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Abstract —By taking advantage of a stability criterion established recently, the critical tem-
perature 7. is reckoned with help of the microscopic parameters, characterising the normal and
superconducting electrons, namely the independent-electron band structure and a repulsive two-
electron force. The emphasis is laid on the sharp 7. dependence upon electron concentration and
inter-electron coupling, which might offer a practical route toward higher T, values and help to
understand why high-T,. compounds exhibit such remarkable properties.

Introduction. — The BCS theory [1], despite its im-
pressive success, does not enable one to predict [2] super-
conductivity occurring in any metallic compound. Such a
drawback ensues from an attractive interaction, assumed
to couple electrons together, which is not only at logger-
heads with the sign of the Coulomb repulsion but in ad-
dition leads to questionable conclusions to be discussed
below. Therefore this work is intended at investigating
the T. dependence upon the parameters, characterising
the motion of electrons correlated together through a re-
pulsive force, within the framework of a two-fluid picture
developed elsewhere [3-5].

The outline is as follows : the conditions, warranting
thermal stability in a superconductor, are recalled in sec-
tion 1, while the parameters, needed to calculate T, are
derived in section 2; the T, dependences on electron con-
centration and inter-electron coupling are discussed in sec-
tion 3,4, respectively; the main results are summarised in
the conclusion.

1-Thermal stability. — The conduction electrons
are taken to comprise [3-5] bound and independent elec-
trons, in respective temperature dependent concentration
¢s(T), cn(T), such that

co=cs(T)+en(T)

with ¢y being the total concentration of conduction elec-
trons. They are organized, respectively, as a many bound
electron [4] (MBE) state, characterised by its chemical

potential p(cs), and a Fermi gas [6] of Fermi energy
Er(T,c,). The Helmholz free energy of independent elec-
trons per unit volume F,, and Fr on the one hand, and
the eigenenergy per unit volume &;(cs) of bound electrons
and u on the other hand, are related [6,7], respectively,
by Er = gf o and p = ‘gis. Then a stable equilibrium is
conditioned [3] by Gibbs and Duhem’s law

Ep(T,cn(T)) = p(es(T)) (1)
which expresses [7] that the total free energy F, + & is
minimum provided %ETF + % > 0. Noteworthy is that
aaT# < 0 has been shown to be a prerequisite for persis-
tent currents [3], thermal equilibrium [4], the Josephson
effect [8] and a stable [5] superconducting phase. Like-
wise, Eq.(1) reads [3-5] for T =T,
E(Teyco) = s = 0) = e4/2 @)
with € being the energy of a bound electron pair [4]. Note
that Egs.(1,2) are consistent with the superconducting
transition being of second order [7], whereas it has been
shown [4] to be of first order at T < T, (= Er(T,co—cs) >
w(cs)), if the sample is flown through by a finite current.
The binding energy [4] of the superconducting state
Ey(T < T.) has been worked out as
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with C(T"), C,,(T) being the electronic specific heat of a
superconductor, flown through by a vanishing current [4]
and that of a degenerate Fermi gas [6]. A stable phase (=
Ey, > 0) requires Cs(T,) > C, (1), which can be secured
only by fulfilling the following condition [5]

8Ep 8,u

e 9 0), pP(Ep(T.,co))>0

(ch CO) =

(3)

with p (¢) , € being the one-electron density of states and

energy, respectively, and p' = 2.

2-Microscopic parameters. — Since the remaining
analysis relies heavily on Eqs (2,3), explicit expressions
are needed for Ep (T, cy), 22 ¥ E(Te,co), Ep, g—c“s(O). Because
the independent electrons make up a degenerate Fermi gas
(= T << Ep/kp with kg being Boltzmann’s constant),
applying the Sommerfeld expansion [6] up to 72 yields

EF(T67CO)
aEF E(Te, c0) = (erp//%)

’ 2
= Bp(0,c0) — & T
-1

;4

With p = p(Br(0,c0),p = F#(Er(0,co)),p" =

dE2 5 (Er(0,¢)). As for ey, Q(O), a truncated Hubbard

Hamﬂtoman Hp, introduced previously [9-11], will be
used. The main features of the calculation [4] are sum-
marised below for self-containedness.

