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Abstract: Video super-resolution, which utilizes the relevant information of several low-resolution 

frames to generate high-resolution images, is a challenging task. One possible solution called sliding 

window method tries to divide the generation of high-resolution video sequences into independent 

sub-tasks, and only adjacent low-resolution images are used to estimate the high-resolution version 

of the central low-resolution image. Another popular method named recurrent algorithm proposes 

to utilize not only the low-resolution images but also the generated high-resolution images of 

previous frames to generate the high-resolution image. However, both methods have some 

unavoidable disadvantages. The former one usually leads to bad temporal consistency and requires 

higher computational cost while the latter method always can not make full use of information 

contained by optical flow or any other calculated features. Thus more investigations need to be done 

to explore the balance between these two methods. In this work, a bidirectional frame recurrent 

video super-resolution method is proposed. To be specific, a reverse training is proposed that the 

generated high-resolution frame is also utilized to help estimate the high-resolution version of the 

former frame. With the contribution of reverse training and the forward training, the idea of 

bidirectional recurrent method not only guarantees the temporal consistency but also make full use 

of the adjacent information due to the bidirectional training operation while the computational cost 

is acceptable. Experimental results demonstrate that the bidirectional super-resolution framework 

gives remarkable performance that it solves the time-related problems when the generated high-

resolution image is impressive compared with recurrent-based video super-resolution method. 
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1. Introduction 

Video super resolution, which solves the problem of reconstructing high-resolution images from 

low-resolution images, is a classic problem in image processing. It is widely used in security, 

entertainment, video transmission and other fields. Compared with single image super-resolution, 

video super-resolution can use more information to output better high-resolution images, such as 

feature information of adjacent frames. However, the reconstruction of video super resolution images 

is generally difficult because of various issues, such as occlusion, adjacent frame information 

utilization and computational cost.  

With the rise of deep learning, video super-resolution has received significant attention from the 

research community over the past few years. Sliding window method and recurrent method are two 

latest state-of-the-art methods based on deep learning. Specifically, Sliding Window Video Super-

Resolution (SWVSR) solves this problem by combining a batch of low-resolution images to 

reconstruct a single high-resolution frame, and divides the video super-resolution task into multiple 

independent super-resolution subtasks [1]. Each input frame will be processed several times, which 

will cause waste of calculations. In addition, the generation process is an independent sub-task, which 

may reduce time consistency, resulting in flickering and artifacts. Unlike SWVSR, Recurrent Video 
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Super-Resolution (RVSR) generates the current high-resolution image from the previous high-

resolution image, the previous low-resolution image and the current low-resolution image [2, 3]. Each 

input frame will be processed one time. RVSR has the ability to process video sequences of any length, 

and enables the details of the video to be implicitly transmitted in longer video sequences. Insufficient 

use of information caused by RVSR leads to correlation between image quality and time (Show in 

Fig.1).  

 

Figure 1. Picture from FRVSR [3]. FRVSR is state-of-the-art method of RVSR. RVSR can handle video 

sequences of any length, but there are some problems. As shown in the figure, the RVSR method has 

a problem that is correlation between image quality and time. 

In our work, we propose an end-to-end trainable Bidirectional Frame Recurrent Video Super-

Resolution (BFRVSR) framework to address the above issues. We adopt the forward training and the 

reverse training to solve the problem of insufficient utilization of information and preserve temporal 

consistency shown in Fig.2. BFRVSR has several benefits, which gains the balance between RVSR and 

SWVSR. Each input frame needs to be processed no more than twice while each output frame makes 

full use of the information contained by optical flow or any other calculated features. In addition, 

passing the previous high-resolution estimate directly to the other step helps the model to recreate 

fine details and produce temporally consistent videos. 

Our contribution is mainly reflected in the following: a.) Propose a Bidirectional Frame 

Recurrent Video Super-Resolution framework. b.) An end-to-end video super-resolution model 

based on Bidirectional Frame Recurrent Video Super-Resolution framework is proposed, and no pre-

training step is required. c.) Address the correlation between image quality and time and preserve 

temporal consistency. 

2. Releted Work 

Image Super-Resolution (ISR) is a classic ill-posed problem. The methods are divided into 

interpolation methods, such as nearest, bilinear, bicubic, and dictionary learning [4, 5], example-based 

methods [6, 7, 8, 9, 10], and self-similarity approaches [11-14]. We refer the reader to three review 

documents [15-17] for extensive overviews of prior art up to recent years. 

The recent progress in deep learning, especially in convolutional neural networks, has shaken up 

the field of ISR. Single Image Super-Resolution (SISR) and Video Super-Resolution are two categories 

based on ISR. 

