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Abstract: Video super-resolution, which utilizes the relevant information of several low-resolution
frames to generate high-resolution images, is a challenging task. One possible solution called sliding
window method tries to divide the generation of high-resolution video sequences into independent
sub-tasks, and only adjacent low-resolution images are used to estimate the high-resolution version
of the central low-resolution image. Another popular method named recurrent algorithm proposes
to utilize not only the low-resolution images but also the generated high-resolution images of
previous frames to generate the high-resolution image. However, both methods have some
unavoidable disadvantages. The former one usually leads to bad temporal consistency and requires
higher computational cost while the latter method always can not make full use of information
contained by optical flow or any other calculated features. Thus more investigations need to be done
to explore the balance between these two methods. In this work, a bidirectional frame recurrent
video super-resolution method is proposed. To be specific, a reverse training is proposed that the
generated high-resolution frame is also utilized to help estimate the high-resolution version of the
former frame. With the contribution of reverse training and the forward training, the idea of
bidirectional recurrent method not only guarantees the temporal consistency but also make full use
of the adjacent information due to the bidirectional training operation while the computational cost
is acceptable. Experimental results demonstrate that the bidirectional super-resolution framework
gives remarkable performance that it solves the time-related problems when the generated high-
resolution image is impressive compared with recurrent-based video super-resolution method.
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1. Introduction

Video super resolution, which solves the problem of reconstructing high-resolution images from
low-resolution images, is a classic problem in image processing. It is widely used in security,
entertainment, video transmission and other fields. Compared with single image super-resolution,
video super-resolution can use more information to output better high-resolution images, such as
feature information of adjacent frames. However, the reconstruction of video super resolution images
is generally difficult because of various issues, such as occlusion, adjacent frame information
utilization and computational cost.

With the rise of deep learning, video super-resolution has received significant attention from the
research community over the past few years. Sliding window method and recurrent method are two
latest state-of-the-art methods based on deep learning. Specifically, Sliding Window Video Super-
Resolution (SWVSR) solves this problem by combining a batch of low-resolution images to
reconstruct a single high-resolution frame, and divides the video super-resolution task into multiple
independent super-resolution subtasks [1]. Each input frame will be processed several times, which
will cause waste of calculations. In addition, the generation process is an independent sub-task, which
may reduce time consistency, resulting in flickering and artifacts. Unlike SWVSR, Recurrent Video

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202011.0649.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 d0i:10.20944/preprints202011.0649.v1

Super-Resolution (RVSR) generates the current high-resolution image from the previous high-
resolution image, the previous low-resolution image and the current low-resolution image [2, 3]. Each
input frame will be processed one time. RVSR has the ability to process video sequences of any length,
and enables the details of the video to be implicitly transmitted in longer video sequences. Insufficient
use of information caused by RVSR leads to correlation between image quality and time (Show in

Fig.l).
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Figure 1. Picture from FRVSR [3]. FRVSR is state-of-the-art method of RVSR. RVSR can handle video
sequences of any length, but there are some problems. As shown in the figure, the RVSR method has
a problem that is correlation between image quality and time.

In our work, we propose an end-to-end trainable Bidirectional Frame Recurrent Video Super-
Resolution (BFRVSR) framework to address the above issues. We adopt the forward training and the
reverse training to solve the problem of insufficient utilization of information and preserve temporal
consistency shown in Fig.2. BFRVSR has several benefits, which gains the balance between RVSR and
SWVSR. Each input frame needs to be processed no more than twice while each output frame makes
full use of the information contained by optical flow or any other calculated features. In addition,
passing the previous high-resolution estimate directly to the other step helps the model to recreate
fine details and produce temporally consistent videos.

Our contribution is mainly reflected in the following: a.) Propose a Bidirectional Frame
Recurrent Video Super-Resolution framework. b.) An end-to-end video super-resolution model
based on Bidirectional Frame Recurrent Video Super-Resolution framework is proposed, and no pre-
training step is required. c.) Address the correlation between image quality and time and preserve
temporal consistency.

2. Releted Work

Image Super-Resolution (ISR) is a classic ill-posed problem. The methods are divided into
interpolation methods, such as nearest, bilinear, bicubic, and dictionary learning [4, 5], example-based
methods [6, 7, 8, 9, 10], and self-similarity approaches [11-14]. We refer the reader to three review
documents [15-17] for extensive overviews of prior art up to recent years.

