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Abstract: Estimating the remaining useful life (RUL) of components is a crucial task to enhance the 
reliability, safety, productivity, and to reduce maintenance cost. In general, predicting the RUL of a 
component includes constructing a health indicator ( 𝐻𝐼 ) to infer the current condition of the 
component, and modelling the degradation process, to estimate the future behavior. Although 
many signal processing and data-driven based methods were proposed to construct the 𝐻𝐼, most 
of the existing methods are based on manual feature extraction techniques, and need the prior 
knowledge of experts, or rely on a large amount of failure data. Therefore, in this study, a new data-
driven method based on the convolutional autoencoder (CAE) is presented to construct the 𝐻𝐼. For 
this purpose, the continuous wavelet transform (CWT) technique is used to convert the raw 
acquired vibrational signals into a two-dimensional image; then, the CAE model is trained by the 
healthy operation dataset. Finally, the Mahalanobis Distance (MD) between the healthy and failure 
stages is measured as the 𝐻𝐼. The proposed method is tested on a benchmark bearing dataset and 
compared with several other traditional 𝐻𝐼 construction models. Experimental results indicate that 
the constructed 𝐻𝐼  exhibits a monotonically increasing degradation trend and has a good 
performance to detect incipient faults.    

Keywords: health indicator; performance degradation assessment; deep learning; vibration 
monitoring; bearing; remaining useful life; digital twin  

 

1. Introduction 

Performance degradation, which is almost inevitable for mechanical equipment, results in 
machinery damage, severe financial losses due to replacement or repair work and machine 
downtimes, or even personnel injury. Thus, Prognostics and Health Management (PHM) has 
emerged as an engineering discipline to improve availability, reliability, and safety of equipment. As 
a crucial task in the lifecycle monitoring of complex equipment, PHM is used to monitor the 
equipment condition and, to design robust and accurate models in order to assess the health state of 
equipment, and to define appropriate maintenance strategies [1]. In recent years, improving PHM 
methods by the Industry 4.0 paradigm, such as Digital Twin and Predictive Maintenance, attracts the 
attention of researchers [2-5].  

In a Digital Twin, a virtual counterpart of the physical system during its whole life is created, 
with abilities such as analyzing, evaluating, optimizing, and predicting [6]. Jinjian et al. [5] presented 
a Digital Twin model for rotating machinery to diagnose the unbalance faults, based on the dynamic 
behavior of the rotor system and vibrational status monitoring. Fei et al. [4] proposed a new approach 
for PHM, driven by Digital Twin for complex equipment. In this approach, a five-dimensional Digital 
Twin model is constructed to identify the health conditions of wind turbine gearboxes. Dinardo et al. 
[7] proposed a prognostic approach to detect the incipient faults of rotating machines by means of 
their vibrational status monitoring. Yan et al. [8] presented a two-phase Digital Twin to diagnose the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 December 2020                   doi:10.20944/preprints202011.0591.v2

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202011.0591.v2
http://creativecommons.org/licenses/by/4.0/


fault using a deep transfer learning method. In this approach, the trained knowledge of the deep 
neural network is transferred from the virtual space to the physical space for real-time monitoring 
and predictive maintenance. 

Traditionally, a Digital Twin uses physical-based simulation tools to describe the current 
behavior of a system [3]. However, due to manufacturing tolerances and material variances, describe 
a complex system in a simulation environment usually contains a strong deviation from reality [9]. 
One solution is to obtain a digital representation of the expected behavior of the physical system 
directly from measured data [3]. For this purpose, the first step is to construct a (multi) digital 𝐻𝐼 
that describes different aspects of the physical component state during the whole life of the 
component. This 𝐻𝐼 should represent the deviation between the initial conditions of the component 
and its actual conditions during lifetime [1]. This 𝐻𝐼  can be further used for RUL estimation by 
implementing statistical estimation techniques, such as exponential degradation model [10], Particle 
filter [11], or Kalman filter [12]. Therefore, defining an appropriate and sensitive 𝐻𝐼, that reflects the 
deviation degree from normal health conditions, is now a hot research topic in the RUL estimation 
field.     

In general, constructing a 𝐻𝐼 can be performed in three steps: (1) signal acquisition; (2) signal 
processing; and (3) feature extraction [13]. Vibration measurement provides a very efficient way of 
monitoring the dynamic conditions of a machine such as unbalancedness, misalignment, mechanical 
looseness, structural resonance, wear, shaft bow, etc. [14]. Developing each failure mode leads to 
varying system dynamic behavior, resulting in significant deviation in vibration patterns [15]. 
Vibration signals generated by the faulty component can be analyzed in the time domain [16], 
frequency domain [17], or time-frequency domain [18]. Using the time-domain techniques for feature 
extraction needs to record the time-series vibrations over a long period of time to obtain suitable 
parameters to reveal fault evolution. However, obtaining the necessary data for a complex equipment 
may be expensive or even impossible. Using frequency-domain techniques such as fast Fourier 
transform (FFT) is a powerful diagnostic tool in stationary conditions [18]. Since the FFT is essentially 
an integral over time, it fails to do so for non-stationary data which could result from intermittent 
defect or evolutionary faults [18]. To address the FFT limitation, time-frequency signal processing 
tools such as the short-time Fourier transform (STFT) [19], Hilbert–Huang transform (HHT) [20], 
Wigner-Ville distribution (WVD) [21] and wavelet transform [22] are introduced. The wavelet 
transform is a relatively new and powerful tool, able to perform a local analysis of a signal and reveals 
some hidden aspects of the data that the other signal analysis fails to detect [23]. In this work, the 
wavelet transform is selected for signal processing to detect changes in vibration signatures which 
are caused by the faulty components. 

