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Abstract: Estimating the remaining useful life (RUL) of components is a crucial task to enhance the
reliability, safety, productivity, and to reduce maintenance cost. In general, predicting the RUL of a
component includes constructing a health indicator (HI) to infer the current condition of the
component, and modelling the degradation process, to estimate the future behavior. Although
many signal processing and data-driven based methods were proposed to construct the HI, most
of the existing methods are based on manual feature extraction techniques, and need the prior
knowledge of experts, or rely on a large amount of failure data. Therefore, in this study, a new data-
driven method based on the convolutional autoencoder (CAE) is presented to construct the HI. For
this purpose, the continuous wavelet transform (CWT) technique is used to convert the raw
acquired vibrational signals into a two-dimensional image; then, the CAE model is trained by the
healthy operation dataset. Finally, the Mahalanobis Distance (MD) between the healthy and failure
stages is measured as the HI. The proposed method is tested on a benchmark bearing dataset and
compared with several other traditional HI construction models. Experimental results indicate that
the constructed HI exhibits a monotonically increasing degradation trend and has a good
performance to detect incipient faults.

Keywords: health indicator; performance degradation assessment; deep learning; vibration
monitoring; bearing; remaining useful life; digital twin

1. Introduction

Performance degradation, which is almost inevitable for mechanical equipment, results in
machinery damage, severe financial losses due to replacement or repair work and machine
downtimes, or even personnel injury. Thus, Prognostics and Health Management (PHM) has
emerged as an engineering discipline to improve availability, reliability, and safety of equipment. As
a crucial task in the lifecycle monitoring of complex equipment, PHM is used to monitor the
equipment condition and, to design robust and accurate models in order to assess the health state of
equipment, and to define appropriate maintenance strategies [1]. In recent years, improving PHM
methods by the Industry 4.0 paradigm, such as Digital Twin and Predictive Maintenance, attracts the
attention of researchers [2-5].

In a Digital Twin, a virtual counterpart of the physical system during its whole life is created,
with abilities such as analyzing, evaluating, optimizing, and predicting [6]. Jinjian et al. [5] presented
a Digital Twin model for rotating machinery to diagnose the unbalance faults, based on the dynamic
behavior of the rotor system and vibrational status monitoring. Fei et al. [4] proposed a new approach
for PHM, driven by Digital Twin for complex equipment. In this approach, a five-dimensional Digital
Twin model is constructed to identify the health conditions of wind turbine gearboxes. Dinardo et al.
[7] proposed a prognostic approach to detect the incipient faults of rotating machines by means of
their vibrational status monitoring. Yan et al. [8] presented a two-phase Digital Twin to diagnose the
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fault using a deep transfer learning method. In this approach, the trained knowledge of the deep
neural network is transferred from the virtual space to the physical space for real-time monitoring
and predictive maintenance.

Traditionally, a Digital Twin uses physical-based simulation tools to describe the current
behavior of a system [3]. However, due to manufacturing tolerances and material variances, describe
a complex system in a simulation environment usually contains a strong deviation from reality [9].
One solution is to obtain a digital representation of the expected behavior of the physical system
directly from measured data [3]. For this purpose, the first step is to construct a (multi) digital HI
that describes different aspects of the physical component state during the whole life of the
component. This HI should represent the deviation between the initial conditions of the component
and its actual conditions during lifetime [1]. This HI can be further used for RUL estimation by
implementing statistical estimation techniques, such as exponential degradation model [10], Particle
filter [11], or Kalman filter [12]. Therefore, defining an appropriate and sensitive HI, that reflects the
deviation degree from normal health conditions, is now a hot research topic in the RUL estimation
field.

In general, constructing a HI can be performed in three steps: (1) signal acquisition; (2) signal
processing; and (3) feature extraction [13]. Vibration measurement provides a very efficient way of
monitoring the dynamic conditions of a machine such as unbalancedness, misalignment, mechanical
looseness, structural resonance, wear, shaft bow, etc. [14]. Developing each failure mode leads to
varying system dynamic behavior, resulting in significant deviation in vibration patterns [15].
Vibration signals generated by the faulty component can be analyzed in the time domain [16],
frequency domain [17], or time-frequency domain [18]. Using the time-domain techniques for feature
extraction needs to record the time-series vibrations over a long period of time to obtain suitable
parameters to reveal fault evolution. However, obtaining the necessary data for a complex equipment
may be expensive or even impossible. Using frequency-domain techniques such as fast Fourier
transform (FFT) is a powerful diagnostic tool in stationary conditions [18]. Since the FFT is essentially
an integral over time, it fails to do so for non-stationary data which could result from intermittent
defect or evolutionary faults [18]. To address the FFT limitation, time-frequency signal processing
tools such as the short-time Fourier transform (STFT) [19], Hilbert-Huang transform (HHT) [20],
Wigner-Ville distribution (WVD) [21] and wavelet transform [22] are introduced. The wavelet
transform is a relatively new and powerful tool, able to perform a local analysis of a signal and reveals
some hidden aspects of the data that the other signal analysis fails to detect [23]. In this work, the
wavelet transform is selected for signal processing to detect changes in vibration signatures which
are caused by the faulty components.