The independent electron motion is described by the
Hamiltonian Hy

H;= Z e(k)czack,a

k,o

e(k), k are the one-electron energy (e(k) = e(—k)) and a
vector of the Brillouin zone, respectively, 0 = + is the
electron spin and the sum over k is to be carried out over
the whole Brillouin zone. Then c,~C -1 Ck,o are creation and
annihilation operators on the Bloch state |k, o)

|ka U> = CZ_,U |O> 3 |O> = Ck,o |k7 0> 5

with |0) being the no electron state. The Hamiltonian Hx
reads then

U
— E + T+
HK —Hd+N Ck,+CK_k7_CK—k’,7Ck',+ s
k,k'

with N >> 1,U > 0 being the number of atomic sites,
making up the three-dimensional crystal, and the Hubbard
constant, respectively. Note that the Hamiltonian used by
Cooper [12] is identical to Hg—g, but with U < 0.

Hy sustains [4] a single bound pair eigenstate, the en-
ergy €,(K) of which is obtained by solving

" pr(e)
U Nzab —eKk;) /tK eb(K)—EdE'

+ti are the upper and lower bounds of the two-electron
band, i.e. the maximum and minimum of the two-electron

(5)

energy (K, k) = e(k) +e(K — k) over k with K kept fixed,
whereas px (g) is the corresponding two-electron density of
states, taken equal to

2
2 5
=—\/1-(—) . —tg<e<tk
7TtK tK

The dispersion curves ¢,(K) are plotted in Fig.1.
Though Eq.(5) is identical to the equation yielding the
Cooper pair energy [12], their respective properties are
quite different :

e the data in Fig.1 have been calculated with U > 0,
rather than U < 0 favoured by Cooper [12] and BCS
[1], because, due to the inequality [4] Ug—ci < 0, choos-

ing U < 0 entails B—” > 0, which has been shown
not to be consistent with persistent currents [3], ther-
mal equilibrium [4], the Josephson effect [8] and oc-
curence [5] of superconductivity. As a further conse-
quence of U > 0, &,(K) shows up in the upper gap
of the two-electron band structure (= &5(K) > tx)
rather than in the lower gap (= ¢,(K = 0) < —tg) in
case of the Cooper pair [12]. Nevertheless the bound
pair is thermodynamically stable, because every one-
electron state of energy e(k) < Ep(T,,co) is occupied
for a degenerate Fermi gas [6], so that, due to Pauli’s
principle, a bound electron pair of energy e,(K) =
2Er(Te, o), according to Eq.(2), cannot decay into
two one-electron states e(k) < Ep,e(K — k) < Ep
such that

e(k)+e(K —k) <ep(K) ;

e a remarkable feature in Fig.1 is that e,(K) — tx
for U — tx/2, so that there is no bound pair for
U <tk /2 (accordingly, the dashed curve is no longer
defined in Fig.1 for % < .13), in marked contrast
with the opposite conclusion drawn by Cooper [12],
that there is a Cooper pair, even for U — 0. This
discrepancy results from the three-dimensional Van
Hove singularities, showing up at both two-electron
band edges pk (¢ = £tx) x /tx — |e|, unlike the
two-electron density of states, used by Cooper [12]
which is constant and thence displays no such singu-
larity. Likewise the width of Cooper’s two-electron
band is equal to a Debye phonon energy 2tx—o =
wp =~ 30meV << Er =~ 3eV. Hence the result-
ing small concentration of superconducting electrons,
M ~ ED ~ .01, entails that London’s length
should be at least 10 times larger than observed val-
ues [13-16];

e at last Cooper’s assumption U < 0 implies €,/2 <
Er(T.), which is typical of a first order transition but
runs afoul at all measurements, proving conversely
the superconducting transition to be of second order
(= ep/2 = Ep(T.) in accordance with Eq.(2)).
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Fig. 1: Dispersion curves of tx as a dashed-dotted line, and of
ep(K) as solid, dotted and dashed lines, associated with various
U values, respectively; those data have been obtained with
tx = tcos(Ka/2), where t,a are the one-electron bandwidth
and the lattice parameter, respectively.