SISR uses a single low-resolution image to estimate a high-resolution image. Dong et al. [18] 

introduced deep learning into the field of super-resolution. They imitated the classic super-resolution 

solution method and proposed three steps of feature extraction, feature fusion, and feature 

reconstruction to complete SISR. Then, K. Zhang et al. [19] reached state-of-the-art results with deep 

CNN networks. A large number of excellent results have emerged [20-24]. Parallel efforts have studied 

the loss function [25-27]. 
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Video super-resolution combine information from multiple LR frames to reconstruct a single high-

resolution frame. Sliding window method and recurrent method are two latest state-of-the-art 

methods. 

Sliding window method divide the video super-resolution task into multiple independent 

subtasks, and each subtask generates a single high-resolution output frame from multiple low-

resolution input frames [1, 28-30]. The input is adjacent 2N+1 frames of low-resolution images like 

{𝐼𝑡−𝑁
𝐿𝑅 ，𝐼𝑡−𝑁+1

𝐿𝑅 … , 𝐼𝑡
𝐿𝑅 , … 𝐼𝑡+𝑁−1

𝐿𝑅 , 𝐼𝑡+𝑁
𝐿𝑅 } . Then, an alignment module is used to align {𝐼𝑡−𝑁

𝐿𝑅 ，

𝐼𝑡−𝑁+1
𝐿𝑅 … 𝐼𝑡+𝑁−1

𝐿𝑅 , 𝐼𝑡+𝑁
𝐿𝑅 } with the 𝐼𝑡

𝐿𝑅. Finally, 𝐼𝑡
𝐻𝑅 is estimated through the aligned 2N+1 low-resolution 

frames. Drulea and Nedevschi et al. [23] used optical flow method to align 𝐼𝑡−1
𝐿𝑅  and 𝐼𝑡+1

𝐿𝑅  with 𝐼𝑡
𝐿𝑅  and 

use them to estimate 𝐼𝑡
𝐻𝑅. 

Recurrent method generates a high-resolution image from the previous high-resolution image, 

the previous low-resolution image and the low-resolution image. Huang et al. [31] used a bidirectional 

recurrent architecture, but did not use any explicit motion compensation in their model. Recurrent 

structures are also used for other tasks, such as blurring [32] and stylization[33, 34] of videos. Kim et al. 

[32] and Chen et al. [33] passed the feature representation to the next step, and Gupta et al. [34] passed 

the previous output frame to the next step, generating time-consistent stylizations in parallel work 

video. Sajjadi et al. [3] proposed a recursive algorithm for video super-resolution. The FRVSR [3] 

network estimates the optical flow 𝐹𝑡→𝑡−1
𝐿𝑅  of 𝐼𝑡−1

𝐿𝑅  and 𝐼𝑡
𝐿𝑅, and uses 𝐼𝑡−1

𝐻𝑅  and 𝐹𝑡→𝑡−1
𝐿𝑅  to generate 𝐼𝑡

𝐻𝑅. 

Finally, sends 𝐼𝑡
𝐻𝑅 and 𝐼𝑡

𝐿𝑅 to the network for reconstruction to obtain 𝐼𝑡
𝐻𝑅. However, insufficient use 

of information caused by FRVSR leads to correlation between image quality and time. 

3. Methods 

The framework of BFRVSR is shown in the Fig.2. All network modules can be replaced. For 

example, the optical flow module can use existing methods that have been pre-trained instead of 

training and building the network from scratch. You can also consider using a deformable 

convolution module [35] to replace the optical flow module. 

After presenting an overview of the BFRVSR framework in Sec. 3.1 and defining the loss 

functions used for training in Sec. 3.2, we justify our design choices in Sec. 3.3. 

 

Figure 2. Overview of the proposed BFRVSR framework. BFRVSR not only performs the forward 

operation of the RVSR, but also re-estimates {  𝐻𝑅𝑡=1
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ，  𝐻𝑅𝑡=2

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ……  𝐻𝑅𝑡=𝑁−2
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ，

 𝐻𝑅𝑡=𝑁−1
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 } through the generated  𝐻𝑅𝑡=𝑁

𝑓𝑜𝑟𝑤𝑎𝑟𝑑
. BFRVSR ensures that the generation of all High 

resolution image frames depends on global information, rather than local information. 