The recent progress in deep learning, especially in convolutional neural networks, has shaken up
the field of ISR. Single Image Super-Resolution (SISR) and Video Super-Resolution are two categories
based on ISR.

SISR uses a single low-resolution image to estimate a high-resolution image. Dong et al. [18]
introduced deep learning into the field of super-resolution. They imitated the classic super-resolution
solution method and proposed three steps of feature extraction, feature fusion, and feature
reconstruction to complete SISR. Then, K. Zhang et al. [19] reached state-of-the-art results with deep
CNN networks. A large number of excellent results have emerged [20-24]. Parallel efforts have studied
the loss function [25-27].
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Video super-resolution combine information from multiple LR frames to reconstruct a single high-
resolution frame. Sliding window method and recurrent method are two latest state-of-the-art
methods.

Sliding window method divide the video super-resolution task into multiple independent
subtasks, and each subtask generates a single high-resolution output frame from multiple low-
resolution input frames [1, 28-30]. The input is adjacent 2N+1 frames of low-resolution images like
Ry, IRy o IR IR L IERyY . Then, an  alignment module is used to align {IF%y
IRy o o IERy o TERYY with the IER. Finally, IfR is estimated through the aligned 2N+1 low-resolution
frames. Drulea and Nedevschi et al. [23] used optical flow method to align IZ%; and I-f, with IR and
use them to estimate I/

Recurrent method generates a high-resolution image from the previous high-resolution image,
the previous low-resolution image and the low-resolution image. Huang et al. [31] used a bidirectional
recurrent architecture, but did not use any explicit motion compensation in their model. Recurrent
structures are also used for other tasks, such as blurring [32] and stylization[33, 34] of videos. Kim et al.
[32] and Chen et al. [33] passed the feature representation to the next step, and Gupta et al. [34] passed
the previous output frame to the next step, generating time-consistent stylizations in parallel work
video. Sajjadi et al. [3] proposed a recursive algorithm for video super-resolution. The FRVSR [3]
network estimates the optical flow FAR,_; of IZR, and If%, and uses IR and F%,_; to generate I[F'R.
Finally, sends If'® and I'® to the network for reconstruction to obtain If/R. However, insufficient use
of information caused by FRVSR leads to correlation between image quality and time.

3. Methods

The framework of BFRVSR is shown in the Fig.2. All network modules can be replaced. For
example, the optical flow module can use existing methods that have been pre-trained instead of
training and building the network from scratch. You can also consider using a deformable
convolution module [35] to replace the optical flow module.

After presenting an overview of the BFRVSR framework in Sec. 3.1 and defining the loss
functions used for training in Sec. 3.2, we justify our design choices in Sec. 3.3.
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Figure 2. Overview of the proposed BFRVSR framework. BFRVSR not only performs the forward
operation of the RVSR, but also re-estimates { HRYefkward | pRbackward HRpagkward |
HRbakwardy through the generated HR{:;,WULM. BFRVSR ensures that the generation of all High
resolution image frames depends on global information, rather than local information.

3.1. BFRVSR

The proposed model is shown in Fig.3. Trainable modules include optical flow estimation
network FlowNet and super-resolution network SuperNet. The input of our model is the low-
resolution image of the current frame I/%, the low-resolution image of the previous frame I/, and
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the high-resolution image estimation of the previous frame If!% .The output of our model is the high-
resolution image estimation of the previous frame IfR.
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Figure 3. Overview of training network framework(Left). Trainable modules include FlowNet and
SuperNet. Up-sampling uses bilinear interpolation. Loss function used during training(right).

Flow estimation: The network structure of FlowNet [3] is shown in the Fig.4. Firstly, the
network uses the optical flow estimation module to estimate the low-resolution image of the previous

frame I}R, and the low-resolution image of the current frame I}F to obtain a low-resolution motion
vector diagram F£%,_;.

FER, . = FlowNet(I'R, @ IfR) € [—1,1]H*W>2 %
FER,_, shows the position information from the current image to the previous frame.
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Figure 4. Overview of FlowNet. 2x represents the linear superposition of two identical modules. The
input is { IR, IfR}, and the output is FER,_; through FlowNet module. FER,_; represents the x
displacement vector and y displacement vector between IFR and IEF,.

Upscaling flow: In this step, we process the low-resolution optical flow map that has been

obtained, and we use bilinear interpolation with scaling factor s to up-sampling to obtain the high-
resolution optical flow map.