Once the raw signal is acquired and processed, feature extraction techniques should be
employed to extract the representative features which are used for HI construction. Feature
extraction methods could be roughly classified into model-based methods and data-driven methods
[24]. Rodney et al. [12] obtained a bearing HI by fusion of vibrational signal variance from the time
domain and Choi-Williams distribution from the time-frequency domain. Yaguo et al. [25] presented
a method to extract multiple features from the vibrational signal with multiple signal processing
techniques, and then these features are selected and weighted to form the new HI. In [26], the authors
implement the discrete wavelet packet transform to decompose the raw signal into different sub-
band and the HI is extracted from each signal. Although model-based methods do work and achieve
to extract an accurate HI, they still have two deficiencies: (1) Feature selection is heavily dependent
on prior knowledge and diagnostic expertise. Moreover, it often focuses on a specific fault type, thus
it may be unsuitable for other faults [27,28]. (2) In real industries, acquired signals are usually exposed
to environmental noises, and are transient and non-stationary. Therefore, signal processing
technologies need to be employed to filter the collected signals and it can result in a loss of
information [27,29].

Data-driven methods attempt to extract features from measured data using machine learning
techniques. In recent years, deep learning emerges as a powerful tool to extract the representative
feature from the collected signals [30,31]. Different deep learning architecture, that includes CNN
[29,32], RNN [33], Autoencoder [27], and GAN [34] are successfully used to extract features
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automatically. The greatest advantage of deep learning is that it needs no prior expert knowledge
and represents more accurate features [35]. Until now, most studies employ deep learning methods
in a supervised setting to extract features for classification problems. For this purpose, performance
data of different degradation levels of a component are prerequisites to creating labeled healthy and
unhealthy data sets. However, gathering different degradation level data needs a big failure data,
which is not in practice available especially for high-reliability component [36]. On the other hand a
recent review on the state of deep learning on PHM [37], revealed that studies from a health-
management point of view have been rather limited, largely due to the unavailability of fault data.
Moreover, many implementations of deep learning models in the literature are still constrained to
specific equipment or applications and they are not reusable when the predefined conditions change.
In order to address the aforementioned restrictions, developing a single framework that can
systematically be extended to all aspects of system health management is necessary [3,36]. This
framework has to be able to be trained on-line without requiring historical data and use only healthy
operational data for training [3]. In addition, it should be applicable to any equipment that operates
under stationary and non-stationary conditions; it should also be extendable for different
components [3].

As a step toward the development of a single framework for system health management, this
paper proposes a method to construct an HI from the vibrational signal, based on unsupervised
deep learning. This method establishes an online construction of HI in the sense that the input data
can be acquisitioned while the equipment is being exploited. The proposed method mainly includes
three-step: First, healthy raw vibrational signals of the equipment are processed with the CWT
technique. These 2D images are considered as input of the deep learning model. In the second step,
a CAE model is developed solely being trained by the healthy data. Lastly, during online monitoring,
in each assessment interval, throughout the entire lifetime of the equipment, the CWT image of the
vibrational signal is fed to the trained CAE model. Similar to the training data, the trained
autoencoder can reconstruct images with small reconstruction errors. The distance between the
normal condition data and the failure stage is measured by the MD formula and, thus the HI is
created.

In this study, to experimentally evaluate the effectiveness of the proposed methods, the ball
bearing is chosen. Ball bearings are known as the most widely used rotating machines’ components
and play an important role in successful and reliable operation of rotary machines. Health prognostic
of the ball bearing has great practical significance in reducing the failures of rotating machinery and
enhancing machine availability. So far, fault detection techniques for rolling bearing monitor
vibration, acoustic emission, motor current consumption, temperature, and oil debris. Among these
techniques, vibration monitoring has proved to be a reliable and effective technique for faults
detection in bearings [28]. Therefore, the vibrational analysis technique is selected in this work, and
the CAE model is used to extract features from the vibration data. Overall, this study proposes a
method to construct a HI based on an unsupervised deep learning method that describes every
instant condition of the bearing and can be regarded as an indicator for a Digital Twin. In brief, the
main contributions of the current work are:

(1) The CAE modelis only trained by using healthy operation data at the beginning of an asset’s
life cycle. Therefore, unlike most methods to construct a HI, this model can be trained online
without requiring historical failure data from similar assets or fleets. In addition, since the
CAE model is trained by the CWT image, it is applicable for equipment that operates under
stationary and non-stationary conditions.

(2) The values of the bottleneck nodes of the CAE model are used as extracted features. Using
these values reduces any dependencies on the prior knowledge, thus the HI is constructed
automatically.

