodologies to determine the transposons’
contribution to chromatin folding and long-range intra-chromosomal interaction and provided a
strategy to identify TE-regulated genes, specifically genes interacting with TE-derived enhancers.
It was found that the IF16 gene is up-regulated by a retroelement MER41B. The gene promoter
was found to be interacting with this LTR located ~20 Kb downstream of the gene. Similarly, the
technique captured the interaction between IFITM (IFITM1 and IFITM3) genes and MER41A
retrotransposons located downstream of the genes. Expression of the MYPN gene (specifically
expressed in heart and skeletal muscle) was also found to be regulated by distant TE enhancers
(Raviram et al., 2018). All these examples signify the importance of unveiling long-range genomic

interaction of TEs in identifying TE-regulated genes.

In summary, expression of a certain number of genes has been experimentally validated to be
controlled by TEs, followed by recent genome-wide data analytical studies that have revealed TE
sequences in many genes regulatory regions underscoring the need to further investigate the topic.
Genes with TE-derived regulatory sites have a wide range of functions. Among many other
products, these genes encode for neuropeptides (POMC), muscle protein (MYPN), immune
receptors (FCER1G and CD8), metabolic enzymes (AMY1), and signaling receptors (CSF1R).
The functional diversity of the genes being regulated by TEs indicates TEs’ diverse impact on the
host phenotype. Further, as to be discussed in detail later, some studies also showed that genes
crucial for speciation novelty have TEs in their regulatory regions, highlighting the importance of

TEs in evolution and functional diversity.

2.3 Tissue-specific gene regulation by TEs
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The epigenetic status of TEs varies across human tissues (Pehrsson et al., 2019), leading to the
varying profile of TE regulatory activities in different tissue types. Tissue-specificity is considered
as one of the ways, in which TEs contribute to evolutionary novelty in gene regulation. Studies
focusing on specific genes have revealed TEs’ exaptation to tissue-specific regulatory sequences.
For examples, as mentioned before, an LTR retroelement provides neuronal enhancer of POMC
gene, and Alu sequences were found to provide T cell promoter and enhancers for FCER1 gene

and CD8 gene, respectively (Brini et al., 1993; Franchini et al., 2011; Hambor et al., 1993).

Genes with LTR retroelement in the upstream regions have been found to exhibit tissue-specific
expression compared to LTR-unassociated genes (Pavlicev et al., 2015). In this systematic study,
gene expression data of 18 different tissue types were analyzed from Illumina Human Body Map
2.0 (HBM2.0). The study determined co-expression (a metric of distinctive gene expression pattern
in a tissue compared to other tissues) of LTR-associated and LTR-unassociated genes and found
62 LTR elements linked to tissue-specific gene expression (Pavlicev et al., 2015). Trizzino et al.
(2018) used the data of the ‘Roadmap Epigenomics Project’ and ‘Genotype tissue expression
project’ to determine TES in active and repressed chromatin of different tissues and the
consequences on the gene expression. Interestingly, genes having the same expression in different
tissues (i.e., lack of tissue-specific expression) rarely had TE insertions in their regulatory regions.
It was found that TEs’ (particularly LTRs) involvement in the active chromatin regions varies
across tissues. For instance, HERV15 is significantly enriched in active chromatin of liver tissue,
while X7C (LINE) and Charlie15a (DNA transposon) are enriched in the active chromatin of breast
tissue. Further, the tissue-specific TE involvement in active chromatin was linked to tissue-specific
gene expression. It was revealed that TEs in the active chromatin regions of a tissue have binding

sites for that tissue’s key TFs. For example, HERV15 is more enriched in the active chromatin
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regions of the liver, and it has binding sites for EOMES, which is the key TF in hepatic immune
response. The tissue-specific involvement of TEs in active chromatin regions was also found to be
associated with altered gene expression levels in that tissue (Trizzino et al., 2018). The study by
Kellner and Makalowski, (2019) examined the ENCODE data of TFBSs in six different tissues
(blood, breasts, kidney, liver, lung, and stem-cells) in a pair-wise fashion and found that only a
small fraction of TE-derived TFBSs active in one tissue was used in another tissue. For example,
only 3% of TE-derived TFBS active in blood tissue was also used in breast tissue. For almost all
the tissue pairs, this percentage was significantly smaller for TE-derived TFBSs than for all
TFBSs, indicating the role of TEs in tissue specificity of gene expression. To give an example, 9%
of all the TFBSs active in blood tissue was also active in breast tissue but just 3% of the TE-derived
TFBSs active in blood tissue were also used in breast tissue (Kellner & Makatowski, 2019).
Moreover, in a very recent study analyzing ENCODE data for human GM12878 and K562 cell
lines, it was shown that variability in the TE-derived CTCEF sites across different cell types leads
to chromatin looping variation and alternative promoter-enhancer interactions associated with the

difference in gene expression across cell types (Diehl et al., 2020).