F{f_1 = Upsample(F/%,_;) € [-1,1]W>? (2)

Warping HR image: Use the obtained high-resolution optical flow diagram and the high-
resolution image of the previous frame to estimate the high-resolution image of the current frame.

TtHR = Warp(ItH_Rl. Fgﬁs&—l (3)

We implemented warping as a differentiable function using bilinear interpolation similar to
Jaderberg et al. [36].

Mapping to LR space: We map high-dimensional spatial information to low-dimensional depth
information using the space-to-depth transformation.
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HZP™ = DM (TFR) (4)

Our method of mapping to low-dimensional space is similar to the method in FRVSR [3]. The
Mapping to LR space operation process is shown in the Fig.5.

-

Figure 5. Space-to-Depth module. Compress the spatial information of high-resolution images into
low-resolution image depth information.

Super-Resolution: In this step, the low-dimensional depth map of the high-resolution image of

the current frame Hf P and the low-resolution image of the current frame I/® are sent to the
SuperNet to obtain the final high-resolution frame. The network structure of SuperNet is shown in
the Fig.6.
IR = SuperNet(H """ @ IFF) (5)
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Figure 6. Overview of SuperNet. SuperNet uses the RESNET framework and Pixel Shuffle
upsampling operation. SuperNet is an open framework and can be replaced by other networks.

Summary: The overall process of the network is as follows:

IHR = SuperNet(DM (Warp(IfR , Upsample(FlowNet (ILR, @ IFR)))D IER) (6)

3.2. Loss functions

In our network architecture, the optical flow estimation module and the super-resolution
module are trainable, so in the training process, two loss functions are used to optimize the results.

The first loss function is the error between the high-resolution image generated by the super-
resolution module and the real image label 1}%2*.

Ly = [If® — tjave| 2 ™)
Because the data set does not have the ground truth of optical flow, we use a method similar to

the FRVSR [3] to calculate the spatial mean square error on the curved LR input frame to optimize
the optical flow estimation module as the second loss function.

L, = IWarp(Iify, FiZ o) — 18713 ®)
The Loss function of training final backpropagation is L;ytq = L1 + L.

3.3. Justifications
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The motivation for proposing the BERVSR framework is as follows:

a.) The super-resolution network using the sliding window method has high computational
cost. Each frame of image needs to be calculated 2N+1 times (window size 2N + 1). We use the
bidirectional frame recurrent to process each frame at most twice.

b.) Direct access to the output of the previous frame can help the network generate a temporally
consistent estimate for the next frame or previous frame. In the recurrent network, insufficient use of
information leads to correlation between image quality and time. Through bidirectional network
operation, each frame of image has all frames information in the window.

4. Experiment

4.1. Training Datasets and Details

Training datasets. Vimeo-90k [37] is our training and testing data set. We abbreviate the Vimeo-
90k test data set as Vimeo-90k-T and the Vimeo-90k train data set as Vimeo-90k-TD. Vimeo-90k data
set contains 91701 7-frames continuous image sequences, and is divided into Vimeo-90k-TD and
Vimeo-90k-T. In the training data set, we randomly crop the original 448x256 image into a 256x256
real label image. In order to generate LR images, we perform Gaussian blur and down-sampling
processing on the real label image, and use a Gaussian blur with standard deviation ¢ =2.0.

Training details. Our network is end-to-end trainable, and there are no modules that need to be
pre-trained. The Xavier method is used for initialization. We train 600 epochs and the batch size is 4,
the optimizer uses Adam optimizer, and the initial learning rate is 10™*, which is reduced by 0.1
times every 100 epochs. In a batch, each sample is 7 consecutive images. We conduct video super-
resolution experiments at 4x factor.

In order to obtain the first high-resolution image If'®, two methods can be used. In the first
method, we set I{’f to a completely black image. This can force the network to learn detailed
information from low-resolution images. In the second method, we upsample IR to IR through
the bicubic interpolation method, and estimate IZ'® from {I}R, IfR, Iff
RVSR method, we used the first method for experimentation.

R}.In order to compare with the

4.2. baselines

For a fair evaluation of the proposed framework on equal ground, we compare our model with
three baselines that use the same optical flow and super-resolution networks.

SISR: Only a single low-resolution image is used to estimate a high-resolution image without
relying on timing information. The input is I/® and the outputis If'R.

VSR: Through{If® , I/, ,If®}, without the optical flow network estimation, relying on the
learning space deformation ability of the convolution operation itself to obtain IfR.