3.1. BFRVSR 

The proposed model is shown in Fig.3. Trainable modules include optical flow estimation 

network FlowNet and super-resolution network SuperNet. The input of our model is the low-

resolution image of the current frame 𝐼𝑡
𝐿𝑅, the low-resolution image of the previous frame 𝐼𝑡−1

𝐿𝑅 , and 
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the high-resolution image estimation of the previous frame 𝐼𝑡−1
𝐻𝑅 .The output of our model is the high-

resolution image estimation of the previous frame 𝐼𝑡
𝐻𝑅. 

 

Figure 3. Overview of training network framework(Left). Trainable modules include FlowNet and 

SuperNet. Up-sampling uses bilinear interpolation. Loss function used during training(right). 

Flow estimation：The network structure of FlowNet [3] is shown in the Fig.4. Firstly, the 

network uses the optical flow estimation module to estimate the low-resolution image of the previous 

frame 𝐼𝑡−1
𝐿𝑅  and the low-resolution image of the current frame 𝐼𝑡

𝐿𝑅  to obtain a low-resolution motion 

vector diagram 𝐹𝑡→𝑡−1
𝐿𝑅 . 

𝐹𝑡→𝑡−1
𝐿𝑅 =  𝐹𝑙𝑜𝑤𝑁𝑒𝑡(𝐼𝑡−1

𝐿𝑅  ⊕  𝐼𝑡
𝐿𝑅) ∈ [−1,1]𝐻×𝑊×2 (1) 

𝐹𝑡→𝑡−1
𝐿𝑅  shows the position information from the current image to the previous frame. 

 

Figure 4. Overview of FlowNet. 2x represents the linear superposition of two identical modules. The 

input is {  𝐼𝑡−1
𝐿𝑅  ,  𝐼𝑡

𝐿𝑅 }, and the output is 𝐹𝑡→𝑡−1
𝐿𝑅  through FlowNet module.  𝐹𝑡→𝑡−1

𝐿𝑅  represents the x 

displacement vector and y displacement vector between 𝐼𝑡
𝐿𝑅 and 𝐼𝑡−1

𝐿𝑅 . 

Upscaling flow: In this step, we process the low-resolution optical flow map that has been 

obtained, and we use bilinear interpolation with scaling factor s to up-sampling to obtain the high-

resolution optical flow map. 

𝐹𝑡→𝑡−1
𝐻𝑅 =  𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐹𝑡→𝑡−1

𝐿𝑅 ) ∈ [−1,1]𝑠𝐻×𝑠𝑊×2 (2) 

Warping HR image: Use the obtained high-resolution optical flow diagram and the high-

resolution image of the previous frame to estimate the high-resolution image of the current frame. 

𝐼𝑡
𝐻𝑅 = 𝑊𝑎𝑟𝑝(𝐼𝑡−1

𝐻𝑅 , 𝐹𝑡→𝑡−1
𝐻𝑅 ) (3) 

We implemented warping as a differentiable function using bilinear interpolation similar to 

Jaderberg et al. [36]. 

Mapping to LR space: We map high-dimensional spatial information to low-dimensional depth 

information using the space-to-depth transformation. 
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𝐻𝑡
𝑑𝑒𝑝𝑡ℎ

= 𝐷𝑀(𝐼𝑡
𝐻𝑅) (4) 

Our method of mapping to low-dimensional space is similar to the method in FRVSR [3]. The 

Mapping to LR space operation process is shown in the Fig.5. 

 

Figure 5. Space-to-Depth module. Compress the spatial information of high-resolution images into 

low-resolution image depth information. 

Super-Resolution: In this step, the low-dimensional depth map of the high-resolution image of 

the current frame 𝐻𝑡
𝑑𝑒𝑝𝑡ℎ  and the low-resolution image of the current frame  𝐼𝑡

𝐿𝑅  are sent to the 

SuperNet to obtain the final high-resolution frame. The network structure of SuperNet is shown in 

the Fig.6. 

 𝐼𝑡
𝐻𝑅 = 𝑆𝑢𝑝𝑒𝑟𝑁𝑒𝑡(𝐻𝑡

𝑑𝑒𝑝𝑡ℎ
 ⊕  𝐼𝑡

𝐿𝑅) (5) 

 

Figure 6. Overview of SuperNet. SuperNet uses the RESNET framework and Pixel Shuffle 

upsampling operation. SuperNet is an open framework and can be replaced by other networks. 