Once the raw signal is acquired and processed, feature extraction techniques should be 
employed to extract the representative features which are used for 𝐻𝐼  construction. Feature 
extraction methods could be roughly classified into model-based methods and data-driven methods 
[24]. Rodney et al. [12] obtained a bearing 𝐻𝐼 by fusion of vibrational signal variance from the time 
domain and Choi–Williams distribution from the time-frequency domain. Yaguo et al. [25] presented 
a method to extract multiple features from the vibrational signal with multiple signal processing 
techniques, and then these features are selected and weighted to form the new 𝐻𝐼. In [26], the authors 
implement the discrete wavelet packet transform to decompose the raw signal into different sub-
band and the 𝐻𝐼 is extracted from each signal. Although model-based methods do work and achieve 
to extract an accurate 𝐻𝐼, they still have two deficiencies: (1) Feature selection is heavily dependent 
on prior knowledge and diagnostic expertise. Moreover, it often focuses on a specific fault type, thus 
it may be unsuitable for other faults [27,28]. (2) In real industries, acquired signals are usually exposed 
to environmental noises, and are transient and non-stationary. Therefore, signal processing 
technologies need to be employed to filter the collected signals and it can result in a loss of 
information [27,29].   

Data-driven methods attempt to extract features from measured data using machine learning 
techniques. In recent years, deep learning emerges as a powerful tool to extract the representative 
feature from the collected signals [30,31]. Different deep learning architecture, that includes CNN 
[29,32], RNN [33], Autoencoder [27], and GAN [34] are successfully used to extract features 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 December 2020                   doi:10.20944/preprints202011.0591.v2

https://doi.org/10.20944/preprints202011.0591.v2


automatically. The greatest advantage of deep learning is that it needs no prior expert knowledge 
and represents more accurate features [35]. Until now, most studies employ deep learning methods 
in a supervised setting to extract features for classification problems. For this purpose, performance 
data of different degradation levels of a component are prerequisites to creating labeled healthy and 
unhealthy data sets. However, gathering different degradation level data needs a big failure data, 
which is not in practice available especially for high-reliability component [36]. On the other hand a 
recent review on the state of deep learning on PHM [37], revealed that studies from a health-
management point of view have been rather limited, largely due to the unavailability of fault data. 
Moreover, many implementations of deep learning models in the literature are still constrained to 
specific equipment or applications and they are not reusable when the predefined conditions change. 
In order to address the aforementioned restrictions, developing a single framework that can 
systematically be extended to all aspects of system health management is necessary [3,36]. This 
framework has to be able to be trained on-line without requiring historical data and use only healthy 
operational data for training [3]. In addition, it should be applicable to any equipment that operates 
under stationary and non-stationary conditions; it should also be extendable for different 
components [3]. 

As a step toward the development of a single framework for system health management, this 
paper proposes a method to construct an 𝐻𝐼 from the vibrational signal, based on unsupervised 
deep learning. This method establishes an online construction of 𝐻𝐼 in the sense that the input data 
can be acquisitioned while the equipment is being exploited. The proposed method mainly includes 
three-step: First, healthy raw vibrational signals of the equipment are processed with the CWT 
technique. These 2D images are considered as input of the deep learning model. In the second step, 
a CAE model is developed solely being trained by the healthy data. Lastly, during online monitoring, 
in each assessment interval, throughout the entire lifetime of the equipment, the CWT image of the 
vibrational signal is fed to the trained CAE model. Similar to the training data, the trained 
autoencoder can reconstruct images with small reconstruction errors. The distance between the 
normal condition data and the failure stage is measured by the MD formula and, thus the 𝐻𝐼 is 
created.  

In this study, to experimentally evaluate the effectiveness of the proposed methods, the ball 
bearing is chosen. Ball bearings are known as the most widely used rotating machines’ components 
and play an important role in successful and reliable operation of rotary machines. Health prognostic 
of the ball bearing has great practical significance in reducing the failures of rotating machinery and 
enhancing machine availability. So far, fault detection techniques for rolling bearing monitor 
vibration, acoustic emission, motor current consumption, temperature, and oil debris. Among these 
techniques, vibration monitoring has proved to be a reliable and effective technique for faults 
detection in bearings [28]. Therefore, the vibrational analysis technique is selected in this work, and 
the CAE model is used to extract features from the vibration data. Overall, this study proposes a 
method to construct a 𝐻𝐼  based on an unsupervised deep learning method that describes every 
instant condition of the bearing and can be regarded as an indicator for a Digital Twin. In brief, the 
main contributions of the current work are:  

(1) The CAE model is only trained by using healthy operation data at the beginning of an asset’s 
life cycle. Therefore, unlike most methods to construct a 𝐻𝐼, this model can be trained online 
without requiring historical failure data from similar assets or fleets. In addition, since the 
CAE model is trained by the CWT image, it is applicable for equipment that operates under 
stationary and non-stationary conditions. 

(2) The values of the bottleneck nodes of the CAE model are used as extracted features. Using 
these values reduces any dependencies on the prior knowledge, thus the 𝐻𝐼 is constructed 
automatically.  

The further course of the paper is organized as follows: Section 2, briefly introduces the 
theoretical background of CWT and convolutional networks. Section 3 presents the proposed 
methodology to construct the 𝐻𝐼 in detail. In Section 4, the results of the experimental evaluation are 
presented and discussed. Section 5 provides the conclusions, and future work guidelines. 
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2. Background Theory   

2.1. Continuous Wavelet Transform  

The purpose of CWT of the raw vibrational signal is to preprocess raw vibration in the time-
frequency domain and convert a 1D signal to a 2D image, as the input of the CAE model. The wavelet 
transform is widely used to process non-stationary signals over many different frequencies. The 
wavelet transform can analyze a localized area of a large signal without losing the spectral 
information contained therein. Therefore, the wavelet transform can reveal some hidden aspects of 
the signal which other techniques fail to detect. This property can particularly be employed to 
identify the damage (crack) or fault of a component that evolves during the time. There are two main 
trends in how wavelet transforms are used, the CWT, and the discrete wavelet transform. Both 
Fourier transform and CWT use inner products to measure the similarity between a signal and an 
analytic function. In the Fourier transform, the analytic function is complex exponentials (𝑒ି௜ఠ௧) and 
in the CWT, the analytic function is a Mother Wavelet function, 𝜓(𝑡). The mother wavelet, 𝜓 ∈ 𝐿ଶ(𝑅), 
is a function of finite length and zero average; 𝐿ଶ(𝑅) is the space of square-integrable complex 
functions [32]. The CWT compares the signal to shifted and compressed or stretched versions of the 
mother wavelet function. Stretching or compressing a function is collectively referred to as dilation 
or scaling and corresponds to the physical notion of scale. The family of time-scale waveform is 
obtained by shifting and scaling the mother wavelet that can be expressed as: 

