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Abstract –By taking advantage of a stability criterion established recently, the critical tem-
perature Tc is reckoned with help of the microscopic parameters, characterising the normal and
superconducting electrons, namely the independent-electron band structure and a repulsive two-
electron force. The emphasis is laid on the sharp Tc dependence upon electron concentration and
inter-electron coupling, which might offer a practical route toward higher Tc values and help to
understand why high-Tc compounds exhibit such remarkable properties.

Introduction. – The BCS theory [1], despite its im-1

pressive success, does not enable one to predict [2] super-2

conductivity occurring in any metallic compound. Such a3

drawback ensues from an attractive interaction, assumed4

to couple electrons together, which is not only at logger-5

heads with the sign of the Coulomb repulsion but in ad-6

dition leads to questionable conclusions to be discussed7

below. Therefore this work is intended at investigating8

the Tc dependence upon the parameters, characterising9

the motion of electrons correlated together through a re-10

pulsive force, within the framework of a two-fluid picture11

developed elsewhere [3–5].12

The outline is as follows : the conditions, warranting13

thermal stability in a superconductor, are recalled in sec-14

tion 1, while the parameters, needed to calculate Tc, are15

derived in section 2; the Tc dependences on electron con-16

centration and inter-electron coupling are discussed in sec-17

tion 3, 4, respectively; the main results are summarised in18

the conclusion.19

1-Thermal stability. – The conduction electrons
are taken to comprise [3–5] bound and independent elec-
trons, in respective temperature dependent concentration
cs(T ), cn(T ), such that

c0 = cs(T ) + cn(T ) ,

with c0 being the total concentration of conduction elec-
trons. They are organized, respectively, as a many bound
electron [4] (MBE) state, characterised by its chemical

potential µ(cs), and a Fermi gas [6] of Fermi energy
EF (T, cn). The Helmholz free energy of independent elec-
trons per unit volume Fn and EF on the one hand, and
the eigenenergy per unit volume Es(cs) of bound electrons
and µ on the other hand, are related [6, 7], respectively,
by EF = ∂Fn

∂cn
and µ = ∂Es

∂cs
. Then a stable equilibrium is

conditioned [3] by Gibbs and Duhem’s law

EF (T, cn(T )) = µ(cs(T )) , (1)

which expresses [7] that the total free energy Fn + Es is
minimum provided ∂EF

∂cn
+ ∂µ

∂cs
> 0. Noteworthy is that

∂µ
∂cs

< 0 has been shown to be a prerequisite for persis-
tent currents [3], thermal equilibrium [4], the Josephson
effect [8] and a stable [5] superconducting phase. Like-
wise, Eq.(1) reads [3–5] for T = Tc

EF (Tc, c0) = µ(cs = 0) = εb/2 , (2)

with εb being the energy of a bound electron pair [4]. Note 20

that Eqs.(1,2) are consistent with the superconducting 21

transition being of second order [7], whereas it has been 22

shown [4] to be of first order at T < Tc (⇒ EF (T, c0−cs) > 23

µ(cs)), if the sample is flown through by a finite current. 24

The binding energy [4] of the superconducting state
Eb(T < Tc) has been worked out as

Eb(T ) =
∫ Tc

T

(Cs(u) − Cn(u)) du ,
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with Cs(T ), Cn(T ) being the electronic specific heat of a
superconductor, flown through by a vanishing current [4]
and that of a degenerate Fermi gas [6]. A stable phase (⇒
Eb > 0) requires Cs(Tc) > Cn(Tc), which can be secured
only by fulfilling the following condition [5]

∂EF

∂cn
(Tc, c0) = − ∂µ

∂cs
(0), ρ′(EF (Tc, c0)) > 0 , (3)

with ρ (ϵ) , ϵ being the one-electron density of states and25

energy, respectively, and ρ′ = dρ
dϵ .26

2-Microscopic parameters. – Since the remaining
analysis relies heavily on Eqs.(2,3), explicit expressions
are needed for EF (Tc, c0), ∂EF

∂cn
(Tc, c0), εb, ∂µ

∂cs
(0). Because

the independent electrons make up a degenerate Fermi gas
(⇒ T << EF /kB with kB being Boltzmann’s constant),
applying the Sommerfeld expansion [6] up to T 2 yields

EF (Tc, c0) = EF (0, c0) − ρ′

ρ
(πkBTc)2

6
∂EF

∂cn
(Tc, c0) =

(
ρ + ρ′′ (πkBTc)2

6

)−1 , (4)

with ρ = ρ(EF (0, c0)), ρ′ = dρ
dEF

(EF (0, c0)), ρ′′ =27

d2ρ
dE2

F

(EF (0, c0)). As for εb, ∂µ
∂cs

(0), a truncated Hubbard28

Hamiltonian HK , introduced previously [9–11], will be29

used. The main features of the calculation [4] are sum-30

marised below for self-containedness.31

The independent electron motion is described by the
Hamiltonian Hd

Hd =
∑
k,σ

ϵ(k)c+
k,σck,σ .