The further course of the paper is organized as follows: Section 2, briefly introduces the
theoretical background of CWT and convolutional networks. Section 3 presents the proposed
methodology to construct the HI in detail. In Section 4, the results of the experimental evaluation are
presented and discussed. Section 5 provides the conclusions, and future work guidelines.
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2. Background Theory

2.1. Continuous Wavelet Transform

The purpose of CWT of the raw vibrational signal is to preprocess raw vibration in the time-
frequency domain and convert a 1D signal to a 2D image, as the input of the CAE model. The wavelet
transform is widely used to process non-stationary signals over many different frequencies. The
wavelet transform can analyze a localized area of a large signal without losing the spectral
information contained therein. Therefore, the wavelet transform can reveal some hidden aspects of
the signal which other techniques fail to detect. This property can particularly be employed to
identify the damage (crack) or fault of a component that evolves during the time. There are two main
trends in how wavelet transforms are used, the CWT, and the discrete wavelet transform. Both
Fourier transform and CWT use inner products to measure the similarity between a signal and an
analytic function. In the Fourier transform, the analytic function is complex exponentials (e 7“*) and
in the CWT, the analytic function is a Mother Wavelet function, 1(t). The mother wavelet, i € L*(R),
is a function of finite length and zero average; L*(R) is the space of square-integrable complex
functions [32]. The CWT compares the signal to shifted and compressed or stretched versions of the
mother wavelet function. Stretching or compressing a function is collectively referred to as dilation
or scaling and corresponds to the physical notion of scale. The family of time-scale waveform is
obtained by shifting and scaling the mother wavelet that can be expressed as:

bs® = 2= () )

By comparing the signal with the mother wavelet function at various scales and positions, two
continuous variables a and b have been obtained; a is the dilation and b is the translational
parameter variable. For the given signal, f(t), wavelet coefficient w(a,b) can be represented as:

(™ 1 t=b
o@b) = [ oz () @
where 1" denotes the complex conjunction of .

Since selecting of a mother wavelet function is application-dependent, the selection of the
appropriate function is the first and most important step in the wavelet analysis. As a rule of thumb,
the most appropriate mother wavelet is a function that has more similarity with the signal. Although
there is no standard or general method to select mother wavelet, commonly the shape matching by
visual inspection is used to select the appropriate mother wavelet function for the signal. For this
study, based on the visual inspection and the result of the previous studies [32,38], Morlet wavelet is
selected to extract image features from the raw vibration signal. The Morlet function is a Gaussian
function modulated by complex exponential, defined as:

() = e—tz/zeiwnt (3)

where w, depends on the sampling frequency and usually is taken as 5 [39]. For wavelet transform
of a real signal, the real part of the Morlet function is employed as the mother wavelet:

() = e /2 cos(5t) 4

2.2. Convolutional Networks

Convolutional neural network (CNN) is a type of deep network that uses convolutional and
pooling operation to extract the topological features of the input data. CNN is primarily used to solve
difficult image-driven pattern recognition tasks; and if trained well, it will learn the features of the
image completely. Therefore, in recent years, CNN has been widely used inimage pattern recognition
and image classification. CNN architectures come in several variations; however, a typical CNN
includes convolutional layers, pooling layers, and fully connected layers. In the convolutional layer,
a features map of the previous layer is convolved with multiple filters (also called Kernel) and is sent
to the activation function to construct the output features map [29]:
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le = f(z xil_l * kfj + bjl) (5)
i€M;

where x; is the ith input feature map, * stands for the convolutional operator, K denotes a w X w
convolutional filter, b;is an additive bias, M; is a set of input feature map, [ is the Ith layer in the
network and f(*) is a nonlinear activation function. The mathematical inverse of the convolutional
layer used in the decoder is known as the deconvolution layer. Different nonlinear functions such as
a Rectified Linear Unit (ReLU), sigmoid function, and Scaled Exponential Linear Unit (SELU)
function can be used in convolutional layers. SELU is a variant of the ReLU activation function that,
due to its self-normalizing properties, makes learning highly robust, and allows training of networks
which have many layers. SELU, ReLU, and sigmoid activation functions are defined as:

) [ =0
SELU(x) = A{aex _’;’ ZZ . : 0 (6)
ReLU (x) = max (0, x) (7)
sigmoid(x) = 1 +1e—X (8)

For standard scale inputs (zero mean and standard deviation one) the selected values for the
parameters are a ~ 1.6732 and A = 1.0507 [40].

The pooling layer usually follows the convolutional layer and is used to reduce the
computational load by reducing the size of the features map. Two common pooling methods are max-
pooling and average-pooling which perform local max and average operations over the input
features, respectively. The calculation process of the pooling layer is given as [29]:

X/ = f(B} - down (X}~') + b)) )

where f; is the weight of pooling and b; is the additive bias, down(x) denotes the down-sampling
function, e.g. max-pooling. In contrast to the pooling layer, an upsampling layer is a simple layer in
the decoder with no weights that is used to increase the dimensions of input.

In a fully connected layer, the features maps are converted into a one-dimensional feature vector
and all neurons of both layers are connected, like a traditional multilayer neural network. The output
of the fully connected layer can be obtained as [29]:

d
0= FO) X8+ b)) (10)
j=1

Where 0; is the output value, x; is the jth neuron in the fully connected layer, §; and b; are the
weight and the additive biases corresponding to 0 and x;, and f(-) is an activation function.

3. Methodology

In this work, a method is proposed to construct the HI automatically from the image of CWT
of the vibrational signal of the ball bearing by using a deep learning model. The method consists of
three main stages. The first stage involves acquiring and analyzing a healthy vibrational signal from
the ball bearing and establishing the training repository for deep learning model. In this stage, it is
assumed that the bearing is in healthy conditions and it is free from the defects at the beginning of its
life cycle. In the second stage, the deep learning model is trained by the established healthy dataset.
Finally, in the last stage, the HI is constructed to capture the bearing degradation throughout its
failure phase. For this purpose, the difference in values of the bottleneck nodes between the failure
stage and the normal stage is measured by using the MD formula for each assessment interval. The
proposed method is shown in Figure 1. More details on these three stages are given in the following.
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Figure 1. Proposed methodology for the construction of a bearing HI.