 𝜓௔,௕(𝑡) =  
1

√𝑎
 𝜓 ൬

𝑡 − 𝑏

𝑎
 ൰ (1)

By comparing the signal with the mother wavelet function at various scales and positions, two 
continuous variables 𝑎  and 𝑏  have been obtained; 𝑎  is the dilation and 𝑏  is the translational 
parameter variable. For the given signal, 𝑓(𝑡), wavelet coefficient 𝜔(𝑎, 𝑏) can be represented as: 
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where 𝜓∗ denotes the complex conjunction of 𝜓.  
Since selecting of a mother wavelet function is application-dependent, the selection of the 

appropriate function is the first and most important step in the wavelet analysis. As a rule of thumb, 
the most appropriate mother wavelet is a function that has more similarity with the signal. Although 
there is no standard or general method to select mother wavelet, commonly the shape matching by 
visual inspection is used to select the appropriate mother wavelet function for the signal. For this 
study, based on the visual inspection and the result of the previous studies [32,38], Morlet wavelet is 
selected to extract image features from the raw vibration signal. The Morlet function is a Gaussian 
function modulated by complex exponential, defined as: 

𝜓(𝑡) = 𝑒ି௧మ ଶ⁄ 𝑒௜ఠ೚௧  (3)

where 𝜔௢ depends on the sampling frequency and usually is taken as 5  [39]. For wavelet transform 
of a real signal, the real part of the Morlet function is employed as the mother wavelet: 

𝜓(𝑡) = 𝑒ି௧మ ଶ⁄ cos(5𝑡) (4)

2.2. Convolutional Networks 

Convolutional neural network (CNN) is a type of deep network that uses convolutional and 
pooling operation to extract the topological features of the input data. CNN is primarily used to solve 
difficult image-driven pattern recognition tasks; and if trained well, it will learn the features of the 
image completely. Therefore, in recent years, CNN has been widely used in image pattern recognition 
and image classification. CNN architectures come in several variations; however, a typical CNN 
includes convolutional layers, pooling layers, and fully connected layers. In the convolutional layer, 
a features map of the previous layer is convolved with multiple filters (also called Kernel) and is sent 
to the activation function to construct the output features map [29]: 
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where 𝑥௜  is the 𝑖th input feature map, ∗ stands for the convolutional operator, 𝐾 denotes a 𝑤 × 𝑤 
convolutional filter, 𝑏௝  is an additive bias, 𝑀௝ is a set of input feature map, 𝑙 is the 𝑙th layer in the 
network and 𝑓(∙) is a nonlinear activation function. The mathematical inverse of the convolutional 
layer used in the decoder is known as the deconvolution layer. Different nonlinear functions such as 
a Rectified Linear Unit (ReLU), sigmoid function, and Scaled Exponential Linear Unit (SELU) 
function can be used in convolutional layers. SELU is a variant of the ReLU activation function that, 
due to its self-normalizing properties, makes learning highly robust, and allows training of networks 
which have many layers. SELU, ReLU, and sigmoid activation functions are defined as: 

𝑆𝐸𝐿𝑈(𝑥) =  𝜆 ൜
𝑥,          𝑖𝑓  𝑥 ≥ 0

𝛼𝑒௫ − 𝛼, 𝑖𝑓  𝑥 < 0
 (6)

𝑅𝑒𝐿𝑈 (𝑥) = max (0, 𝑥) (7)

sigmoid(x) =
1

1 + eି୶
 (8)

For standard scale inputs (zero mean and standard deviation one) the selected values for the 
parameters are 𝛼 ≈ 1.6732 and λ ≈ 1.0507 [40]. 

The pooling layer usually follows the convolutional layer and is used to reduce the 
computational load by reducing the size of the features map. Two common pooling methods are max-
pooling and average-pooling which perform local max and average operations over the input 
features, respectively. The calculation process of the pooling layer is given as [29]: 

 𝑋௝
௟ = 𝑓(𝛽௝

௟ ∙ 𝑑𝑜𝑤𝑛 ൫𝑋௝
௟ିଵ൯ + 𝑏௝

௟) (9)

where 𝛽௝ is the weight of pooling and 𝑏௝ is the additive bias, 𝑑𝑜𝑤𝑛(𝑥) denotes the down-sampling 
function, e.g. max-pooling. In contrast to the pooling layer, an upsampling layer is a simple layer in 
the decoder with no weights that is used to increase the dimensions of input. 

In a fully connected layer, the features maps are converted into a one-dimensional feature vector 
and all neurons of both layers are connected, like a traditional multilayer neural network. The output 
of the fully connected layer can be obtained as [29]: 

𝑂௝ = 𝑓(෍ 𝑥௝
ி𝛽௝

௟

ௗ

௝ୀଵ

+ 𝑏௝
௟) (10)

Where 𝑂௝ is the output value, 𝑥௝ is the 𝑗th neuron in the fully connected layer, 𝛽௝ and 𝑏௝ are the 
weight and the additive biases corresponding to 𝑂 and 𝑥௝, and 𝑓(∙) is an activation function. 

3. Methodology  

In this work, a method is proposed to construct the 𝐻𝐼 automatically from the image of CWT 
of the vibrational signal of the ball bearing by using a deep learning model. The method consists of 
three main stages. The first stage involves acquiring and analyzing a healthy vibrational signal from 
the ball bearing and establishing the training repository for deep learning model. In this stage, it is 
assumed that the bearing is in healthy conditions and it is free from the defects at the beginning of its 
life cycle. In the second stage, the deep learning model is trained by the established healthy dataset. 
Finally, in the last stage, the 𝐻𝐼 is constructed to capture the bearing degradation throughout its 
failure phase. For this purpose, the difference in values of the bottleneck nodes between the failure 
stage and the normal stage is measured by using the MD formula for each assessment interval. The 
proposed method is shown in Figure 1. More details on these three stages are given in the following. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 December 2020                   doi:10.20944/preprints202011.0591.v2

https://doi.org/10.20944/preprints202011.0591.v2


 
Figure 1. Proposed methodology for the construction of a bearing 𝐻𝐼. 