As highlighted by the studies mentioned above, tissue-specificity of TE-mediated gene regulation
has been corroborated using different approaches. Sequence analysis of some of the reported
tissue-specific enhancers revealed that they harbor TEs. Furthermore, tissue gene expression data
showed that genes with TEs in upstream regions have a distinct expression in tissues, which has
been subsequently supported by studies that determined tissue-specific TE-derived TFBSs and
active chromatin regions. In summary, many TEs providing cis-regulatory sequences tend to
function in a tissue-specific fashion and play an essential role in the differential gene expression

across tissues.
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2.4 Lineage-specific gene regulation by TEs

TEs have been observed in the lineage- and species-specific regulatory regions implying the role
of TEs in evolving gene regulation. The work by Rosario and co-workers determined that 56% of
the anthropoid-specific regulatory elements have a TE origin (Rayan et al., 2016). In the study by
Trizzino et al. (2017), human liver promoter and enhancer sequences were compared across six
primate species and it was found that the majority of the non-conserved elements are enriched in
TEs including LTRs and SVAs (Trizzino et al., 2017). The emergence of TE-derived lineage-
specific regulatory sites is either due to newly evolved species-specific TEs or might be due to
mutations in the ancestral TEs (Faulkner et al., 2009; Kunarso et al., 2010; Lynch et al., 2011)
(Figure 1). The creation of gene regulatory sites by mutations in the ancestral TE sequences is
supported by the finding that most of the TEs in the regulatory regions have a high sequence
divergence (>8% diverged) (Nikitin et al., 2018). This has also been considered as the reason
behind the higher contribution of ancestral TE families (L2 and MIR) than that of L1 and Alu in
some regulatory regions, as mentioned before in section 2.1.4 discussing the generation of new
TFBSs in the genome by mutations in TE sequences. Moreover, lineage-specific TEs are also the
source of lineage-specific TE-derived regulatory sites. Different vertebrate lineages contain
quantitatively and qualitatively different populations of TEs, essentially due to different evolution
of ancestral families of TEs, the lineage-specific introduction of TEs by infection, and lineage-
specific emergence of new TEs subfamilies, as well as ongoing transposition from existing active
TEs. Lineage-specific TEs have been revealed to participate in lineage-specific gene regulatory
regions. A study showed that only 5% of TFBSs for Oct4 and Nanog (key regulators of embryonic
stem cells) are conserved between human and mouse embryonic stem cells, and the majority of

the non-conserved sites reside within species-specific LTRs (Kunarso et al., 2010). This links the
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emergence of species-specific TEs to the evolution of gene regulatory networks involved in
pluripotency and cell fate determination. Another study indicates the role of transposons in gene
regulatory networks crucial for speciation novelty (e.g., pregnancy in eutherian mammals). It was
found that 13% of the genes showing endometrial expression in placental mammals had eutherian-
specific TEs in the upstream region (Lynch et al., 2011). Moreover, it has been found that in the
human genome, 30% of the TFBSs of the tumor suppressor protein, p53, reside in the primate-
specific ERV regions (Wang et al., 2007). The findings of these studies show that the emergence
of species/lineage-specific TEs contributes to the evolution of gene regulatory network pertinent
to significant biological functions, including pluripotency of ESCs, lineage-specific traits like

pregnancy in placental mammals and tumor suppression.

Emergence of lineage-
specific TEs having
regulatory sites Accumulation of
mutations in
A ancestral TEs

‘ (

A B)

Figure 1: Two different pathways of generating lineage specific TE-derived regulatory sites.
Lineage specific TE derived regulatory sites arise due to emergence of lineage specific TEs in the

genome (A), or might be due to accumulation of mutations in ancestral TEs (B)

The higher contribution of ancestral TE subfamilies (L2 and MIR) than L1s and Alu elements in

some regulatory regions might seem contradictory to the lineage specificity of TE-mediated gene
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regulation. However, as mentioned before, sequence divergence of ancestral TEs evolves
regulatory regions in species. Nevertheless, TEs indeed have also been identified in the conserved
mammalian-wide regulatory elements. For example, a neuronal-specific TE-derived enhancer of
the POMC gene exapted before the origin of prototherians (~166 Mya) (Franchini et al., 2011).
Concludingly, besides providing conserved regulatory functions, TE-derived regulatory sites also
tend to be specie/lineage-specific and contribute to speciation novelty and diversity. Future
comprehensive analysis encompassing all categories of regulatory elements across a wide range

of species should provide more insight.

