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Abstract: Plasmodium vivax malaria is a neglected tropical disease, despite being more geographically 

widespread than any other form of malaria. The documentation of P. vivax infections in different 

parts of Africa where Duffy-negative individuals are predominant suggested that there are 

alternative pathways for P. vivax to invade human erythrocytes. Duffy-negative individuals may be 

just as fit as Duffy-positive individuals and are no longer resistant to P. vivax malaria. In this review, 

we describe the complexity of P. vivax malaria, characterize pathogenesis and candidate invasion 

genes of P. vivax, and host immune responses to P. vivax infections. We provide a comprehensive 

review on parasite ligands in several Plasmodium species that further justify candidate genes in P. 

vivax. We also summarize previous genomic and transcriptomic studies related to the identification 

of ligand and receptor proteins in P. vivax erythrocyte invasion. Finally, we identify topics that remain 

unclear and propose future studies that will greatly contribute to our knowledge of P. vivax. 

 

Keywords: Plasmodium vivax; Erythrocyte Invasion Mechanisms; Duffy Negative; Africa; 

Immunology; Epidemiology 

 

1. Introduction  

Plasmodium vivax malaria is a neglected tropical disease, despite being more geographically 

widespread than any other form of malaria [1] and causes 132–391 million clinical infections each 

year [2]. Compared to P. falciparum, P. vivax has a broader temperature tolerance and an earlier onset 

of gametocyte development, enabling the parasites to spread through diverse climates [3] and more 

difficult to control and eliminate [4]. Currently, there is no vaccine available for P. vivax, though 

several preventative medications have been shown to be effective [5,6]. The epidemiology of P. vivax 

malaria is further complicated by the pathogen’s unique ability to form dormant stage hypnozoites 

in the host liver cells, giving rise to recurrent relapse infections from weeks/months to years later [7,8]. 

Relapse infections have substantially impacted progress in malaria control especially in countries that 

are approaching elimination [9-11].  

Plasmodium vivax was previously thought to be rare or absent in Africa because people of African 

descent often lack the expression of a Duffy blood group antigen, known as the Duffy antigen-
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chemokine receptor (DARC). It is believed that the fixation of the Duffy negativity trait, and the 

rarity of P. vivax infection in Africa supports that Duffy negative individuals are refractory to P. vivax. 

Unlike P. falciparum which utilizes multiple erythrocyte receptors for invasion and has merozoite 

proteins with overlapping and redundant receptor-binding functions, invasion of erythrocyte by P. 

vivax merozoites exclusively relies on the interaction between PvDBP and DARC expressed on the 

surface of erythrocytes and reticulocytes. DARC is a glycoprotein on the surface of red blood cells 

(RBCs) that allows P. vivax to bind and invade human erythrocytes at the cysteine-rich region II of 

Duffy Binding Protein 1 (DBP1) [12-14]. However, recent studies have reported several cases of P. 

vivax in Duffy-negative people in different parts of Africa where Duffy-negative populations are 

predominant [15-17]. It is apparent that Duffy-negative individuals are no longer resistant to P. vivax 

malaria [16,17]. This phenomenon raises important questions of how P. vivax invades erythrocytes of 

Duffy-negative individuals. To date, only a single P. vivax ligand protein PvDBP1 has been studied 

in great detail [17]. It has been hypothesized that either mutations in PvDBP1 provided a new 

pathway of entry, or a low expression of DARC in Duffy-negative individuals binds readily with 

parasites that contain high copies of PvDBP1 [18,19]. Recent studies have shown that despite several 

mutational differences observed in PvDBP1 between Duffy-positive and Duffy-negative infections, 

none of them bind to Duffy-negative erythrocytes [17], implying an alternative parasite ligand is 

being used. 

The investigation of erythrocyte invasion mechanisms in P. vivax could be complicated by the 

genetic characteristics and epidemiology of P. vivax in Duffy-negative individuals. P. vivax has a 

significantly higher nucleotide diversity at the genome level compared to P. falciparum [20]. Such 

contrast could be attributed to frequent gene flow via human movement, intense transmission, and 

variation in host susceptibility [21-23]. Genes associated with erythrocyte binding such as Duffy 

binding protein (PvDBP), erythrocyte binding protein (PvEBP), reticulocyte binding protein (PvRBP), 

merozoite surface protein (PvMSP), apical membrane antigen 1 (PvAMA1), and tryptophan-rich 

antigen genes (PvTRAg) families are highly diverse in P. vivax from Africa and Southeast Asia [24-

28]. These genes have been shown to play a role in reticulocyte invasion [24,28] and patient 

antigenicity [29,30], and provide explanations to high levels of selection detected at the genome levels 

in P. vivax from South Korea [31], Kyrgyz Republic [32], New Guinea [33], and Thailand [34]. Proteins 

such as RBP, TRAg, anchored micronemal antigen (GAMA), and Rhoptry neck protein (RON) have 

been suggested to play a role in red cell invasion, especially in low-density infections [35-39]. 