3.1. Data Acquisition and Analyzing 

In the Industry 4.0 era, by emerging technologies such as data mining, internet of things and 
cloud computing, the online data acquisition and processing becomes more pervasive than ever. The 
goals of data acquisition and data processing in this work are to create a dataset from the healthy 
conditions, and to construct the 𝐻𝐼  throughout the failure stage. In the absence of sudden and 
unexpected failures, the degradation process of the bearing generally includes two stages: the normal 
operation stage and the failure stage, shown in Figure 2. In practical experiences, most of the bearing 
lifetime is passed in a stable and healthy stage; therefore, it is possible to acquire sufficient healthy 
data to train the deep learning model. During a normal operation stage of the bearing, a sliding 
window is used to capture the vibrational signal, and for each window, the power spectrum of the 
CWT is used to convert a 1-D vibrational signal into a 2-D image. The transformed image contains 
both time and frequency domains information and can represent the non-stationary and transient 
evolution of the signal. 

 
Figure 2. The lifespan of a bearing is divided into the normal stage and failure stage, and the healthy 
dataset is established from the normal stage data. 

In practical application, a component is evolved from the normal stage to the failure stage 
gradually (excluding sudden and unexpected failures) through a series of degradation states. In 
addition, there are high uncertainties about the ambient conditions and component properties. 
Therefore, defining a fixed failure threshold that clearly separates the normal stage from the failure 
stage is not feasible. To address this issue, in this paper, an adaptive failure threshold approach is 
introduced, as depicted in Figure 3. According to the theory of statistical process control (SPC), 
measured vibration signals under the normal operation follow a normal distribution (with the mean 
μ and the variance σ) [41]. With the transfer from the normal operation to the failure operation, the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 December 2020                   doi:10.20944/preprints202011.0591.v2

https://doi.org/10.20944/preprints202011.0591.v2


distribution pattern of the vibration signals might vary from normal distribution to unknown 
distribution and, consequently, the mean and variance change. 

   
Figure 3. The flowchart of defining a failure threshold and establishing a healthy dataset. The P 
variable is used to count the abnormal consecutive assessment interval.   

In this paper, the Pauta criterion [42] is employed to determine the failure threshold. If the mean 
of the acquired vibrational signal amplitude for each assessment interval is within the [𝜇 + 3𝜎, 𝜇 −

3𝜎] range, the stage is recognized as a normal stage. Otherwise, the measured data is recognized as 
an abnormal. In order to get an adaptive failure threshold, a healthy dataset 𝑋ത = (𝑥̅ଵ, 𝑥̅ଶ, … , 𝑥̅௡) is 
established by collecting the mean amplitude of the vibrational data points in the normal stage . Then, 
a reference range [𝜇 + 3𝜎, 𝜇 − 3𝜎]  is computed by using the 𝑛  data. When a new data 𝑥̅௠  is 
observed, the Pauta criterion is used to determine whether the new data belongs to the healthy 
dataset. If the 𝑥̅௠ falls within the [𝜇 + 3𝜎, 𝜇 − 3𝜎] range, it is added to the healthy dataset, i.e. 𝑋ത =

(𝑥̅ଵ, 𝑥̅ଶ, … , 𝑥̅௡ , 𝑥̅௠)  and the reference range is updated. Otherwise, this data is recognized as an 
abnormal one and the original healthy dataset remains unchanged. If for more than e.g. 500 
consecutive assessment intervals, the means of the vibrational amplitudes are not in the reference 
range, the failure threshold is recognized, and the collected healthy dataset is not changed anymore.  

3.2. Convolutional Autoencoder Model 

The main purpose of using a deep learning model in this work is a dimensionality reduction 
through the feature extraction, so that the extracted features represent the conditions of every 
moment of the ball bearing. Among the developed deep learning models, the CAE is selected in this 
study. CAE is a type of autoencoder (AE) neural network that is used to extract hidden features from 
unlabeled images. CAE is characterized by having identical input and output sizes and is trained to 
predict the input in the output (ℎ௪,௕(𝑥) ≈ 𝑥). One CAE algorithm consists of three layers: the input 
layer, the hidden layer(s), and the output layer. The idea is that one or several hidden layers have 
lower dimensions than the visible layers (input and output), so that the input information is 
reconstructed and compressed in the hidden layer(s). The hidden layer that contains the fewest nodes 
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is known as a bottleneck. The bottleneck layer is representing the maximum point of compression of 
the input data which contains all necessary data to reconstruct the input data again. Therefore, the 
CAE is constituted by two main parts: an encoder that maps the input into the code, and a decoder 
that maps the code to a reconstruction of the original input in the output layer.  

In the encoding section, some convolutional layers and pooling layers are stacked on the input 
image to extract hierarchical features. Then, all units in the last convolutional layer have been 
flattened to form a vector followed by a fully connected layer(s). The bottleneck layer usually has 2 
neurons. Accordingly, the input 2D image (for this study the input image is 60 × 60 RGB pixels) is 
transformed into a 2-dimensional vector space ( ℝଷ×଺଴×଺଴ → ℝଶ ). To train the CAE model in an 
unsupervised manner, the mirror architecture of the encoder is used in the decoder section. Thus, 
fully connected layer(s) followed by some deconvolutional and upsampling layers are used to 
transform the embedded features back to the original image. The structure of the proposed CAE 
model is shown in Figure 4. After setting up the CAE, it is essential to optimize weights and biases 
by minimizing the reconstruction error, i.e. the loss function. Backpropagation algorithm, [43], is used 
to compute the gradient of the loss function with respect to any weight and bias in the network. To 
make the output of the decoder as equivalent as possible to the input, the binary_crossentropy 
function is employed as the standard CAE loss function and the Adam optimizer is used to optimize 
the loss function [43].   