The bound pair of energy £,(K) turns [4], at finite con-
centration c,, into a MBE state, characterised by p(cs).
Its properties have been calculated thanks to a variational
procedure, displaying several merits with respect to that
used by BCS [1] :

e it shows that ©(0) = ¢;,/2;

e the energy of the MBE state has been shown to be
exact for |U| — oo;

e an analytical expression has been worked out for
g—c"s(K,cs =0) as:
tx px(€)
O Stk Gt e de

(K7 Cs = O) = -
dcs ¢ (&) 2
2 (ff{K (abf§>—e>2d5>

g—i(K,cs :O)’ — 00.

(6)

Note that &,(K) — tx =

3-T,. versus electron concentration. — The T, de-
pendence on cg will be discussed by assigning to the one-
electron density of states the expression valid for free elec-
trons

2
ple) =nve—e = co = 3 (Er(0,c0) —&)®

M)

(7)
3

with n = \/%”hiv, whereas €,,m,V = 17A% stand for the

bottom of the conduction band, electron mass and vol-

ume of the unit-cell, respectively. With help of Eq.(4),

Eqgs.(2,3) can be recast into a system of two equations

Br(0yco) = § G — 258 =0

-1 , 8
(p+p//%) +%(K,Cs:0):0 ( )

to be solved for the two unknowns co (1), tx (1) with T,
being dealt with as a disposable parameter.

To that end, starting values are assigned to U, tg,
which gives access to e, (K), g—Z(K, ¢s = 0)) and thence
to Er(0,¢p),€, and finally to ¢y, owing to Egs.(2,3,7).
Those values of ¢g,tx are then fed into Egs.(8) to launch
a Newton procedure, yielding the solutions ¢o(T¢), tx (T¢).
The results are presented in table 1. Since we intend to
apply this analysis to high-T, compounds [17], we have
focused upon low concentrations ¢y < 0.2, which entails,

in view of Eqgs.(4,7), that ’c’%’ takes a high value. This

requires in turn &,(K) — tx (see Eq.(6)) and thence [4]
U— %K, in agreement with %( ~ 2 in table 1.

A remarkable property of the data in table 1 is that
co,tx are barely sensitive to large variations of T, i.e.
|6co| < 1073, |6t | < 1075 for 8T, ~ 400K. This can be
understood as follows : taking advantage of Eqs.(2,4,7)

results into
1= 12 kpTe \?
12 \A(T) ’

which, due to fji% ~ 0,A(T.) =~ 1V, T, = 400K, yields
indeed dcyp = co(400K) — ¢o(1K) ~ 1073, in agreement
with the data in table 1. Such a result is significant in two
respects, regarding high-7T, compounds, for which ¢y can

be varied over a wide range :

2Er(0,c)
Eb(K>

e because of j% ~ 0, the one-electron band structure
can be regarded safely as ¢y independent, which en-
hances the usefulness of the above analysis;

o the large doping rate up to ~ 0.2 is likely to give rise
to local fluctuations of ¢y, which, in view of the ut-
most sensitivity of T, with respect to ¢, will result
into a heterogeneous sample, consisting in domains,
displaying T, varying from 0 up to a few hundreds of
K. Thus the observed T, turns out to be the upper
bound of a broad distribution of 7T, values, associ-
ated with superconducting regions, the set of which
makes up a percolation path throughout the sample.
However, if the daunting challenge of making sam-
ples, wherein local ¢y fluctuations would be kept well
below 10™%, could be overcome, this might pave the
way to superconductivity at room temperature.

4-T,. versus inter-electron coupling. — The T, de-
pendence upon U will be analysed with the one-electron
density of states

o0

where 2¢ stands for the one-electron bandwidth. Our pur-
pose is to determine the unknowns tx (Er,T..),U(Er,T.)
with

Er
Er =Ep(T =0,¢0) , ¢o= / p(e)de
0
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Table 1: Solutions co(Te), tx (Te), A(T:) (A(T.) =
Er(0,c0(Te)) — €) of Eqs.(8); tx,A,U are expressed in
eV, whereas the unit for ¢o is the number of conduction
electrons per atomic site.