2.5 Population-specific gene regulation by polymorphic TEs

The majority of the TEs in the human genome are fixed and derived from ancient transposition
events. Previous studies exploring the regulatory effects of TEs mostly focused on the ones fixed
in the human population. Nevertheless, mobile element insertion (MEI) polymorphisms have been
found to be the most frequent structural variants in the human genome. The three families of
retrotransposons primarily responsible for generating human TE polymorphisms are Alu elements,
L1s, and SVAs (Auton et al., 2015; Batzer & Deininger, 1991; Brouha et al., 2003; Wang et al.,
2005). It is estimated that two haploid human genomes differ by about 1000 TEs insertions, and
thus the reference human genome does not represent a complete archive of human TEs (Bourque
et al., 2018). More than 16,000 polymorphic TE loci were identified in the recent phase 3 variant
release of the 1000 Genome Project (Auton et al., 2015). Furthermore, a recent analysis of deeply
sequenced whole genome data of 152 populations from ‘The Simon Genome Diversity Project’
discovered more than 5000 additional MEIs not reported by the 1K genome project (Watkins et
al., 2020). Based on TEs’ intrinsic regulatory activity, it is very likely that polymorphic TEs are

involved in differential gene expression among human populations by offering new regulatory
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sites to their nearby genes. Interestingly, studies have shown that many polymorphic TE loci in
humans correspond to cis- and trans-eQTLs (Spirito et al., 2019; Wang et al., 2017). A study by
Wang et al. (2017), investigated the association between polymorphic TE loci and gene expression
level. Genotype calls for polymorphic TEs were taken from the phase 3 variant release of the 1000
Genomes Project, and corresponding RNA-seq data for the same 1000 Genome Project samples
were retrieved from the GUEVADIS RNA-seq project (Lappalainen et al., 2013). It was found
that polymorphic TE loci were associated with differences in expression between European and
African population groups. A single polymorphic TE locus was indirectly associated with the
expression of numerous genes via the regulation of the B cell-specific TF (Wang et al., 2017). In
a recent extension of this work (Spirito et al., 2019), rare and less common TE structural variant
(TEV) polymorphisms (MAF < 5%) were also included and in total 323 significant TEV-cis-eQTL

associations were found.

So far, there have been not many studies relating human polymorphic TEs with gene expression
differences among populations. The work is limited to only five populations of the 1000 Genome
Project data, as only for these populations, the corresponding RNA-seq data is available.
Moreover, only lymphoblastoid cell gene expression level has been analyzed. There is a need for
more detailed studies encompassing different tissue types and better population coverage to
investigate further the correlation between polymorphic TEs and population or even individual

level gene expression differences.

3. TEs contribute to non-coding regulatory RNAs

Advancement in RNA-seq technologies has dramatically increased the discovery of new RNAs,
the ncRNAs in particular (Derrien et al., 2012; Habegger et al., 2011; Wang et al., 2009). The

wealth of ncRNAs is indicated by the fact that about 75 — 85% of the human genome gets
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transcribed despite only ~1.2% of the genome encoding proteins (Djebali et al., 2012). ncRNAs
include housekeeping RNAs (rRNA, tRNA, snRNA, and snoRNA) and regulatory RNAs (small
non-coding RNA (sncRNA) and long non-coding RNA (IncRNA)). Examples of sncRNAs are
miRNAs and piRNA. miRNA plays an important role in gene regulation by interacting with the
complementary sequence on the 3 UTR of target mRNA, which leads to the cleavage or
translation repression of the target mMRNA. IncRNAs are further classified based on the genomic
region they get transcribed: 1. LincRNAs transcribed from the intergenic regions; 2. Intronic
IncRNAs transcribed from introns; 3. INCRNAs that are antisense transcripts of coding regions but
do not encode proteins; 4. Circular IncRNAs that have scrambled exon sequences (due to exon
shuffling) but do not encode proteins. A plethora of Inc/sncRNA genes have been identified. A
total of 15,941 IncRNA and 9882 sncRNA genes have been documented in Gencode v24 (Jalali et

al., 2016).

snc/IncRNAs participate in a wide range of regulatory functions by either inducing degradation of
mRNA transcripts or regulating the transcription. There is a close association of TEs with
regulatory RNAs, as a significant number of these ncRNAs have originated from TEs. This section
of the review will highlight TEs’ contribution to the regulatory RNAs, mainly focusing on the role

of TEs in the origin, functionality, and diversification of regulatory RNAs.

3.1 Contribution of TEs to the makeup of regulatory RNAs

mMIiRNAs are transcribed from genes as primary miRNAs (pri-miRNASs), which are further
processed to precursor miRNAs (pre-miRNAS). These initial forms of miRNAs have a stem-loop
structure which is later cleaved to form mature miRNA. Mature miRNA is further loaded on
argonaute protein to perform gene silencing function (Azlan et al., 2016; Peters & Meister, 2007).

Studies have reported the involvement of TEs in the origin of human miRNAs, particularly the
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stem-loop structure of different miRNAs families. Supported by the TE-origin of many miRNAs,
it has been hypothesized that two similar TEs flanking a genomic locus lead to the formation of
miRNA stem-loop structure (Hadjiargyrou & Delihas, 2013). Another study reported an
observation of a high sequence identity between the miRNAs of the hsa-mir-548 family and the
miniature inverted repeat transposable elements (MITEs). MITE forms a stem-loop structure,
which can be recognized by RNAI enzymes and processed into mature miRNA (Piriyapongsa &
Jordan, 2007). In the study by Yuan and colleagues (2010), it was shown that the MER53 element,
a TE characterized by the presence of terminal inverted repeats (TIRs) and TA target site
duplications that can form palindromic structures, gave rise to all members of the miR-1302 gene
family (Yuan et al., 2010). In another study, analysis of human palindromic MER sequences using
miPred (a tool that distinguishes real miRNA precursor from other hairpin sequences) identified
three miRNAs derived from a MER96 located on chromosome 3 and MER91C paralogs located

on chromosome 8 and chromosome 17 (Ahn et al., 2013).