3.1. Data Acquisition and Analyzing

In the Industry 4.0 era, by emerging technologies such as data mining, internet of things and
cloud computing, the online data acquisition and processing becomes more pervasive than ever. The
goals of data acquisition and data processing in this work are to create a dataset from the healthy
conditions, and to construct the HI throughout the failure stage. In the absence of sudden and
unexpected failures, the degradation process of the bearing generally includes two stages: the normal
operation stage and the failure stage, shown in Figure 2. In practical experiences, most of the bearing
lifetime is passed in a stable and healthy stage; therefore, it is possible to acquire sufficient healthy
data to train the deep learning model. During a normal operation stage of the bearing, a sliding
window is used to capture the vibrational signal, and for each window, the power spectrum of the
CWT is used to convert a 1-D vibrational signal into a 2-D image. The transformed image contains
both time and frequency domains information and can represent the non-stationary and transient
evolution of the signal.

MNormal Stage Failure Stage

Amplitude (m/s2)
(=]

)

0.00 0. 25 0.50 0.?5 1.00 1.25 150 1.75 2.00
Data points 1e7

Figure 2. The lifespan of a bearing is divided into the normal stage and failure stage, and the healthy
dataset is established from the normal stage data.

In practical application, a component is evolved from the normal stage to the failure stage
gradually (excluding sudden and unexpected failures) through a series of degradation states. In
addition, there are high uncertainties about the ambient conditions and component properties.
Therefore, defining a fixed failure threshold that clearly separates the normal stage from the failure
stage is not feasible. To address this issue, in this paper, an adaptive failure threshold approach is
introduced, as depicted in Figure 3. According to the theory of statistical process control (SPC),
measured vibration signals under the normal operation follow a normal distribution (with the mean
u and the variance o) [41]. With the transfer from the normal operation to the failure operation, the
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distribution pattern of the vibration signals might vary from normal distribution to unknown
distribution and, consequently, the mean and variance change.
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Figure 3. The flowchart of defining a failure threshold and establishing a healthy dataset. The P
variable is used to count the abnormal consecutive assessment interval.

In this paper, the Pauta criterion [42] is employed to determine the failure threshold. If the mean
of the acquired vibrational signal amplitude for each assessment interval is within the [u + 30, u —
30] range, the stage is recognized as a normal stage. Otherwise, the measured data is recognized as
an abnormal. In order to get an adaptive failure threshold, a healthy dataset X = (¥, %, ..., %,) is
established by collecting the mean amplitude of the vibrational data points in the normal stage . Then,
a reference range [u + 30, u— 30] is computed by using the n data. When a new data X, is
observed, the Pauta criterion is used to determine whether the new data belongs to the healthy
dataset. If the x,, falls within the [u + 30, u — 30] range, it is added to the healthy dataset, i.e. X =
(%1, %3, ..., X, X,) and the reference range is updated. Otherwise, this data is recognized as an
abnormal one and the original healthy dataset remains unchanged. If for more than e.g. 500
consecutive assessment intervals, the means of the vibrational amplitudes are not in the reference
range, the failure threshold is recognized, and the collected healthy dataset is not changed anymore.

3.2. Convolutional Autoencoder Model

The main purpose of using a deep learning model in this work is a dimensionality reduction
through the feature extraction, so that the extracted features represent the conditions of every
moment of the ball bearing. Among the developed deep learning models, the CAE is selected in this
study. CAE is a type of autoencoder (AE) neural network that is used to extract hidden features from
unlabeled images. CAE is characterized by having identical input and output sizes and is trained to
predict the input in the output (h, ,(x) = x). One CAE algorithm consists of three layers: the input
layer, the hidden layer(s), and the output layer. The idea is that one or several hidden layers have
lower dimensions than the visible layers (input and output), so that the input information is
reconstructed and compressed in the hidden layer(s). The hidden layer that contains the fewest nodes
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is known as a bottleneck. The bottleneck layer is representing the maximum point of compression of
the input data which contains all necessary data to reconstruct the input data again. Therefore, the
CAE is constituted by two main parts: an encoder that maps the input into the code, and a decoder
that maps the code to a reconstruction of the original input in the output layer.

In the encoding section, some convolutional layers and pooling layers are stacked on the input
image to extract hierarchical features. Then, all units in the last convolutional layer have been
flattened to form a vector followed by a fully connected layer(s). The bottleneck layer usually has 2
neurons. Accordingly, the input 2D image (for this study the input image is 60 x 60 RGB pixels) is
transformed into a 2-dimensional vector space (R3*¢%*6% — R?). To train the CAE model in an
unsupervised manner, the mirror architecture of the encoder is used in the decoder section. Thus,
fully connected layer(s) followed by some deconvolutional and upsampling layers are used to
transform the embedded features back to the original image. The structure of the proposed CAE
model is shown in Figure 4. After setting up the CAE, it is essential to optimize weights and biases
by minimizing the reconstruction error, i.e. the loss function. Backpropagation algorithm, [43], is used
to compute the gradient of the loss function with respect to any weight and bias in the network. To
make the output of the decoder as equivalent as possible to the input, the binary_crossentropy
function is employed as the standard CAE loss function and the Adam optimizer is used to optimize
the loss function [43].