Summary: The overall process of the network is as follows: 

𝐼𝑡
𝐻𝑅 = 𝑆𝑢𝑝𝑒𝑟𝑁𝑒𝑡(𝐷𝑀(𝑊𝑎𝑟𝑝(𝐼𝑡−1

𝐻𝑅 , 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐹𝑙𝑜𝑤𝑁𝑒𝑡(𝐼𝑡−1
𝐿𝑅 ⊕ 𝐼𝑡

𝐿𝑅)))⊕ 𝐼𝑡
𝐿𝑅)          (6) 

3.2. Loss functions 

In our network architecture, the optical flow estimation module and the super-resolution 

module are trainable, so in the training process, two loss functions are used to optimize the results.  

The first loss function is the error between the high-resolution image generated by the super-

resolution module and the real image label I𝑡
𝑙𝑎𝑏𝑙𝑒. 

𝐿1 = ||𝐼𝑡
𝐻𝑅 − I𝑡

𝑙𝑎𝑏𝑒𝑙||2
2 (7) 

Because the data set does not have the ground truth of optical flow, we use a method similar to 

the FRVSR [3] to calculate the spatial mean square error on the curved LR input frame to optimize 

the optical flow estimation module as the second loss function. 

𝐿2 = ||𝑊𝑎𝑟𝑝(𝐼𝑡−1
𝐿𝑅 , 𝐹𝑡→𝑡−1

𝐿𝑅 ) − I𝑡
𝐿𝑅||2

2 (8) 

The Loss function of training final backpropagation is 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿1 + 𝐿2. 

3.3. Justifications 
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The motivation for proposing the BFRVSR framework is as follows： 

a.) The super-resolution network using the sliding window method has high computational 

cost. Each frame of image needs to be calculated 2N+1 times (window size 2N + 1). We use the 

bidirectional frame recurrent to process each frame at most twice.  

b.) Direct access to the output of the previous frame can help the network generate a temporally 

consistent estimate for the next frame or previous frame. In the recurrent network, insufficient use of 

information leads to correlation between image quality and time. Through bidirectional network 

operation, each frame of image has all frames information in the window. 

4. Experiment 

4.1. Training Datasets and Details 

Training datasets. Vimeo-90k [37] is our training and testing data set. We abbreviate the Vimeo-

90k test data set as Vimeo-90k-T and the Vimeo-90k train data set as Vimeo-90k-TD. Vimeo-90k data 

set contains 91701 7-frames continuous image sequences, and is divided into Vimeo-90k-TD and 

Vimeo-90k-T. In the training data set, we randomly crop the original 448×256 image into a 256×256 

real label image. In order to generate LR images, we perform Gaussian blur and down-sampling 

processing on the real label image, and use a Gaussian blur with standard deviation σ = 2.0. 

Training details. Our network is end-to-end trainable, and there are no modules that need to be 

pre-trained. The Xavier method is used for initialization. We train 600 epochs and the batch size is 4, 

the optimizer uses Adam optimizer, and the initial learning rate is 10−4, which is reduced by 0.1 

times every 100 epochs. In a batch, each sample is 7 consecutive images. We conduct video super-

resolution experiments at 4x factor. 

In order to obtain the first high-resolution image 𝐼1
𝐻𝑅 , two methods can be used. In the first 

method, we set 𝐼0
𝐻𝑅  to a completely black image. This can force the network to learn detailed 

information from low-resolution images. In the second method, we upsample 𝐼1
𝐿𝑅 to 𝐼1

𝐻𝑅 through 

the bicubic interpolation method, and estimate 𝐼2
𝐻𝑅  from {𝐼2

𝐿𝑅 , 𝐼1
𝐿𝑅 , 𝐼1

𝐻𝑅}.In order to compare with the 

RVSR method, we used the first method for experimentation. 

4.2. baselines 

For a fair evaluation of the proposed framework on equal ground, we compare our model with 

three baselines that use the same optical flow and super-resolution networks. 

SISR：Only a single low-resolution image is used to estimate a high-resolution image without 

relying on timing information. The input is 𝐼𝑡
𝐿𝑅 and the output is 𝐼𝑡

𝐻𝑅. 

VSR：Through{𝐼𝑡−1
𝐻𝑅  , 𝐼𝑡−1

𝐿𝑅  , 𝐼𝑡
𝐿𝑅}, without the optical flow network estimation, relying on the 

learning space deformation ability of the convolution operation itself to obtain 𝐼𝑡
𝐻𝑅. 

RVSR：Through {𝐼𝑡−1
𝐻𝑅  , 𝐼𝑡−1

𝐿𝑅  , 𝐼𝑡
𝐿𝑅}, with the optical flow network estimation, and then sent to 

SuperNet to obtain 𝐼𝑡
𝐻𝑅. The operation process is the same as the forward propagation in the BFRVSR 

network. 