TEs have been found to have overlap with pre-miRNA sequences as well as in mature miRNAs.
Small RNA sequencing coupled to argonaute2 RNA immunoprecipitation (that captures mature
miRNAS) has determined TE-derived miRNA sequences. In a recent study by Petri et al. (2019),
TE-derived miRNAs in human brain tissues were identified by conducting Argonaute2 RNA
immunoprecipitation followed by small RNA sequencing (AGO2 RIP-seq). The study determined
a total of 19 miRNAs that were derived from L2. It was speculated in the study that these L2-
miRNAs could target many protein-coding genes carrying L2 sequences in their 3° UTRs (Petri et
al., 2019). Many bioinformatics studies are highlighting the overlap of TEs with miRNA genes.
miRBase is a publicly available online repository for miRNA sequences and annotations, allowing

researchers to examine the contribution of TEs to miRNA sequences. In the study by Piriyapongsa
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et al. (2007), 462 human miRNA gene sequences from the miRbase database were analyzed, and
68 were shown to contain TE sequences. Further, a negative correlation was observed between the
expression level of TE-derived miRNAs and their putative target genes (Piriyapongsa et al., 2007).
In another study, miRBase data was analyzed to detect Rdmir (Repeat derived miRNA) in different
species, in which a miRNA was defined as a Rdmir if at least 50% of it overlapped with the TE
sequence. Using this rule, a total of 226 miRNA genes were identified in humans as Rdmirs (Yuan
etal., 2011). Analysis of 6845 pre-miRNAs from eight different vertebrate species in the study by
Qinetal., (2015) showed that miRNAs derived from TEs (MDTEs) account for 19.8% of miRNAs
in the human genome, which include a total of 409 TE-derived miRNAs (386 overlapped with TEs
and 23 un-overlapped with TES). The proportion was higher than those of other vertebrates.
MDTEs with un-overlapped TEs are those miRNAs that are derived from TEs but losing their TE
sequences during evolution. Such MDTEs were determined by analyzing miRNAs un-overlapped
with TEs and comparing them with homologues in other vertebrates. A total of twenty-three such
miRNAs were identified in human that have no TE overlap but their homologues in other species
have TE sequences. After excluding multi-copy MDTEs, 338 unique MDTEs (UMDTES) were
identified. These UMDTEs were further classified into type | UMDTES derived from inverted TE
sequences (11.24%), type Il UMDTES with sequences partly overlapping with TE sequences that
were not inverted (51.78%), and type Il UMDTEs with sequences entirely derived from TE
sequences (36.98%) (Qin et al., 2015). A database named MDTE DB (A Database for MicroRNAS
Derived from Transposable Element) catalogues all the MDTEs identified by computational
analysis of pre-miRNA sequences in miRbase (v20). The database reports 2853 MDTEs. In
humans, about 250 partially covered and 150 wholly covered MDTESs have been identified (Wel

etal., 2016). It is worth noting that these studies analyzed miRNA sequences from earlier versions
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of miRbase. The miRbase archive of miRNA sequences has been increasing quickly and the latest
version miRBase (v22) released in 2018 reports 48,860 mature microRNAs from 271 organisms
(Kozomara et al., 2019). There are more than 20,000 new entries in this version and the sequence
has been changed for more than 800 entries. This demands the latest update of MDTESs based on

the current version of miRbase.

Like for miRNAs, the contribution of transposons in human IncRNAs has also been established
by several studies. For examples, a study analyzed 19,835 IncRNA transcripts from Gencode v13
and found that 75% of these IncRNAs transcripts have TE sequences (Kapusta et al., 2013). In
another study, 61 of the 94 human IncRNA transcripts (65%) in the IncRNA database (IncRNAdb)
were shown to have embedded TEs, making 27% of these INCRNA transcript sequences in length.
InNcRNA genes harboring TEs were enriched in human chromosome 11, while chromosomes 16,
17, and 21 lacked IncRNAs containing TEs (Kang et al., 2015). With the consistent growth of
Gencode over different versions, the recent release of Gencode (v34, April 2020) catalogs 17,960
IncRNA genes and 270,000 transcripts (Ramakrishnaiah et al., 2020), justifying an updated study
regarding TE-derived sequences in INCRNA genes. Moreover, because of differences in the
definitions of what constitutes IncRNA, the number of INcRNAs in the human genome drastically
varies across different databases including Gencode (Harrow et al., 2012), FANTOM CAT (Hon
et al., 2017), NONCODE (Fang et al., 2018) among others. To address this issue, large scale
annotations combining all INcRNA databases into one compendium are provided by the European
Bioinformatics Institute (EMBL-EBI) comprehensive database RNACentral (The RNAcentral
Consortium et al., 2017). Another highly consistent database is LNCipedia that also provides
functional annotations on INcCRNA genes by an extensive manual literature curation. So far, 1555

IncRNA genes are annotated with functional information (\Volders et al., 2019). Analyzing these
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all-inclusive IncRNA datasets and functionally annotated INcRNAs for embedded TE sequences

might provide a rational extension to the existing studies.