Bottleneck
Convolutional and Deconvolutional and
Pooling layers l upsampling layers
—d | : &
. ' Canv
cov  1@3%3 |0 D;EE]Z ngi - S
Conwv 64@3 x 3 (Selu), Max- . B@3IX3 oy
Input IMage  18@3x3 (e, Max- Pooizxz " ey UPSmPle (e, 18@3x3  Output Image
60 % 60%3 {Selu), Max-  Pool 2x 2 Upsample (Seluy,
Poal2 % 2 Autoencoder 2X2  UpSample CDE‘S‘; ﬁ?df 3
2%2 e
(Dense Layers)
‘ J
Encoder Decoder

Figure 4. The overall convolutional autoencoder architecture used.

3.3. Construction of HI

Once the CAE model is trained by the wavelet power spectrum images in normal operation, HI
should be constructed for the failure stage automatically. The constructed HI is expected to exhibit
a monotonically increasing trend and should be robust to noise and stochastic fluctuations. The CAE
model learns to extract distribution characteristics of the normal data through its deep structure, and
to reproduce images similar to the training dataset with a small reconstruction error. Over the time
in the failure stage, damage evolution of bearing leads to a more turbulent vibration pattern.
Consequently, with the development of the degradation, high energies appear in the low-frequency
bands and produce different wavelet power spectrum image from the normal stage. When the
wavelet power spectrum image of the failure stage is input to the trained CAE model, the
dissimilarity between the extracted vector of features in normal stage images and the faulty sample
image is estimated to achieve the corresponding degradation indicator. In this regard, the mapped
features in the bottleneck layer are used to measure the distance between the normal stage and the
failure stage by the MD formula. This strategy is used to construct HI during the failure stage in this
work. Since the feature extraction and HI construction are performed automatically by the CAE
model, prior knowledge and diagnosis expertise are not required.

It is remained to define MD, which is an effective multivariate distance metric that measures the
distance between a vector and a distribution. An anomaly vector is an observation that has a different
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distribution from the rest of the data and MD has an excellent ability to identify this deviation [44].
The MD is defined as:
(MDY? = (A— )" c™ (A~ p) (11)

where A = (ay,a,,as,..,as) gives the values of the bottleneck nodes in each assessment interval and
= (al*,af",af,...,a") is the mean values vector in healthy condition, and c¢™*
covariance matrix of the healthy condition.

is the revers

4. Experimental Results

4.1. Dataset description

To evaluate the effectiveness of the proposed method, the bearing dataset, generated by the NSF
University of Cincinnati Center for Intelligent Maintenance Systems (IMS), is used. The IMS bearing
test rig is illustrated in Figure 5. It consists of an AC motor coupled to the shaft via a rub belt and four
double row bearings installed on the shaft. The sampling rate of the record data was 20 kHz under
the radial load of 6000 Ibs for each of the 4 bearings at the constant rotation speed of 2000 rpm. Data
acquisition was made every ten minutes and for each assessment interval, a 1-second vibrational
signal snapshot, that included 20,480 points, was recorded.

Accelerometers

. Radial load Thermocouples
-\.I‘\ g
) v
- (\Q &
\U
\ O @)
|
[[ | © 0 n
_ ' ® ¢
r ! Fd ! ! !
Bearing 1 Bearing 2 Bearing 3 Bearing 4

Motor

Figure 5 . IMS test rig [45].

The IMS bearing data sets contain 3 run-to-failure tests; both normal stage and failure stage data
exist in each test. For each test, data collection continued until any failure in inner race, outer race, or
roller elements, occurred at least for one bearing. At the end of the test, bearing 3 and 4 from the first
dataset, bearing 2 from the second dataset and, bearing 3 from the third dataset showed signs of
failure. In the current work, the datasets for all three cases have been considered. The time-domain
vibrational signals for the four bearings are shown in Figure 6. For each bearing data, the failure
threshold is identified by the adaptive failure threshold method, and healthy samples and faulty
samples are established. Details of IMS bearing datasets are described in Table 1. Since different
bearing defects frequencies are proportional to the rpm, all defects occurring in the bearing are
revealed in every revolution. Therefore, given the acquisition frequency of 20 kHz and rotation speed
of 2000 rpm, the vibrational signals are split into equal chunks of length L,, = 600 points. For each
chunk, the CWT is performed, and the power spectrum image is obtained.
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Figure 6 . Original vibration signals of the IMS bearing dataset [45] (a) subset 1 bearing 3 (b) subset 1

bearing 4 (c) subset 2 bearing 1 (d) subset 3 bearing 3.

Table 1. Description of IMS bearing dataset [45]. The Failure thresholds and the healthy and faulty

samples were identified by the adaptive failure threshold.