Figure 4. The overall convolutional autoencoder architecture used.  

3.3. Construction of 𝐻𝐼 

Once the CAE model is trained by the wavelet power spectrum images in normal operation, 𝐻𝐼 
should be constructed for the failure stage automatically. The constructed 𝐻𝐼 is expected to exhibit 
a monotonically increasing trend and should be robust to noise and stochastic fluctuations. The CAE 
model learns to extract distribution characteristics of the normal data through its deep structure, and 
to reproduce images similar to the training dataset with a small reconstruction error. Over the time 
in the failure stage, damage evolution of bearing leads to a more turbulent vibration pattern. 
Consequently, with the development of the degradation, high energies appear in the low-frequency 
bands and produce different wavelet power spectrum image from the normal stage. When the 
wavelet power spectrum image of the failure stage is input to the trained CAE model, the 
dissimilarity between the extracted vector of features in normal stage images and the faulty sample 
image is estimated to achieve the corresponding degradation indicator. In this regard, the mapped 
features in the bottleneck layer are used to measure the distance between the normal stage and the 
failure stage by the MD formula. This strategy is used to construct 𝐻𝐼 during the failure stage in this 
work. Since the feature extraction and 𝐻𝐼  construction are performed automatically by the CAE 
model, prior knowledge and diagnosis expertise are not required.  

It is remained to define 𝑀𝐷, which is an effective multivariate distance metric that measures the 
distance between a vector and a distribution. An anomaly vector is an observation that has a different 
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distribution from the rest of the data and MD has an excellent ability to identify this deviation [44]. 
The MD is defined as: 

  (𝑀𝐷)ଶ =  (𝐴 − 𝜇)்  𝑐ିଵ(𝐴 − 𝜇) (11)

where A = (𝑎ଵ, 𝑎ଶ, 𝑎ଷ, . . , 𝑎௦) gives the values of the bottleneck nodes in each assessment interval and 
𝜇 = (𝑎ଵ

௠ , 𝑎ଶ
௠ , 𝑎ଷ

௠ , … , 𝑎௦
௠)  is the mean values vector in healthy condition, and 𝑐ିଵ  is the revers 

covariance matrix of the healthy condition. 

4. Experimental Results 

4.1. Dataset description 

To evaluate the effectiveness of the proposed method, the bearing dataset, generated by the NSF 
University of Cincinnati Center for Intelligent Maintenance Systems (IMS), is used. The IMS bearing 
test rig is illustrated in Figure 5. It consists of an AC motor coupled to the shaft via a rub belt and four 
double row bearings installed on the shaft. The sampling rate of the record data was 20 kHz under 
the radial load of 6000 lbs for each of the 4 bearings at the constant rotation speed of 2000 rpm. Data 
acquisition was made every ten minutes and for each assessment interval, a 1-second vibrational 
signal snapshot, that included 20,480 points, was recorded. 

 
Figure 5 . IMS test rig [45]. 

The IMS bearing data sets contain 3 run-to-failure tests; both normal stage and failure stage data 
exist in each test. For each test, data collection continued until any failure in inner race, outer race, or 
roller elements, occurred at least for one bearing. At the end of the test, bearing 3 and 4 from the first 
dataset, bearing 2 from the second dataset and, bearing 3 from the third dataset showed signs of 
failure. In the current work, the datasets for all three cases have been considered. The time-domain 
vibrational signals for the four bearings are shown in Figure 6. For each bearing data, the failure 
threshold is identified by the adaptive failure threshold method, and healthy samples and faulty 
samples are established. Details of IMS bearing datasets are described in Table 1. Since different 
bearing defects frequencies are proportional to the rpm, all defects occurring in the bearing are 
revealed in every revolution. Therefore, given the acquisition frequency of 20 kHz and rotation speed 
of 2000 rpm, the vibrational signals are split into equal chunks of length 𝐿௠ = 600 points. For each 
chunk, the CWT is performed, and the power spectrum image is obtained.  
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(a) (b) 

  
(c) (d) 

Figure 6 . Original vibration signals of the IMS bearing dataset [45] (a) subset 1 bearing 3 (b) subset 1 
bearing 4 (c) subset 2 bearing 1 (d) subset 3 bearing 3.  

Table 1. Description of IMS bearing dataset [45]. The Failure thresholds and the healthy and faulty 
samples were identified by the adaptive failure threshold. 

Bearing Subset 1 Bearing 3 Subset 1 Bearing 4 Subset 2 Bearing 1 Subset 3 Bearing3 
Load (lbs.) 6000 6000 6000 6000 

Speed (rpm) 2000 2000 2000 2000 
Defect type Inner race Roller element Outer race Outer race 
Endurance 
duration 

34 days 12 h 34 days 12 h 6 days 20 h 45 days 9 h 

Number of 
healthy 
samples 

61069 43381 19146 200474 

Failure 
threshold 

27 days 20 h 19 days 20h 3days 21h 41 days 2h 

Number of 
faulty samples 

19800 31090 14780 20230 

4.2. Analysis of Wavelet Power Spectrum Images 

To demonstrate the advantage of the wavelet transform technique, the time-domain vibrational 
signals and their corresponding wavelet power spectrums for a normal and a failure stage are 
depicted in Figure 7. While periodic vibrations with low amplitude are observed in the normal stage, 
more severe vibrations appear in the failure stage. The wavelet power spectrum represents the 
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variations of the energy distribution of the vibration signal for different frequencies over time. As 
shown in Figure 7, the wavelet transform can clearly distinguish between the normal stage and the 
failure stage signals. For normal operations, most of the energy is concentrated in high frequencies 
but for a failure stage, due to the evolution of defects, the burst of energy is observed in a broader 
range. 

  
(a) (b) 

  
(c) (d) 

Figure 7 . Comparison of time-domain vibration signals and power spectrum images for healthy and 
damaged signals. (a) raw signal (normal stage) [45], (b) wavelet power spectrum (normal stage), (c) 
raw signal (failure stage) [45], (d) wavelet power spectrum (failure stage).  