ϵ(k), k are the one-electron energy (ϵ(k) = ϵ(−k)) and a
vector of the Brillouin zone, respectively, σ = ± is the
electron spin and the sum over k is to be carried out over
the whole Brillouin zone. Then c+

k,σ, ck,σ are creation and
annihilation operators on the Bloch state |k, σ⟩

|k, σ⟩ = c+
k,σ |0⟩ , |0⟩ = ck,σ |k, σ⟩ ,

with |0⟩ being the no electron state. The Hamiltonian HK

reads then

HK = Hd + U

N

∑
k,k′

c+
k,+c+

K−k,−cK−k′,−ck′,+ ,

with N >> 1, U > 0 being the number of atomic sites,32

making up the three-dimensional crystal, and the Hubbard33

constant, respectively. Note that the Hamiltonian used by34

Cooper [12] is identical to HK=0, but with U < 0.35

HK sustains [4] a single bound pair eigenstate, the en-
ergy εb(K) of which is obtained by solving

1
U

= 1
N

∑
k

1
εb(K) − ε(K, k)

=
∫ tK

−tK

ρK(ε)
εb(K) − ε

dε. (5)

±tK are the upper and lower bounds of the two-electron
band, i.e. the maximum and minimum of the two-electron

energy ε(K, k) = ϵ(k)+ϵ(K −k) over k with K kept fixed,
whereas ρK(ε) is the corresponding two-electron density of
states, taken equal to

ρK(ε) = 2
πtK

√
1 −

(
ε

tK

)2

, −tK ≤ ε ≤ tK .

The dispersion curves εb(K) are plotted in Fig.1. 36

Though Eq.(5) is identical to the equation yielding the 37

Cooper pair energy [12], their respective properties are 38

quite different : 39

• the data in Fig.1 have been calculated with U > 0,
rather than U < 0 favoured by Cooper [12] and BCS
[1], because, due to the inequality [4] U ∂µ

∂cs
< 0, choos-

ing U < 0 entails ∂µ
∂cs

> 0, which has been shown
not to be consistent with persistent currents [3], ther-
mal equilibrium [4], the Josephson effect [8] and oc-
curence [5] of superconductivity. As a further conse-
quence of U > 0, εb(K) shows up in the upper gap
of the two-electron band structure (⇒ εb(K) > tK)
rather than in the lower gap (⇒ εb(K = 0) < −tK) in
case of the Cooper pair [12]. Nevertheless the bound
pair is thermodynamically stable, because every one-
electron state of energy ϵ(k) ≤ EF (Tc, c0) is occupied
for a degenerate Fermi gas [6], so that, due to Pauli’s
principle, a bound electron pair of energy εb(K) =
2EF (Tc, c0), according to Eq.(2), cannot decay into
two one-electron states ϵ(k) ≤ EF , ϵ(K − k) ≤ EF

such that

ϵ(k) + ϵ(K − k) ≤ εb(K) ;

• a remarkable feature in Fig.1 is that εb(K) → tK 40

for U → tK/2, so that there is no bound pair for 41

U < tK/2 (accordingly, the dashed curve is no longer 42

defined in Fig.1 for Ka
π < .13), in marked contrast 43

with the opposite conclusion drawn by Cooper [12], 44

that there is a Cooper pair, even for U → 0. This 45

discrepancy results from the three-dimensional Van 46

Hove singularities, showing up at both two-electron 47

band edges ρK (ε → ±tK) ∝
√

tK − |ε|, unlike the 48

two-electron density of states, used by Cooper [12] 49

which is constant and thence displays no such singu- 50

larity. Likewise the width of Cooper’s two-electron 51

band is equal to a Debye phonon energy 2tK=0 = 52

ωD ≈ 30meV << EF ≈ 3eV . Hence the result- 53

ing small concentration of superconducting electrons, 54
cs(T =0)

c0
≈ ωD

EF
≈ .01, entails that London’s length 55

should be at least 10 times larger than observed val- 56

ues [13–16]; 57

• at last Cooper’s assumption U < 0 implies εb/2 < 58

EF (Tc), which is typical of a first order transition but 59

runs afoul at all measurements, proving conversely 60

the superconducting transition to be of second order 61

(⇒ εb/2 = EF (Tc) in accordance with Eq.(2)). 62
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Fig. 1: Dispersion curves of tK as a dashed-dotted line, and of
εb(K) as solid, dotted and dashed lines, associated with various
U values, respectively; those data have been obtained with
tK = t cos (Ka/2), where t, a are the one-electron bandwidth
and the lattice parameter, respectively.