Bearing Subset 1 Bearing3  Subset 1 Bearing4 Subset 2 Bearing1 Subset 3 Bearing3
Load (Ibs.) 6000 6000 6000 6000
Speed (rpm) 2000 2000 2000 2000
Defect type Inner race Roller element Outer race Outer race
Endurance 34 days12h 34 days 12 h 6 days 20 h 45 days9h
duration
Number of
healthy 61069 43381 19146 200474
samples
Failure 27 days 20 h 19 days 20h 3days 21h 41 days 2h
threshold
Number of 19800 31090 14780 20230
faulty samples
4.2. Analysis of Wavelet Power Spectrum Images

To demonstrate the advantage of the wavelet transform technique, the time-domain vibrational

signals and their corresponding wavelet power spectrums for a normal and a failure stage are
depicted in Figure 7. While periodic vibrations with low amplitude are observed in the normal stage,
more severe vibrations appear in the failure stage. The wavelet power spectrum represents the
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variations of the energy distribution of the vibration signal for different frequencies over time. As
shown in Figure 7, the wavelet transform can clearly distinguish between the normal stage and the
failure stage signals. For normal operations, most of the energy is concentrated in high frequencies
but for a failure stage, due to the evolution of defects, the burst of energy is observed in a broader
range.
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Figure 7 . Comparison of time-domain vibration signals and power spectrum images for healthy and
damaged signals. (a) raw signal (normal stage) [45], (b) wavelet power spectrum (normal stage), (c)
raw signal (failure stage) [45], (d) wavelet power spectrum (failure stage).

4.3. Training the CAE Model

As mentioned above, power spectrum images of the normal health stage are used to train the
CAE model. Before training the CAE model, some parameters need to be configured such as the
number of layers, number of nodes in each layer, activation function for each layer, iteration number
and the learning rate. Regarding the number of layers and the number of nodes in hidden layers, the
parameters are related to the dimension of the input data. These parameters are usually obtained
experimentally and provide a good visual conformity. The convolutional autoencoder model starts
with propagating from the input layer to the convolution layer. The convolutional encoder consists
of three convolutional layers, each followed by a max-pooling layer. The number of filters for the
three convolutional layers are [128, 64, 1], and the filter size for all layers is 3 x 3. Features map from
the convolutional encoder section are flattened and passed through the autoencoder layers. The
autoencoder section consists of three fully connected layers with 64, 2, and 64 neurons in each layer.
Therefore, the input 2D RGB image is transformed into a 2-dimensional feature space in the
bottleneck layer that is used to construct the HI. To transform the extracted features back to the
original image, three deconvolutional layers with three upsampling layers in between are added to
the autoencoder section. The number of filters for the three deconvolutional layers are [1, 64, 128],
with the filter size of 3 x 3.
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To attain better visual conformity, after several trials, the SELU was chosen as the activation
function for the convolutional and deconvolutional layers, the ReLU for the autoencoder layers, and
the sigmoid for the last layer. To illustrate the influence of the learning rate on training the model,
the reconstruction error under various learning rates is shown in Figure 8. If the learning rate is too
low, the convergence is too slow or overfitting; if the learning rate is too high, it will hinder the
convergence. Therefore, the learning rate is set to 0.005 for this study. As illustrated in Figure 8, the
reconstruction error does not significantly decrease after 30 cycles, therefore, thirty iterations are
performed in this study. Experimental model is developed using the Python-based Keras library [46]
with a TensorFlow backend [47].
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S 024 |y :
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[}
g 0.22 === earning Rate 0.009
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Iteration NO.

Figure 8. The reconstruction error of deep learning model for different learning rates.

Since the CAE model is trained in an unsupervised manner, the successful trained CAE should
learn to extract meaningful features from the images of the normal operation, and to reconstruct a
closely similar image to the original image in the output. However, perfect reconstruction is usually
the sign of overfitting where it just learns to copy its input to the output without learning to extract
intelligent features and generalize to a new instance. Indeed, reasonably close reconstruction with a
small error demonstrates that the CAE learned the meaningful features of the training dataset and
has an acceptable generalization. Figure 9 represents the comparison of the original images with the
reconstructed images by the developed model. Although the CAE model is solely trained by the
normal operation dataset, it also reconstructs faulty images very well that indicates the model could
extract subtle features from images.

Bearing fault progress

50%

Original image

Reconstructed
image

Figure 9 . Comparison of the original and reconstructed images of the wavelet power spectrum during
the run-to-failure experiment of the Subset 2 Bearing 1.

4.4. Smoothing the HI
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The preliminary designed HI almost always exhibits local random fluctuations. To reveal an
underlying long-term trend in the designed HI, local spurious fluctuation in the HI curve should be
smoothed. In this study, an exponential function is used to remove any sharp changes in the HI
curve and, to improve the monotonicity of the designed HI [48]. This function is given by:

MHI; = exp@=#/0 1 <i<N (12)

Where HI; denotes the historical measured HI, N is the total number of HI values and MHI;
represents the modified value of the current HI;. In Eq.(12) the mean value of the historical
measurement from the first value HI; to the current ith value HI; are used to calculate the MHI;.
Therefore, if the HI curve exhibits a significant oscillation at HI; point, it will be weakened.
Furthermore, the exponential function is a monotonically increasing function and it can reveal a
monotonically increasing trend in the HI curve.