4.3. Training the CAE Model 

As mentioned above, power spectrum images of the normal health stage are used to train the 
CAE model. Before training the CAE model, some parameters need to be configured such as the 
number of layers, number of nodes in each layer, activation function for each layer, iteration number 
and the learning rate. Regarding the number of layers and the number of nodes in hidden layers, the 
parameters are related to the dimension of the input data. These parameters are usually obtained 
experimentally and provide a good visual conformity. The convolutional autoencoder model starts 
with propagating from the input layer to the convolution layer. The convolutional encoder consists 
of three convolutional layers, each followed by a max-pooling layer. The number of filters for the 
three convolutional layers are [128, 64, 1], and the filter size for all layers is 3 × 3. Features map from 
the convolutional encoder section are flattened  and passed through the autoencoder layers. The 
autoencoder section consists of three fully connected layers with 64, 2, and 64 neurons in each layer. 
Therefore, the input 2D RGB image is transformed into a 2-dimensional feature space in the 
bottleneck layer that is used to construct the 𝐻𝐼 . To transform the extracted features back to the 
original image, three deconvolutional layers with three upsampling layers in between  are added to 
the autoencoder section. The number of filters for the three deconvolutional layers are [1, 64, 128], 
with the filter size of 3 × 3.  
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To attain better visual conformity, after several trials, the SELU was chosen as the activation 
function for the convolutional and deconvolutional layers, the ReLU for the autoencoder layers, and 
the sigmoid for the last layer. To illustrate the influence of the learning rate on training the model, 
the reconstruction error under various learning rates is shown in Figure 8. If the learning rate is too 
low, the convergence is too slow or overfitting; if the learning rate is too high, it will hinder the 
convergence. Therefore, the learning rate is set to 0.005 for this study. As illustrated in Figure 8, the 
reconstruction error does not significantly decrease after 30 cycles, therefore, thirty iterations are 
performed in this study. Experimental model is developed using the Python-based Keras library [46] 
with a TensorFlow backend [47]. 

   
Figure 8. The reconstruction error of deep learning model for different learning rates. 

Since the CAE model is trained in an unsupervised manner, the successful trained CAE should 
learn to extract meaningful features from the images of the normal operation, and to reconstruct a 
closely similar image to the original image in the output. However, perfect reconstruction is usually 
the sign of overfitting where it just learns to copy its input to the output without learning to extract 
intelligent features and generalize to a new instance. Indeed, reasonably close reconstruction with a 
small error demonstrates that the CAE learned the meaningful features of the training dataset and 
has an acceptable generalization. Figure 9 represents the comparison of the original images with the 
reconstructed images by the developed model. Although the CAE model is solely trained by the 
normal operation dataset, it also reconstructs faulty images very well that indicates the model could 
extract subtle features from images. 

  

Figure 9 . Comparison of the original and reconstructed images of the wavelet power spectrum during 
the run-to-failure experiment of the Subset 2 Bearing 1. 

4.4. Smoothing the 𝐻𝐼 
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The preliminary designed 𝐻𝐼 almost always exhibits local random fluctuations. To reveal an 
underlying long-term trend in the designed 𝐻𝐼, local spurious fluctuation in the 𝐻𝐼 curve should be 
smoothed. In this study, an exponential function is used to remove any sharp changes in the 𝐻𝐼 
curve and, to improve the monotonicity of the designed 𝐻𝐼 [48]. This function is given by: 

𝑀𝐻𝐼௜ = 𝑒𝑥𝑝(∑ ுூೕ/௜೔
ೕసభ )      1 ≤ 𝑖 ≤ 𝑁 (12)

Where 𝐻𝐼௝  denotes the historical measured 𝐻𝐼 , 𝑁  is the total number of 𝐻𝐼  values and 𝑀𝐻𝐼௜  
represents the modified value of the current  𝐻𝐼௜ . In Eq.(12) the mean value of the historical 
measurement from the first value 𝐻𝐼ଵ to the current 𝑖th value 𝐻𝐼௜  are used to calculate the 𝑀𝐻𝐼௜ . 
Therefore, if the 𝐻𝐼  curve exhibits a significant oscillation at 𝐻𝐼௜  point, it will be weakened. 
Furthermore, the exponential function is a monotonically increasing function and it can reveal a 
monotonically increasing trend in the 𝐻𝐼 curve. 

4.5. 𝐻𝐼 Results   

Since the normal stage images are used to train the deep learning model, the 𝐻𝐼  is solely 
constructed for the failure stage. The trained deep learning model is used to construct on-line 𝐻𝐼 by 
applying the MD formula to measure the distance of the values of the bottleneck nodes between the 
normal stage and failure stage. The constructed 𝐻𝐼s for the four IMS bearing are shown in Figure 10 
(a-d). Intuitively, it can be observed that 𝐻𝐼s evolves gradually at the beginning, and dramatically at 
the end; they reveal the true degradation in bearings. Although the initial 𝐻𝐼 curves represent global 
monotonicity, there still exist severe local spurious fluctuations, which may be the result of highly 
inaccurate and unreliable data. Therefore, the smoothness and monotonicity of the constructed 𝐻𝐼s 
are improved by using the exponential function defined in Eq. (12); the modified 𝐻𝐼s are shown in 
Figure 10 (e-h). The exponential function is an increasing function which uses the mean from the 
starting time to the current time; thus, it can effectively eliminate oscillation and enhance 
monotonicity. It can be seen with the naked eye that the modified 𝐻𝐼s are smoother, and gradually 
increasing, while the degradation trends are effectively captured as well. The results indicate that the 
proposed method has a good performance in detecting the early bearing defects and abnormal 
bearing health conditions. Moreover, this method provides an 𝐻𝐼  that is well correlated with 
progressively increasing bearing degradations, and it can lead to better RUL prediction. 
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(a) (e) 

  
(b) (f) 

  
(c) (g) 

  
(d) (h) 

Figure 10. 𝐻𝐼 results for the four IMS bearing. (a-d) raw 𝐻𝐼, (e-f) modified 𝐻𝐼. 