Many IncRNAs are transcribed from intergenic regions (lincRNAs) and play a crucial role in gene
regulation. lincRNAs constitute most of the IncRNAs and they are considered as the largest class
of ncRNAs in the human genome with >8000 lincRNA genes defined (Cabili et al., 2011). Thus,
there are studies explicitly focusing on lincRNAs. The study by Kelly and Rinn (2012) provided a
comprehensive analysis of human TE sequences in lincRNAs by obtaining RNA-seq data for 28
different tissues and cell lines. It was found that 7700 lincRNAs overlapped with TEs and 1530
lincRNAs were depleted of TEs, indicating 80% of lincRNA genes associated with TEs and TEs
comprised 42% of the total IncRNA sequences (Kelley & Rinn, 2012). In a work conducted by
Kannan and coworkers (2015), 69% of 589 human lincRNAs from the NRED database were found
to have TE-derived sequences (a fraction lower than 80% determined by (Kelley & Rinn, 2012)).
Further, different regions of human lincRNA genes were analyzed for the contribution of TEs. The
percentage of TE-derived sequences in lincRNA genes was the highest for introns (>45%),
followed by exons (>20%) and promoters (>10%). The distribution was similar to that of protein-
coding genes. However, the content of TEs in lincRNA genes was substantially higher than that in
protein-coding genes, especially in exons and promoter regions, which is indicative of the low

functional constrains for INcRNA genes (Kannan et al., 2015).

TEs have therefore clearly made significant contribution to regulatory RNAs (miRNAs and
InNcRNAs) sequences. Palindromic sequences of certain TE families play crucial roles for the
hairpin structure of miRNAs and different TEs are linked to different miRNA families. TE

sequences have also been found in non-hairpin mature miRNAs. The presence of TEs in all regions
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of IncRNA genes (promoters, introns, and exons) highlights TEs” contribution in the generation of

regulatory RNAs as well as in the processed and unprocessed forms of these RNAs.

3.2 Functional significance of TEs in regulatory RNA sequences

TE-derived sequences also impart functional properties to different types of sncRNAs and
IncRNAs, making them essential for regulatory RNA functions, as demonstrated by the studies

described below.

First, the TE-derived sequences have crucial roles in different types of human sncRNAs. miRNAs
harboring TE sequences have been found to target genes having embedded TE sequences in 3’
UTR. For example, LINE2-derived miR-28-5p and miR-151 target Ly6/Plaur domain-containing
3 (LYPD3) and ATP synthase mitochondrial F1 complex assembly factor 1 (ATPAF1) genes
respectively through pairing to LINE2 elements on 3> UTR (Shin et al., 2010). The subsequent
study showed that miR-28-5p also regulates the expression of LYPD3 and E2F transcription factor

6 (E2F6) genes through 3’ UTR harboring LINE2 sequences (Spengler et al., 2014).

Second, TEs have also been found to have a diverse role in human IncRNA functions. In a study
by Cartault et al. (2012), it was observed that a single point mutation in the L1 of an IncRNA
causes a decrease in the level of the INCcRNA and is associated with the brain stem cell atrophy.
Although the underlying mechanism is poorly understood, the study highlights the functional
significance of TE sequences in IncRNAs (Cartault et al., 2012). Alu sequences are involved in the
base pairing of INCRNA to its target mMRNA, which is required for decaying target mRNA. In such
cases, Alu sequences are present on both IncRNA and mRNA, which can lead to the formation of
short imperfect pairing between the two RNA molecules. For example, a 3> UTR Alu element of

the plasminogen activator inhibitor type 1 (SERPINE1) gene binds to IncRNA harboring Alu
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sequences. The dsRNA structure is further degraded through staufebl-mediated decay (Gong &
Maquat, 2011). Alu elements have also been proposed to be involved in the circularization of
circular IncRNAs. Circular IncRNAs make an important class of regulatory RNAs and impact gene
regulation by influencing the transcription, mMRNA turnover, and translation. They harbor exons
out of order from the genomic context and are generated by exon shuffling (non-colinear splicing).
Alu sequences in introns flanking the exons are thought to produce circularization through Alu/Alu
base pairing (Jeck et al., 2013). TEs also provide pre-formed structural and sequence features to
IncRNAs, which imparts them the ability to interact with other biological molecules including
DNA, RNA, and protein. The RIDL (Repeat Insertion Domain of IncRNA) hypothesis was
proposed based on the concept that TEs serve as the functional domain of IncRNA (Johnson &
Guigd, 2014). For example, the ERVB5 sequence on XIST IncRNA provides binding sites for
polycomb repressive complex 2 (PRC2) that contributes to chromatin compaction (Elisaphenko et
al., 2008). TEs have a significant influence on the IncRNA gene structure, and it has been found
that TE-derived sites are present in promoters, splice donors, splice acceptors, and polyadenylation
sites of INCRNA genes (Kapusta et al., 2013). In a study by Kelley and Rinn (2012), 127 IncRNAs
were found to be upregulated by an HERV-H element acting as promoters of these IncCRNAs.
Based on this observation, it was proposed that TEs, such as HERV-H, can give rise to new
IncRNASs by inserting active promoters into previously inactive genomic regions (Kelley & Rinn,
2012). TEs have also been proposed to assist INCRNA in the formation of stable secondary
structures. To assess this hypothesis, a study retrieved IncRNA data from GENCODE and
compared IncRNAs with TEs to IncRNAs without TEs. Comparing the minimum free energy
(MFE) of predicted secondary structures using the program randfold determined that IncRNAs