The bound pair of energy εb(K) turns [4], at finite con-63

centration cs, into a MBE state, characterised by µ(cs).64

Its properties have been calculated thanks to a variational65

procedure, displaying several merits with respect to that66

used by BCS [1] :67

• it shows that µ(0) = εb/2;68

• the energy of the MBE state has been shown to be69

exact for |U | → ∞;70

• an analytical expression has been worked out for
∂µ
∂cs

(K, cs = 0) as :

∂µ

∂cs
(K, cs = 0) = −

∫ tK

−tK

ρK(ε)
(εb(K)−ε)3 dε

2
(∫ tK

−tK

ρK (ε)
(εb(K)−ε)2 dε

)2 . (6)

Note that εb(K) → tK ⇒
∣∣∣ ∂µ

∂cs
(K, cs = 0)

∣∣∣ → ∞.71

3-Tc versus electron concentration. – The Tc de-
pendence on c0 will be discussed by assigning to the one-
electron density of states the expression valid for free elec-
trons

ρ(ϵ) = η
√

ϵ − ϵb ⇒ c0 = 2
3

η (EF (0, c0) − ϵb)
3
2 , (7)

with η =
√

2m
3
2 V

π2~3 , whereas ϵb, m, V = 17Å3 stand for the
bottom of the conduction band, electron mass and vol-
ume of the unit-cell, respectively. With help of Eq.(4),
Eqs.(2,3) can be recast into a system of two equations

EF (0, c0) − ρ′

ρ
(πkBTc)2

6 − εb(K)
2 = 0(

ρ + ρ′′ (πkBTc)2

6

)−1
+ ∂µ

∂cs
(K, cs = 0) = 0

, (8)

to be solved for the two unknowns c0(Tc), tK(Tc) with Tc 72

being dealt with as a disposable parameter. 73

To that end, starting values are assigned to U, tK , 74

which gives access to εb(K), ∂µ
∂cs

(K, cs = 0)) and thence 75

to EF (0, c0) , ϵb and finally to c0, owing to Eqs.(2,3,7). 76

Those values of c0, tK are then fed into Eqs.(8) to launch 77

a Newton procedure, yielding the solutions c0(Tc), tK(Tc). 78

The results are presented in table 1. Since we intend to 79

apply this analysis to high-Tc compounds [17], we have 80

focused upon low concentrations c0 < 0.2, which entails, 81

in view of Eqs.(4,7), that
∣∣∣ ∂µ

∂cs

∣∣∣ takes a high value. This 82

requires in turn εb(K) → tK (see Eq.(6)) and thence [4] 83

U → tK

2 , in agreement with tK

U ≈ 2 in table 1. 84

A remarkable property of the data in table 1 is that
c0, tK are barely sensitive to large variations of Tc, i.e.
|δc0| < 10−3, |δtK | < 10−5 for δTc ≈ 400K. This can be
understood as follows : taking advantage of Eqs.(2,4,7)
results into

2EF (0, c0)
εb(K)

− 1 = π2

12

(
kBTc

∆(Tc)

)2

,

which, due to dtK

dTc
≈ 0, ∆(Tc) ≈ 1eV, Tc = 400K, yields 85

indeed δc0 = c0(400K) − c0(1K) ≈ 10−3, in agreement 86

with the data in table 1. Such a result is significant in two 87

respects, regarding high-Tc compounds, for which c0 can 88

be varied over a wide range : 89

• because of dc0
dTc

≈ 0, the one-electron band structure 90

can be regarded safely as c0 independent, which en- 91

hances the usefulness of the above analysis; 92

• the large doping rate up to ≈ 0.2 is likely to give rise 93

to local fluctuations of c0, which, in view of the ut- 94

most sensitivity of Tc with respect to c0, will result 95

into a heterogeneous sample, consisting in domains, 96

displaying Tc varying from 0 up to a few hundreds of 97

K. Thus the observed Tc turns out to be the upper 98

bound of a broad distribution of Tc values, associ- 99

ated with superconducting regions, the set of which 100

makes up a percolation path throughout the sample. 101

However, if the daunting challenge of making sam- 102

ples, wherein local c0 fluctuations would be kept well 103

below 10−4, could be overcome, this might pave the 104

way to superconductivity at room temperature. 105

4-Tc versus inter-electron coupling. – The Tc de-
pendence upon U will be analysed with the one-electron
density of states

ρ(ϵ) = 4
πt

√
1 −

(
1 − ϵ

t

)2
,

where 2t stands for the one-electron bandwidth. Our pur-
pose is to determine the unknowns tK(EF , Tc), U(EF , Tc)
with

EF = EF (T = 0, c0) , c0 =
∫ EF

0
ρ(ϵ)dϵ .
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Table 1: Solutions c0(Tc), tK(Tc), ∆(Tc) (∆(Tc) =
EF (0, c0(Tc)) − ϵb) of Eqs.(8); tK , ∆, U are expressed in
eV , whereas the unit for c0 is the number of conduction
electrons per atomic site.