4.6. Comparison with Other Traditional Methods 

 To verify the effectiveness and superiority of the proposed method, a comparison among the 
proposed method and several traditional 𝐻𝐼 methods is conducted. These methods are categorized 
in the two separate groups: five methods that are based on the time-domain features and a method 
that is based on the time-frequency domain feature. To compare, the vibration signal of the "Subset 2 
Bearing 1" is used to construct the 𝐻𝐼 in this section.  
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(1) In the first group, several commonly used features from the time domain are extracted to 
construct the 𝐻𝐼. The selected features include:  

 Root-Mean-Square (RMS),  

ඩ
1

𝑁
෍ 𝑥௜

ଶ

ே

௜ୀଵ

 

 Variance,  

1

𝑁 − 1
෍(𝑥௜ − 𝑥̅)ଶ

ே

௜ୀଵ

 

 Kurtosis,  

1

𝑁
෍

(𝑥௜ − 𝑥̅)ସ

𝜎ସ

ே

௜ୀଵ

 

 
 Skewness,  

1

𝑁
෍

(𝑥௜ − 𝑥̅)ଷ

𝜎ଷ

ே

௜ୀଵ

 

𝑥௜ is the vibrational signal series; 𝑥̅ and 𝜎 are the mean value and the variance of the series, 
respectively. 

 Approximate Entropy (ApEn). ApEn expresses the regularity of fluctuations over 
time-series data. The detailed steps to construct an 𝐻𝐼  using the ApEn are 
introduced in [49].  

During the failure stage, these equations are applied for each assessment interval to construct 
𝐻𝐼. Figure 11 (a-e) illustrates the extracted 𝐻𝐼 from these methods. The RMS and variance curves of 
the 𝐻𝐼  are shown in Figure 11 (a) and (b), respectively. It can be noticed that these curves are 
insensitive during the early stage degradation, making it difficult for RUL prediction. The ApEn and 
kurtosis curves depicted in Figure 11 (c) and (d) overcome the weakness of RMS and variance curves 
and recognize the infant mortality period. However, in these curves, oscillations and sudden changes 
near the end of the life of the bearing are obvious. This sudden change in the 𝐻𝐼 curve may cause 
problems in predicting the RUL accurately. As can be seen from Figure 11 (e), the skewness curve 
contains severe noises, and no up-and-down trend is visible, especially during the end of failure 
period. 

(2) In the second group, the empirical mode decomposition (EMD) process is applied to 
decompose the vibrational signal into a series of intrinsic mode functions (IMFs). Afterward, the 
concept of singular value decomposition (SVD) is used to compute singular values (SVs) from the 
first two IMFs and known as defect feature vectors. Finally, the extracted feature vectors are taken as 
the input of the K-medoids algorithm to clustering normal and abnormal conditions and constructing 
the 𝐻𝐼. The details steps can be found in [50]. The 𝐻𝐼 constructed by the second method is shown in 
Figure 11 (f). It is realized from Figure 11 (f) that during the early stages, the 𝐻𝐼 curve has a smoothly 
increasing trend. However, after about 50 × 10ସ s, unpredictable stochastic fluctuations are obvious. 
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Figure 11. Constructed 𝐻𝐼 in various methods. (a) RMS, (b) Variance, (c) ApEn, (d) Kurtosis, (e) 
Skewness, (f) EMS-SVD-K- medoids.  

To evaluate the performance of 𝐻𝐼  as defined in different methods three metrics, namely, 
correlation (𝐶𝑜𝑟𝑟), monotonicity (𝑀𝑜𝑛), and robustness (𝑅𝑜𝑏) are employed for different 𝐻𝐼s. It is 
expected that a good 𝐻𝐼 exhibits a monotonically increasing or decreasing trend, and it is robust to 
noise and stochastic fluctuations. 𝑀𝑜𝑛 is used to assess consistently increasing or decreasing trend 
of the 𝐻𝐼 curve. In 𝑀𝑜𝑛, the difference between the values of any two adjacent points of the 𝐻𝐼 
curve is measured. For the rising monotonicity, the total number of positive values is more than the 
total number of negative values and 𝑀𝑜𝑛 is close to 1. On the other hand, for the turbulent and 
oscillation curves, the total number of positive values is close to the total number of negative values 
and the 𝑀𝑜𝑛 value is close to 0. 𝑀𝑜𝑛 is calculated as follow: 

𝑀𝑜𝑛 =  ฬ
𝑁𝑜. 𝑜𝑓 𝑑𝑓 > 0

𝑁 − 1
−

𝑁𝑜. 𝑜𝑓 𝑑𝑓 < 0

𝑁 − 1
ฬ 𝑑𝑓 =  

𝐻𝐼௜ାଵ − 𝐻𝐼௜

𝑖
   1 ≤ 𝑖 ≤ 𝑁 (13)

where 𝑑𝑓 is the difference in the values of any two adjacent points in 𝐻𝐼 curve and 𝑁 is the total 
number of 𝐻𝐼 values.  

𝑅𝑜𝑏 reflects the tolerance of the 𝐻𝐼  to random fluctuations which may arise due to faulty 
sensors, variations in operating conditions, or unexpected events. 𝑅𝑜𝑏 is defined as: 

𝑅𝑜𝑏 =  
1

𝑁
෍ 𝑒𝑥𝑝(− ቤ

𝐻𝐼௜ − 𝐻𝐼௜
்

𝐻𝐼௜

ቤ)

ே

௜ୀଵ

 (14)

where 𝐻𝐼௜
்  is the mean trend value of the 𝐻𝐼.  