4.5. HI Results

Since the normal stage images are used to train the deep learning model, the HI is solely
constructed for the failure stage. The trained deep learning model is used to construct on-line HI by
applying the MD formula to measure the distance of the values of the bottleneck nodes between the
normal stage and failure stage. The constructed HIs for the four IMS bearing are shown in Figure 10
(a-d). Intuitively, it can be observed that HIs evolves gradually at the beginning, and dramatically at
the end; they reveal the true degradation in bearings. Although the initial HI curves represent global
monotonicity, there still exist severe local spurious fluctuations, which may be the result of highly
inaccurate and unreliable data. Therefore, the smoothness and monotonicity of the constructed HIs
are improved by using the exponential function defined in Eq. (12); the modified HIs are shown in
Figure 10 (e-h). The exponential function is an increasing function which uses the mean from the
starting time to the current time; thus, it can effectively eliminate oscillation and enhance
monotonicity. It can be seen with the naked eye that the modified HIs are smoother, and gradually
increasing, while the degradation trends are effectively captured as well. The results indicate that the
proposed method has a good performance in detecting the early bearing defects and abnormal
bearing health conditions. Moreover, this method provides an HI that is well correlated with
progressively increasing bearing degradations, and it can lead to better RUL prediction.
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Figure 10. HI results for the four IMS bearing. (a-d) raw HI, (e-f) modified HI.

4.6. Comparison with Other Traditional Methods

To verify the effectiveness and superiority of the proposed method, a comparison among the
proposed method and several traditional HI methods is conducted. These methods are categorized
in the two separate groups: five methods that are based on the time-domain features and a method
that is based on the time-frequency domain feature. To compare, the vibration signal of the "Subset 2
Bearing 1" is used to construct the HI in this section.
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(1) In the first group, several commonly used features from the time domain are extracted to
construct the HI. The selected features include:
¢ Root-Mean-Square (RMS),

1
v
i=1
e Variance,
N
1 N2
TS PACEE)
=1
e Kurtosis,
1 u (x; — %)
N Z ot
i=1
e Skewness,
1 u (x; — %)
N Z a3

x; is the vibrational signal series; ¥ and o are the mean value and the variance of the series,
respectively.

e Approximate Entropy (ApEn). ApEn expresses the regularity of fluctuations over
time-series data. The detailed steps to construct an HI using the ApEn are
introduced in [49].

During the failure stage, these equations are applied for each assessment interval to construct
HI. Figure 11 (a-e) illustrates the extracted HI from these methods. The RMS and variance curves of
the HI are shown in Figure 11 (a) and (b), respectively. It can be noticed that these curves are
insensitive during the early stage degradation, making it difficult for RUL prediction. The ApEn and
kurtosis curves depicted in Figure 11 (c) and (d) overcome the weakness of RMS and variance curves
and recognize the infant mortality period. However, in these curves, oscillations and sudden changes
near the end of the life of the bearing are obvious. This sudden change in the HI curve may cause
problems in predicting the RUL accurately. As can be seen from Figure 11 (e), the skewness curve
contains severe noises, and no up-and-down trend is visible, especially during the end of failure
period.

(2) In the second group, the empirical mode decomposition (EMD) process is applied to
decompose the vibrational signal into a series of intrinsic mode functions (IMFs). Afterward, the
concept of singular value decomposition (SVD) is used to compute singular values (S5Vs) from the
first two IMFs and known as defect feature vectors. Finally, the extracted feature vectors are taken as
the input of the K-medoids algorithm to clustering normal and abnormal conditions and constructing
the HI. The details steps can be found in [50]. The HI constructed by the second method is shown in
Figure 11 (f). It is realized from Figure 11 (f) that during the early stages, the HI curve has a smoothly
increasing trend. However, after about 50 x 10*s, unpredictable stochastic fluctuations are obvious.
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Figure 11. Constructed HI in various methods. (a) RMS, (b) Variance, (c) ApEn, (d) Kurtosis, (e)
Skewness, (f) EMS-SVD-K- medoids.

To evaluate the performance of HI as defined in different methods three metrics, namely,
correlation (Corr), monotonicity (Mon), and robustness (Rob) are employed for different HIs. It is
expected that a good HI exhibits a monotonically increasing or decreasing trend, and it is robust to
noise and stochastic fluctuations. Mon is used to assess consistently increasing or decreasing trend
of the HI curve. In Mon, the difference between the values of any two adjacent points of the HI
curve is measured. For the rising monotonicity, the total number of positive values is more than the
total number of negative values and Mon is close to 1. On the other hand, for the turbulent and
oscillation curves, the total number of positive values is close to the total number of negative values
and the Mon value is close to 0. Mon is calculated as follow:

|No.of df > O_No.ofdf<0 df = Hl;, — HI;

Mon = 1<i<N 13
R N-1 i == 13)

where df is the difference in the values of any two adjacent points in HI curve and N is the total
number of HI values.

Rob reflects the tolerance of the HI to random fluctuations which may arise due to faulty
sensors, variations in operating conditions, or unexpected events. Rob is defined as:

N
Rob — 12 HI; — HIF
0 —N'lexp(

=

THL ) (14)

where HIT is the mean trend value of the HI.