We ensure that the network model is consistent during the evaluation. The key parameters of 

the training parameters are the same. The initialization uses Xavier initialization, and the accelerator 

uses Adam optimizer. The initial learning rate is 10e-4, which is reduced to 0.1 times every 100 

rounds. All networks are trained with the same training set, and the coefficient of Gaussian blur is 

2.0. 

4.3. Analysis 

We train baselines and BFRVSR to convergence under the same parameter conditions. We 

compare and test the pre-trained model on the Vimeo-90K-T. Table 1 shows the comparison image 

PSNR results of baselines and BFRVSR. Compared with baselines, our proposed framework has the 

best effect in continuous 7-frames video sequences, and it is 0.39dB higher than the RVSR method. 

PSNR of BICUBIC and SISR is only related to current low-resolution images, and no correlation 

between high-resolution images. PSNR of VSR and RVSR has correlation between image quality and 
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time. Because of motion compensation by optical flow network, RVSR performance is better than 

VSR. 

Table 1. The PNSR index of the image generated by the five methods of BFRVSR, RVSR, VSR, SISR, 

and BICUBIC are compared. As can be seen in the figure, BFRVSR is an upgrade of RVSR, which not 

only has the best effect, but also overcomes the shortcomings of RVSR's unidirectional gain. 

 Frame1 Frame2 Frame3 Frame4 Frame5 Frame6 Frame7 Average 

BICUBIC 29.3057 27.3187 29.3173 29.3120 27.3087 27.3051 27.2900 27.3082 

SISR 28.5332 28.5633 28.5240 28.5468 28.5523 28.5447 28.5593 28.5462 

VSR 28.7632 29.4320 29.8012 29.8122 29.8310 29.9001 29.9212 29.6373 

RVSR 29.0803 29.8807 30.1547 30.2898 30.3553 30.3980 30.3991 30.0797 

BFRVSR(ours) 30.4772 30.4836 30.4833 30.4739 30.4670 30.4547 30.4145 30.4649 

 

BFRVSR will perform a forward estimation and a reverse estimation. BRVSR is equivalent to an 

RVSR network in forward estimation. It transmits global detail information by using 𝐼𝑡−1
𝐻𝑅  and 

performs timing alignment operations. However, there are some problems, that is, the details of 𝐼𝑗
𝐿𝑅 

cannot be obtained for 𝐼𝑖
𝐿𝑅  to optimize the image (i > j). Reverse estimation solves this problem. 

Reverse estimation makes each frame implicitly use all the information to estimate the high-

resolution image of the frame. Use the {𝐼𝑡
𝐻𝑅, 𝐼𝑡−1

𝐿𝑅 , 𝐼𝑡
𝐿𝑅} to generate 𝐼𝑡−1

𝐻𝑅 . 

RVSR can be trained on video clips of any length. However, if the video clip is too long, RVSR 

will have a problem that is correlation between image quality and time. In fact, RVSR also has the 

problem on shorter video clips. BFRVSR solves this problem as shown in Fig.7.  

The video super-resolution based on the sliding window method processes each frame 2N+1 

times, the video super-resolution based on the recurrent method processes each frame once, and the 

BFRVSR processes each frame at most 2 times. 

On the RTX-2080Ti, the time for a single image Full HD frame for 4x super-resolution is 291 ms. 

 

Figure 7. We show the quality of each frame in the forward propagation of BFRVSR and the quality 

of each frame in the reverse propagation. We show the quality of each frame in the forward 

propagation of BFRVSR and the quality of each frame in the reverse propagation. We found that 

global information is implicitly used in backpropagation to generate high-resolution images. 

5. Conclusions 

We propose an end-to-end trainable bidirectional frame recurrent video super-resolution 

method. Due to the operation of bidirectional training, with more information utilized to feed the 

model to deal with the correlation between image quality and time, BFRVSR successfully solves the 

problem happened in Fig.1, to be specific, it decouples the correlation between image quality and 

time. In addition, the proposed method achieves better image quality while the computational cost 
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is lower than sliding window method. Nevertheless, there is still room for improvement in the field 

of video super-resolution. On the one hand, if the problem of occlusion and blur is considered, much 

more computational cost would be required. We may deal with the problem by adding cross 

connections. On the other hand, a deformable convolution module, which has been frequently 

investigated recently, shows enormous potential in the field of image classification, semantic 

segmentation, etc. Thus it may achieve better results if we replace the optical flow module with 

deformable convolution module. Furthermore, it is believed that video super-resolution and frame 

insertion have considerable similarities thus we may try to utilize BFRVSR to perform these two tasks 

simultaneously. 
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