Similarly, 𝐶𝑜𝑟𝑟  measures the degree of linear correlation between the 𝐻𝐼  and time. It is 
expected that a good 𝐻𝐼 gradually increases by time. In a strong positive correlation, the 𝐶𝑜𝑟𝑟 value 
is close to 1 and vice versa. 𝐶𝑜𝑟𝑟 is defined as: 

𝐶𝑜𝑟𝑟 =  
ห∑ (𝐻𝐼௜ − 𝐻𝐼തതതത) (𝑖 − ൫∑ 𝑖

𝑁ൗே
௜ୀଵ ൯)ே

௜ୀଵ ห

ට∑ (𝐻𝐼௜ − 𝐻𝐼തതതത)ଶே
௜ୀଵ ∑ (𝑖 − (∑ 𝑖

𝑁ൗே
௜ୀଵ ))ଶே

௜ୀଵ

        1 ≤ 𝑖 ≤ 𝑁 (15)

Here, 𝐻𝐼തതതത is the mean value of all the 𝐻𝐼 values.Table 2 present 𝑀𝑜𝑛, 𝑅𝑜𝑏 and 𝐶𝑜𝑟𝑟 values for 
the proposed 𝐻𝐼 and traditional health indicators, mentioned earlier. The results in Table 2 show 
that all 𝑀𝑜𝑛 , 𝑅𝑜𝑏  and 𝐶𝑜𝑟𝑟  of the current model are higher than those in other models. The 
obtained results demonstrate that the proposed model is superior to other models, and it yields a 
better 𝐻𝐼. 
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Table 2. Comparison of health indicators based on Mon, Corr, and Rob for Subset 2 Bearing 1. 

Metrics Proposed 
method 

RMS Variance ApEn Kurtosis Skewness EMD-SVD- K-
mediods 

Mon 0.7587 0.0113 0.0140 0.0051 0.0063 0.0016 0.0229 
Rob 0.9484 0.8411 0.7565 0.8790 0.8875 0.4427 0.6971 
Corr 0.9969 0.6363 0.4480 -0.3814 0.3622 -0.4282 0.6358 

5. Discussion 

In order to estimate the accurate RUL for bearings, constructing a reliable 𝐻𝐼 is the first and 
most important step; therefore, this has been the focus of many researches [24]. In general, these 
methods are classified into three categories: mechanical signal processing-based, model-based and 
machine learning-based. In mechanical signal processing-based methods, after pre-processing of the 
vibration signal, statistical parameters are directly used to construct the 𝐻𝐼. Due to the flexibility and 
simplicity of mechanical signal processing methods, these methods are widely used in industries. 
These methods also have an acceptable performance to detect early bearing defects and abnormal 
bearing health conditions. However, it has been experimentally shown that the indicator 
performance decreases in the presence of transient conditions caused by bearing’s defects [1]. 
Compared to these methods, the proposed method is sensitive to initial degradation, and is consistent 
with the degradation process. Nevertheless, in this work, the data of the run to failure vibrations is 
divided into two parts: the first part is used to train the CAE model and the second part is used to 
construct the 𝐻𝐼. However, nothing ensures that a sudden degradation or failure does not happen 
during the training phase. Therefore, the method proposed in this work is limited to those faults 
which cause particular vibration patterns. In the case of any sudden failure or extremely slow 
degradation, this method is not able to construct the 𝐻𝐼.  

In contrast to the time or frequency techniques, that only represent the information in time or 
frequency domain, time-frequency techniques provide more information in both domains. In the 
present work, the CWT technique is used to pre-process the vibrational signals. The CWT method is 
a joint time-frequency analysis method which can decompose a time series into time and frequency 
spaces simultaneously. Therefore, the outputs of the CWT analysis are images that contain 
information on both time and frequency domains. When a defect appears in the bearing, it generates 
an impulsive force and excites resonances in the bearing and surrounding elements. With the 
progress of the defect over time, the frequency spectrum changes drastically. Since the faulty signals 
are non-stationary and transient in nature, using the CWT for pre-processing the vibration signals 
has better performance than time or frequency techniques in constructing the 𝐻𝐼. Furthermore, in 
the proposed method, the 𝐻𝐼 is constructed by comparing the images of normal and failure stages, 
which are acquired for an identical bearing. Therefore, the perpetual background noise will not affect 
the 𝐻𝐼 accuracy. In addition, in this work, a deep learning model is used in extracting features, and 
for dimensionality reduction from the pre-processed vibration signals. This provides a more 
powerful capability of learning complex nonlinear relationships, which is able to extract the best-
suited features automatically. Moreover, using the exponential function improves the smoothness 
and monotonicity of the preliminary designed 𝐻𝐼, which leads to better RUL estimation.  

6. Conclusions 

A new data-driven approach to construct the 𝐻𝐼  is presented. This 𝐻𝐼  represents every 
moment conditions of the bearing and can be considered as a Digital Twin of the bearing during its 
failure stage. Furthermore, this 𝐻𝐼  can be used for RUL estimation. First, the Pauta criterion is 
employed to determine the failure threshold and a normal dataset. Since the CWT is suitable for 
analyzing the non-stationary signals, it is used to convert raw vibrational signals into two-
dimensional feature images. The wavelet power spectrum image clearly reveals the degradation 
process of the bearing and includes information in both time and frequency domains. Subsequently, 
the CAE model is used for dimensionality reduction through the feature extraction and, it is trained 
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by the normal operation dataset. The values of the bottleneck nodes of the trained CAE represent the 
conditions of every moment of the ball bearing life; they are used to construct 𝐻𝐼. Finally, the wavelet 
power spectrum image of the failure stage is fed to the trained CAE. The distance between the values 
of bottleneck nodes in normal and failure stages is measured by MD formula, then the 𝐻𝐼  is 
constructed. To improve the 𝐻𝐼  curve monotonicity, an exponential function is used to remove 
random fluctuations in the 𝐻𝐼 curve. Experiments are conducted on the run-to-failure IMS dataset 
to verify the performance of the proposed method.  

The results indicate that the constructed 𝐻𝐼  is capable to represent the health status of the 
bearing and track the evolution of degradation over the whole lifetime of the bearing. Moreover, 
constructing the 𝐻𝐼 with the proposed method needs no prior knowledge or failure history data. 
Therefore, it is suitable for industrial applications. Furthermore, to prove the effectiveness of the 
proposed method, this method is compared with several other methods, such as RMS, EMD-SVD-K-
medoids, Skewness, Kurtosis, ApEn; with a considerable superiority. The method, at the current 
state, is limited to gradual degradation and excludes any sudden failure. 

Future researches are to use the proposed method for other mechanical components such as ball 
screws, gears, and cutting tools.  
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