with TEs form more stable secondary structures than those without TEs (Kapusta et al., 2013).
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Another line of evidence supporting the role of TEs in promoting secondary structures in InCRNAs,
came from the analysis of A to | editing sites in INCRNAS. Inosine base pairs with cytidine and the
editing of adenosine to inosine modulates base pairing of the dsSRNA. It was found that about 82%
of RNA editing sites locate in the Alu regions of IncRNAs. This suggests the Alu regions in
regulatory RNAs are involved in inter- and intra-molecular base pairing to form stable secondary

structures (Kapusta et al., 2013).

In summary, the findings of different studies indicate a clear role of TEs in the functionality of
regulatory RNAs in different ways, including, but not limited to, helping the circularization of
circular IncRNAs, binding of regulatory RNA to target mRNAs, and formation of the stable

secondary structure of regulatory RNAs.

3.3 Role of TEs in lineage specificity of regulatory RNAs

Several studies have reported the lineage specificity of TE-derived regulatory RNAs. For example,
the work by Piriyapongsa et al., (2007) which examined the per-site conservation scores of miRNA
sequences in the miRbase data, showed that on average, TE-derived miRNAs are less conserved
than non-TE-derived miRNAs. Out of 55 TE-derived miRNAs, only 18 were found as conserved
(conservation score above a fixed threshold) and 37 were non-conserved. The least-conserved ones
were primate-specific (Piriyapongsa et al., 2007). As another example, a placental-specific miRNA
gene family mir-1302 has all its members derived from MER53 transposons (eutherian-specific
TE) with 58 potential orthologs in placental mammals, indicating the emergence of this miRNA
family after the placental mammals diverged from marsupials (Yuan et al., 2010). As shown in
another study by Qin et al., the proportions of TE-derived miRNA increased with the evolution of
vertebrates from less than 5% in zebrafish to ~20% in humans. Further, sequence analysis of these

MiRNASs showed no homology among these TE-derived miRNAs from Danio rerio, Gallus gallus,
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and mammals, indicating that TE-derived miRNAs were species-specific due to species-specific

TE transpositions (Qin et al., 2015).

InNcRNAs have a significant role in the evolution of key regulatory networks underlying the
evolutionary processes (Mattick, 2009). TEs likely have contributed to the functional evolution of
IncRNA genes (Johnson & Guigo, 2014). The insertion of TEs in IncRNA genes is considered as
an important mechanism behind lineage-specific changes in IncRNAs-mediated gene regulation.
Primate-specific TEs were identified in the known TSSs of eight functionally characterized
IncRNAs, suggesting the role of TEs in the birth of these IncRNAs during primate evolution
(Kapusta et al., 2013). Another study by Kannan et al. determined the evolutionary rate of human
InNcRNASs by estimating pairwise evolutionary distances for human-macaque alignment and found
a significant positive correlation between TE content and the evolutionary rate of IncRNAs
(Kannan et al., 2015). As an example, in case of Xist InCcRNA, many TEs are already present in
the Xist locus of Eutherian ancestor involved in the generation of the first functional Xist transcript.
However, many other TEs in the Xist exons are lineage-specific and contribute to Xist’s functional

diversification during Eutherian evolution (Elisaphenko et al., 2008).

In summary, TE-derived regulatory RNAs tend to be less conserved and lineage-specific,

implicating TEs as an important source of lineage specificity of regulatory RNAs.