TC(K) €o 127% A
1 0.10215 6 1.1976 U =3.39
400 0.10225 | 5.9999 | 1.1984
TC(K) Co 197% A
1 0.14897 2 1.5402 U=1.04
400 0.14906 | 1.9999 | 1.5407
TC(K) Co ti A
1 0.19158 4 1.8214 U=22
400 0.19167 | 3.9999 | 1.8219

To that end, Eq.(3) will first be solved for ¢x by replacing
%If: (T, co), g—c"s (0) by their expressions given by Egs.(4,6),
while taking advantage of Eq.(2). Then the obtained ¢
value is fed into Eq.(5) to determine U. The results are
presented in Fig.2.

It can be noticed that there is no solution for c¢q > .75,
because %(Taco) R~ %(EF(O,C())) and g—c“s(()) > Y de-
crease and increase, respectively, with increasing cg, so
that Eq.(3) can no longer be fulfilled eventually. But the
most significant feature is that U is almost insensitive to
large T, variation, except for Fr — 0, i.e. for Ep close
to the Van Hove singularity, located at the bottom of the
one-electron band, which has two consequences :

e ¢y cannot be varied in most superconducting materi-
als, apart from high-T, compounds, so that U is un-
likely to be equal to U(cy), indicated in Fig.2. Con-
versely, since high-T,. compounds allow for wide ¢
variation, ¢g can be tuned so that U = U(cp);

e the only possibility for a non high-7, material to turn
superconducting is then offered at the bottom of the
band, because U becomes large due to %(EF —
0) x E—lF in Eq.(4). Such a conclusion, that super-
conductivity was likely to occur in the vicinity of a
Van Hove singularity in low-7, materials, had already
been drawn [4] independently, based on magnetostric-
tion data.

It will be shown now that the one and two-electron den-
sities of states p(e), px () cannot stem from the same one-
electron band. The proof is by contradiction. As a matter
of fact the one-electron density of states should read in

that case
4 2
- ()
7t t

ple) = —
Hence U > 0 entails, in view of Fig.1 and Eq.(2), that
there is %= = Ep > 0, which implies p'(Er) < 0 in contra-

L5

| —Ef  ——tjt Ut C 01
F K ;
EFL‘: -—O0E & 6U -~ 7N 5EF
\
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oU
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Fig. 2: Plots of Er(T,co),tx(Te,co), U(Te,co) calculated for
T. = 1K and t = 3eV; the unit for ¢o is the number of conduc-
tion electrons per atomic site; § f with f = Ep,tk, U is defined

_ £(300K co)
as 0f = |1 - AR

logarithmic for 0 B, §tk, 0U.

; the scale is linear for Ep,tx,U but

diction with Eq.(3). Accordingly, since the two different
one-electron bands, giving rise to p(€), pxk (), respectively,
display a sizeable overlap, they should in addition belong
to different symmetry classes of the crystal point group,
so that superconductivity cannot be observed if there are
only s-like electrons at E or if the point group reduces to
identity. At last superconductivity is inferred not to oc-
cur in case of an almost full conduction band, because it is
tantamount to Er being located near the upper band-edge
and thence implies p'(Ep(Te,co)) < 0, in contradiction
with Eq.(3). Noteworthy is that all of those hereabove
conclusions had already been drawn empirically [2].

Conclusion. — The critical temperature T, has been
calculated for conduction electrons, coupled via a repul-
sive force, within a model based on conditions, expressed
in Eqgs.(2,3). Superconductivity occurring in conventional
materials has been shown to require Fr(T.) being located
near a Van Hove singularity, whereas a practical route to-
wards still higher T, values has been delineated in high-T,
compounds, provided the local electron concentration can
be controlled accurately. The thermodynamical criterions
in Egs.(2,3) unveil the close interplay between indepen-
dent and bound electrons in giving rise to superconduc-
tivity. At last, it should be noted that Egs.(2,3) could
be applied as well to any second order transition, involv-
ing only conduction electrons, such as ferromagnetism or
antiferromagnetism [18].
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