Tc(K) c0 tK ∆
1 0.10215 6 1.1976

400 0.10225 5.9999 1.1984
U = 3.39

Tc(K) c0 tK ∆
1 0.14897 2 1.5402

400 0.14906 1.9999 1.5407
U = 1.04

Tc(K) c0 tK ∆
1 0.19158 4 1.8214

400 0.19167 3.9999 1.8219
U = 2.2

To that end, Eq.(3) will first be solved for tK by replacing106
∂EF

∂cn
(Tc, c0), ∂µ

∂cs
(0) by their expressions given by Eqs.(4,6),107

while taking advantage of Eq.(2). Then the obtained tK108

value is fed into Eq.(5) to determine U . The results are109

presented in Fig.2.110

It can be noticed that there is no solution for c0 > .75,111

because ∂EF

∂cn
(Tc, c0) ≈ 1

ρ (EF (0, c0)) and ∂µ
∂cs

(0) > U
2 de-112

crease and increase, respectively, with increasing c0, so113

that Eq.(3) can no longer be fulfilled eventually. But the114

most significant feature is that δU is almost insensitive to115

large Tc variation, except for EF → 0, i.e. for EF close116

to the Van Hove singularity, located at the bottom of the117

one-electron band, which has two consequences :118

• c0 cannot be varied in most superconducting materi-119

als, apart from high-Tc compounds, so that U is un-120

likely to be equal to U(c0), indicated in Fig.2. Con-121

versely, since high-Tc compounds allow for wide c0122

variation, c0 can be tuned so that U = U(c0);123

• the only possibility for a non high-Tc material to turn124

superconducting is then offered at the bottom of the125

band, because δU becomes large due to ρ′

ρ (EF →126

0) ∝ 1
EF

in Eq.(4). Such a conclusion, that super-127

conductivity was likely to occur in the vicinity of a128

Van Hove singularity in low-Tc materials, had already129

been drawn [4] independently, based on magnetostric-130

tion data.131

It will be shown now that the one and two-electron den-
sities of states ρ(ϵ), ρK(ε) cannot stem from the same one-
electron band. The proof is by contradiction. As a matter
of fact the one-electron density of states should read in
that case

ρ(ϵ) = 4
πt

√
1 −

(ϵ

t

)2
.

Hence U > 0 entails, in view of Fig.1 and Eq.(2), that132

there is εb

2 = EF > 0, which implies ρ′(EF ) < 0 in contra-133

Fig. 2: Plots of EF (Tc, c0), tK(Tc, c0), U(Tc, c0) calculated for
Tc = 1K and t = 3eV ; the unit for c0 is the number of conduc-
tion electrons per atomic site; δf with f = EF , tK , U is defined
as δf =

∣∣∣1 − f(300K,c0)
f(1K,c0)

∣∣∣; the scale is linear for EF , tK , U but
logarithmic for δEF , δtK , δU .

diction with Eq.(3). Accordingly, since the two different 134

one-electron bands, giving rise to ρ(ϵ), ρK(ε), respectively, 135

display a sizeable overlap, they should in addition belong 136

to different symmetry classes of the crystal point group, 137

so that superconductivity cannot be observed if there are 138

only s-like electrons at EF or if the point group reduces to 139

identity. At last superconductivity is inferred not to oc- 140

cur in case of an almost full conduction band, because it is 141

tantamount to EF being located near the upper band-edge 142

and thence implies ρ′(EF (Tc, c0)) < 0, in contradiction 143

with Eq.(3). Noteworthy is that all of those hereabove 144

conclusions had already been drawn empirically [2]. 145

Conclusion. – The critical temperature Tc has been 146

calculated for conduction electrons, coupled via a repul- 147

sive force, within a model based on conditions, expressed 148

in Eqs.(2,3). Superconductivity occurring in conventional 149

materials has been shown to require EF (Tc) being located 150

near a Van Hove singularity, whereas a practical route to- 151

wards still higher Tc values has been delineated in high-Tc 152

compounds, provided the local electron concentration can 153

be controlled accurately. The thermodynamical criterions 154

in Eqs.(2,3) unveil the close interplay between indepen- 155

dent and bound electrons in giving rise to superconduc- 156

tivity. At last, it should be noted that Eqs.(2,3) could 157

be applied as well to any second order transition, involv- 158

ing only conduction electrons, such as ferromagnetism or 159

antiferromagnetism [18]. 160
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