3.4 Tissue-specificity of TE-derived regulatory RNAs

Beyond lineage-specificity, studies have also shown that TE-enriched regulatory RNAs can be
tissue-specific. For example, in the study by Kang et al., a total of 29 human IncRNAs were found
to have tissue-specific expression, out of which 20 were TE-derived INCRNAs. Moreover, 9 of the

11 IncRNAs found to be expressed in cancer cell lines contained TE sequences, indicating the role
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of TE-embedded IncRNAs in cancer (Kang et al., 2015). In another study, it was observed that 127
human lincRNAs having HERV-H sequences were expressed at much higher levels in pluripotent
cells, H1-hESCs, and iPSCs, with HERVH LTR in the TSSs of the IncRNA genes, suggesting that
TEs might induce tissue-specific expression in these cases (Kelley & Rinn, 2012). The TE-driven
tissue-specific expression of INCRNAs has been further elucidated in the study by Chishima et al,
which identified many TE-tissue pairs associated with tissue-specific expression of INCRNAS
using tissue expression data of human IncRNAs from three different datasets of ‘Expression Atlas’.
For example, ERV1-IncRNAs were shown to express specifically in testis and L1PA2 was shown
to promote the placental specific expression of L1IPA2-IncRNAs with the antisense promoter of
L1PAZ2 overlapping with the TSS-neighboring region of INcRNAs being the likely driver of tissue-

specific expression (Chishima et al., 2018).

In conclusion, regulatory RNAs with embedded TE sequences have been revealed to have tissue-
specific expression patterns. Moreover, investigating the region of overlap between TEs and these
RNA sequences in some cases, highlight that TEs in the TSS neighboring region of INcRNAs might

be responsible for driving tissue-specific expression.

3.5 Differential contribution to regulatory RNAs among TE types

Different types of TEs have a varying contribution to human regulatory RNA sequences. For
miRNAs, the study by Qin et al. classified TE-derived human miRNAs from miRbase in three
different types and found 1) SINEs and LINEs are the major contributors to miRNA sequences
with inverted TE sequences; 2) SINEs, LINEs, and DNA transposons are major contributors to
MIRNASs with partial overlaps with non-inverted TE sequences; 3) DNA transposons and SINEs
are the primary contributors to miRNA derived entirely from TEs. LTR retrotransposons were thus

found to have the least contribution in all three types of miRNAs (Qin et al., 2015).
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Several studies also examined the TE composition of human IncRNAs. A study found that SINEs
and LINEs as the prevalent TE types contributed 29% of the sequences for the 7700 TE-derived
lincRNAsS, despite shown as depleted compared to their genome averages (L1s depleted by 2-fold
and Alu elements depleted by 1.4-fold), while LTR families were showed to be enriched in these
InNcRNASs despite not being a major TE contributor (Kelley & Rinn, 2012). Kang and coworkers
found that 61 of the 94 human IncRNA sequences from IncRNAdb had TEs, most belonging to
SINEs and LINEs. The percentage of IncRNA sequence contributed by different types of TEs was
13% for LINEs, 7.7% for SINEs, 3.5% for LTRs, and 2.2% for DNAs, with AluSx and L1
subfamilies having the highest copy number (Kang et al., 2015). Thus, both of the above studies
showed that SINEs and LINEs contribute most to the IncRNA sequences but in less proportion
compared to their contribution in the whole genome. This is further supported in the study by
Kapusta and coworkers, which in analysis of human IncRNA sequences from Gencode, showed
that LINEs were under-represented and LTRs were over-represented in INCRNA sequences (~30%
vs. ~40% for LINEs and 30% vs. 20% for LTRs in the IncRNAs vs the genome, respectively).
Further, LTRs were over-represented in the exonic and proximal region of INCRNA genes than that
of protein-coding genes (Kapusta et al., 2013). In another study, different regions of lincRNA
genes (from NRED — Non-encoding RNA expression database) in the human genome were
analyzed to assess the contribution of different TE types. It was observed that the distribution of
TEs in the introns of lincRNA genes was similar to that in the whole genome, indicating no bias
for specific TE type. However, there was a significant reduction of LINES in exonic and promoter
regions of lincRNA genes. Compared to ~20% of the sequence covered by LINEs in the whole

genome, sequence coverage of LINEs was ~5% for both lincRNA exonic and promoter regions.
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This might be because LINEs have a deleterious impact when inserted into the functional regions

of genes (Kannan et al., 2015).

From the findings of the studies mentioned above, concludingly it can be said that among all TEs,
SINEs and LINEs contribute most to the IncRNA sequence. However, in contrast to the whole
genome, SINEs and LINEs are under-represented, while LTRs are overrepresented in INCRNAs.
Regarding different regions of IncRNA genes, comparisons were made with the TEs distribution
in whole genome and corresponding regions of protein-coding genes. In summary, TEs’
distribution in introns of IncRNA genes is roughly similar to that of the whole genome, but in
exonic and promoter regions LINEs are under-represented. Comparison of exonic and promoter
regions of IncCRNA genes with that of protein-coding genes revealed that LTRs are over-

represented in the case of exons and promoters of INCRNAs.