Similarly, Corr measures the degree of linear correlation between the HI and time. It is
expected thata good HI gradually increases by time. In a strong positive correlation, the Corr value
is close to 1 and vice versa. Corr is defined as:

IS, (HE = HD (= (S Y ))]
Jziil(mi —HI S G- (5 )

Corr = 1<i<N (15)

Here, HI is the mean value of all the HI values.Table 2 present Mon, Rob and Corr values for
the proposed HI and traditional health indicators, mentioned earlier. The results in Table 2 show
that all Mon, Rob and Corr of the current model are higher than those in other models. The
obtained results demonstrate that the proposed model is superior to other models, and it yields a
better HI.
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Table 2. Comparison of health indicators based on Mon, Corr, and Rob for Subset 2 Bearing 1.

Metrics Proposed = RMS  Variance ApEn Kurtosis Skewness EMD-SVD- K-

method mediods
Mon 0.7587 0.0113 0.0140 0.0051 0.0063 0.0016 0.0229
Rob 0.9484 0.8411 0.7565 0.8790 0.8875 0.4427 0.6971
Corr 0.9969 0.6363 0.4480 -0.3814 0.3622 -0.4282 0.6358

5. Discussion

In order to estimate the accurate RUL for bearings, constructing a reliable HI is the first and
most important step; therefore, this has been the focus of many researches [24]. In general, these
methods are classified into three categories: mechanical signal processing-based, model-based and
machine learning-based. In mechanical signal processing-based methods, after pre-processing of the
vibration signal, statistical parameters are directly used to construct the HI. Due to the flexibility and
simplicity of mechanical signal processing methods, these methods are widely used in industries.
These methods also have an acceptable performance to detect early bearing defects and abnormal
bearing health conditions. However, it has been experimentally shown that the indicator
performance decreases in the presence of transient conditions caused by bearing’s defects [1].
Compared to these methods, the proposed method is sensitive to initial degradation, and is consistent
with the degradation process. Nevertheless, in this work, the data of the run to failure vibrations is
divided into two parts: the first part is used to train the CAE model and the second part is used to
construct the HI. However, nothing ensures that a sudden degradation or failure does not happen
during the training phase. Therefore, the method proposed in this work is limited to those faults
which cause particular vibration patterns. In the case of any sudden failure or extremely slow
degradation, this method is not able to construct the HI.

In contrast to the time or frequency techniques, that only represent the information in time or
frequency domain, time-frequency techniques provide more information in both domains. In the
present work, the CWT technique is used to pre-process the vibrational signals. The CWT method is
a joint time-frequency analysis method which can decompose a time series into time and frequency
spaces simultaneously. Therefore, the outputs of the CWT analysis are images that contain
information on both time and frequency domains. When a defect appears in the bearing, it generates
an impulsive force and excites resonances in the bearing and surrounding elements. With the
progress of the defect over time, the frequency spectrum changes drastically. Since the faulty signals
are non-stationary and transient in nature, using the CWT for pre-processing the vibration signals
has better performance than time or frequency techniques in constructing the HI. Furthermore, in
the proposed method, the HI is constructed by comparing the images of normal and failure stages,
which are acquired for an identical bearing. Therefore, the perpetual background noise will not affect
the HI accuracy. In addition, in this work, a deep learning model is used in extracting features, and
for dimensionality reduction from the pre-processed vibration signals. This provides a more
powerful capability of learning complex nonlinear relationships, which is able to extract the best-
suited features automatically. Moreover, using the exponential function improves the smoothness
and monotonicity of the preliminary designed HI, which leads to better RUL estimation.

6. Conclusions

A new data-driven approach to construct the HI is presented. This HI represents every
moment conditions of the bearing and can be considered as a Digital Twin of the bearing during its
failure stage. Furthermore, this HI can be used for RUL estimation. First, the Pauta criterion is
employed to determine the failure threshold and a normal dataset. Since the CWT is suitable for
analyzing the non-stationary signals, it is used to convert raw vibrational signals into two-
dimensional feature images. The wavelet power spectrum image clearly reveals the degradation
process of the bearing and includes information in both time and frequency domains. Subsequently,
the CAE model is used for dimensionality reduction through the feature extraction and, it is trained
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by the normal operation dataset. The values of the bottleneck nodes of the trained CAE represent the
conditions of every moment of the ball bearing life; they are used to construct HI. Finally, the wavelet
power spectrum image of the failure stage is fed to the trained CAE. The distance between the values
of bottleneck nodes in normal and failure stages is measured by MD formula, then the HI is
constructed. To improve the HI curve monotonicity, an exponential function is used to remove
random fluctuations in the HI curve. Experiments are conducted on the run-to-failure IMS dataset
to verify the performance of the proposed method.

The results indicate that the constructed HI is capable to represent the health status of the
bearing and track the evolution of degradation over the whole lifetime of the bearing. Moreover,
constructing the HI with the proposed method needs no prior knowledge or failure history data.
Therefore, it is suitable for industrial applications. Furthermore, to prove the effectiveness of the
proposed method, this method is compared with several other methods, such as RMS, EMD-SVD-K-
medoids, Skewness, Kurtosis, ApEn; with a considerable superiority. The method, at the current
state, is limited to gradual degradation and excludes any sudden failure.

Future researches are to use the proposed method for other mechanical components such as ball
screws, gears, and Cutting tools.
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