RVSR: Through {If® , I[R ,IFR}, with the optical flow network estimation, and then sent to
SuperNet to obtain If'R. The operation process is the same as the forward propagation in the BFRVSR
network.

We ensure that the network model is consistent during the evaluation. The key parameters of
the training parameters are the same. The initialization uses Xavier initialization, and the accelerator
uses Adam optimizer. The initial learning rate is 10e-4, which is reduced to 0.1 times every 100
rounds. All networks are trained with the same training set, and the coefficient of Gaussian blur is
2.0.

4.3. Analysis

We train baselines and BFRVSR to convergence under the same parameter conditions. We
compare and test the pre-trained model on the Vimeo-90K-T. Table 1 shows the comparison image
PSNR results of baselines and BFRVSR. Compared with baselines, our proposed framework has the
best effect in continuous 7-frames video sequences, and it is 0.39dB higher than the RVSR method.
PSNR of BICUBIC and SISR is only related to current low-resolution images, and no correlation
between high-resolution images. PSNR of VSR and RVSR has correlation between image quality and
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time. Because of motion compensation by optical flow network, RVSR performance is better than
VSR.

Table 1. The PNSR index of the image generated by the five methods of BFRVSR, RVSR, VSR, SISR,
and BICUBIC are compared. As can be seen in the figure, BERVSR is an upgrade of RVSR, which not
only has the best effect, but also overcomes the shortcomings of RVSR's unidirectional gain.

Framel Frame2 Frame3 Frame4 Frame5 Frame6 Frame7 Average
BICUBIC 29.3057 273187 29.3173 29.3120 27.3087 273051 27.2900 27.3082

SISR 28.5332 28.5633 28.5240 28.5468 28.5523 28.5447 28.5593  28.5462
VSR 28.7632  29.4320 29.8012 29.8122 29.8310 299001 299212 29.6373
RVSR 29.0803 29.8807 30.1547 30.2898 30.3553 30.3980 30.3991 30.0797

BFRVSR(ours) 30.4772 30.4836 30.4833 30.4739 30.4670 30.4547 30.4145 30.4649

BFRVSR will perform a forward estimation and a reverse estimation. BRVSR is equivalent to an
RVSR network in forward estimation. It transmits global detail information by using I/% and
performs timing alignment operations. However, there are some problems, that is, the details of I}
cannot be obtained for I/® to optimize the image (i > j). Reverse estimation solves this problem.
Reverse estimation makes each frame implicitly use all the information to estimate the high-
resolution image of the frame. Use the {I/'%, I}R,, I[®} to generate IF'R.

RVSR can be trained on video clips of any length. However, if the video clip is too long, RVSR
will have a problem that is correlation between image quality and time. In fact, RVSR also has the
problem on shorter video clips. BERVSR solves this problem as shown in Fig.7.

The video super-resolution based on the sliding window method processes each frame 2N+1
times, the video super-resolution based on the recurrent method processes each frame once, and the
BFRVSR processes each frame at most 2 times.

On the RTX-2080Tj, the time for a single image Full HD frame for 4x super-resolution is 291 ms.
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Figure 7. We show the quality of each frame in the forward propagation of BFRVSR and the quality
of each frame in the reverse propagation. We show the quality of each frame in the forward
propagation of BFRVSR and the quality of each frame in the reverse propagation. We found that
global information is implicitly used in backpropagation to generate high-resolution images.

5. Conclusions

We propose an end-to-end trainable bidirectional frame recurrent video super-resolution
method. Due to the operation of bidirectional training, with more information utilized to feed the
model to deal with the correlation between image quality and time, BFRVSR successfully solves the
problem happened in Fig.1, to be specific, it decouples the correlation between image quality and
time. In addition, the proposed method achieves better image quality while the computational cost
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is lower than sliding window method. Nevertheless, there is still room for improvement in the field
of video super-resolution. On the one hand, if the problem of occlusion and blur is considered, much
more computational cost would be required. We may deal with the problem by adding cross
connections. On the other hand, a deformable convolution module, which has been frequently
investigated recently, shows enormous potential in the field of image classification, semantic
segmentation, etc. Thus it may achieve better results if we replace the optical flow module with
deformable convolution module. Furthermore, it is believed that video super-resolution and frame
insertion have considerable similarities thus we may try to utilize BFRVSR to perform these two tasks
simultaneously.
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