4. Impact of processed pseudogenes on gene regulation

This section briefly discusses the regulatory potential of processed pseudogenes in the human
genome. Processed pseudogenes are generated by LINE-mediated retrotransposition of mRNAs.
Unlike their parental genes, they lack promoters and introns. Gencode, a large-scale project
providing gene annotations in the human genome, has reported 10,668 processed pseudogenes in
the human genome representing 72% of all human pseudogenes (Pei et al., 2012). The majority of
processed pseudogenes in humans were originated after a split between primates and rodents,
corresponding to the period of Alu amplification 40-60 million years ago (Ohshima et al., 2003).
Formation of processed pseudogenes is ongoing (Maranda et al.,, 2019) and more than 40
polymorphic processed pseudogenes have been reported in the human genome (Ewing et al.,

2013).
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The role of processed pseudogenes in gene regulation is an intriguing area to study, and there are
several ways, in which they could regulate gene expression. In a study by Harrison et al., a total
of 234 transcribed processed pseudogenes in the human genome have been identified by mapping
expressed sequences onto processed pseudogenes and identifying identical coding-sequence
disablements in both the expressed and genomic sequences (Harrison et al., 2005). Evidence of
transcribed processed pseudogenes in the human genome implies that processed pseudogenes
might have regulatory potential similar to non-processed pseudogenes that get transcribed and
regulate parent gene expression by producing antisense transcripts or by competing for miRNA
binding sites with the parent gene’s mRNA (Delpu et al., 2016). Processed pseudogenes have also
been found to contribute to regulatory RNA sequences. The findings of Milligan et al., (2016)
revealed exon-to-exon overlap between processed pseudogenes and IncRNA genes in human
genome. Moreover, in the study by Podlaha et al., transcribed processed pseudogene of the
Makorinl gene in mice has been found to stabilize the transcript of the parental functional gene
(Podlaha, 2004), suggesting a similar role for the processed pseudogenes in humans. Another
aspect of processed pseudogenes’ impact on gene expression is the downregulation of genes due
to insertion of processed pseudogene in genic regions. A few such cases have been observed in
certain diseases. For example, a processed pseudogene insertion in CYBB (cytochrome b-245, beta
polypeptide) gene has been associated with chronic granulomatous disease (de Boer et al., 2014),
and a processed pseudogene insertion found in tumor suppressor gene, MGAL has been linked to

lung adenocarcinoma (Cooke et al., 2014).

In conclusion, processed pseudogenes are potentially important candidates for impacting gene

regulation. The discovery of transcribed processed pseudogenes and the overlap of processed
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pseudogenes with the INcCRNA genes highlight their regulatory potential for the parental gene.

Moreover, by inserting into genic regions, they may downregulate the host genes.

5.

Summary and Perspectives

This review considers two different aspects of TEs’ contribution to gene regulation: in Cis-

regulatory sequences, and in regulatory RNAs (Figure 2).
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Figure 2. Different ways by which TEs contribute to gene regulation.

TEs have intrinsic regulatory properties for regulating their own expression and provide ready-to-

use TFBSs or undergo mutations to provide binding motifs for TFs. TE sequences have been found

in the regulatory elements of many genes, participating in short-range and long-range control of

gene expression. Among different classes of TEs, SINEs have the highest contribution in all types

of regulatory regions. Genes with tissue-specific expression are more likely to have TE sequences

in the regulatory regions. TE-derived regulatory sites tend to be lineage-specific as well as species-
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specific. Furthermore, polymorphic TEs have been associated with gene expression differences

among populations or even individuals.

TEs also contribute to gene regulation by directly participating in the generation of regulatory
RNAs. Some TE types are associated explicitly with certain miRNA families. TE sequences in the
regulatory RNAs are crucial for their regulatory function by assisting in formation of secondary
structures of regulatory RNAs and in binding of regulatory RNAs to their target MRNA sequences.
TEs also provide sequence and structural motifs to regulatory RNAs that facilitates the interaction
with other biological molecules. Like the TE-derived cis-regulatory sequences, TE-derived
regulatory RNA sequences tend to be lineage-specific as well. Furthermore, the tissue-specific
expression of TE-derived regulatory RNAs started to be recognized. Among different types of
TEs, SINEs and LINEs contribute most to IncRNA sequence, and DNA transposons and SINEs
are the major contributors for miRNAs entirely derived from TEs. Processed pseudogenes, a side-
products of L1 transposition, when expressed transcribed, can encode IncRNAs and have different

ways for regulating the expression of the parent genes.

Research on TEs’ role in gene regulation is still in its early stage, leaving ample room for further
investigation. For example, systematic studies are needed to comprehensively unveil the
contribution of different TE types in the cis-regulatory regions and regulatory RNA sequences
using databases providing the most recent annotations. Moreover, there is a need to
comprehensively analyze the evolutionary dynamics of these TE-derived regulatory elements
genome-wide, instead of focusing on particular subsets. Additionally, there is a need to correlate
polymorphisms of TE-derived regulatory elements with the different gene expression patterns
among populations and even individuals. Such types of studies demand specialized datasets

providing genotype calls of the TEs present in regulatory regions and matching gene expression


https://doi.org/10.20944/preprints202011.0548.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2020 d0i:10.20944/preprints202011.0548.v1

data of the same individuals. Experimental verification of the functional impact of TES on gene
regulation is also essential. Analyzing the regulatory potential of regulatory elements with and
without TE sequences using the reporter gene expression approach might further support the role

of TEs in gene regulation.
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