Unfortunately, studies that investigated erythrocyte invasion pathways are scattered with no 

definitive evidence and systematic approaches to clarify the exact role of these target genes. Due to a 

lack of reliable and logistical long-term in vitro methods [40], P vivax remains a difficult parasite to 

effectively study the molecular mechanisms and biology in details, beyond genetic characterizations. 

In this paper, we present a systematic review of the literature to highlight the complexity of P. 

vivax malaria and characterize P. vivax candidate invasion genes, pathogenesis, and host immune 

responses. We provide a comprehensive review on parasite ligands in several Plasmodium species 

that further justify candidate genes in P. vivax. We also summarize previous genomic and 

transcriptomic studies related to the identification of ligand and receptor proteins in P. vivax invasion. 

Finally, we identify topics that remain unclear and propose future studies that will greatly contribute 

to our knowledge of P. vivax.  

 

2. Pathogenesis of P. vivax  

Recent findings of P. vivax cases in Duffy-negative individuals suggest that some lineages may have 

evolved to use ligands other than Duffy for erythrocyte invasion [17]. This significantly increases the 

risk of P. vivax infection in the African populations and may eventually become a new cause of 

epidemics and severe disease across Africa. To establish how the phenomenon of P. vivax infection 

of Duffy-negative individuals has evolved and identify potential vaccine candidates to target it, it is 

important to understand how this parasite invades Duffy-negative erythrocytes and hence causes 

malaria. The investigations of P. vivax at the cellular and molecular levels have been restricted by the 

lack of a continuous in vitro culturing of live parasites. With the advancement in P. vivax genome 
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sequencing technology coupled with the ability to mature ex vivo isolates, it is now possible to obtain 

high-quality transcriptomes of the blood stages. However, there is still a lack of viable methods to 

indefinitely culture P. vivax due to the need for young reticulocytes to sustain long-term culture. 

Strategies to overcoming this problem have been proposed but remain impractical due to a large 

initial and continuous investment of labor and infrastructure [41]. The success of short-term culture 

utilizing young reticulocytes from placental blood [40,42] and indefinite culture in Saimiri boliviensis 

and Aotus nancymae monkeys [43,44] shed lights on pathogenesis in humans and potential ligands for 

invasion [39,44], though several unanswered questions remain. 

While mature asexual P. vivax and its transmissive gametocytes occur in peripheral blood, 

histological analyses of P. vivax in Aotus and Saimiri monkeys have shown immature gametocytes 

and few asexual schizonts present in the parenchyma of bone marrow [45]. Asexual schizonts appear 

to be more concentrated in the sinusoids of the liver [45], suggesting that bone marrow could be a 

critical reservoir for P. vivax gametocyte development and proliferation. Indeed, the bone marrow 

reservoirs may suggest that microscopic detection is not ideal for active case detection and treatment 

of P. vivax until bone marrow samples are accessible. As P. vivax requires reticulocytes for growth 

[46-49], the general low proportion of reticulocytes (that make up only 1% of the total number of host 

erythrocytes) may explain low parasite loads in symptomatic patients [50-52] and a lack of observable 

schizonts in blood circulation [52,53]. Additionally, pathological analyses of S. boliviensis tissues 

showed that P. vivax infections also affect the lungs and kidneys, both of which had mononuclear 

infiltrates, higher macrophage levels, alveolar wall thickening, collagen deposition, and type II 

pneumocyte hyperplasia [44]. The level of tissue damage is parasite-load dependent and determined 

by the amount of bi-product, namely hemozoin, being produced [44]. These findings may imply a 

large number of asymptomatic P. vivax carriers in the general populations. It is well known that P. 

vivax ability to relapse from dormant liver-stage hypnozoites, from weeks to years after clearance of 

the primary blood-stage infection, is a major obstacle to its control and elimination [20,54]. The liver 

and bone marrow have been shown to be major parasite reservoirs for P. vivax hypnozoites in Saimiri 

monkey models [45,55]. Moreover, relapse varies systemically by geographic region and/or seasonal 

changes in the environment [54]. Nevertheless, there is yet no information on the frequency and 

clinical impacts of relapse in Duffy-negative P. vivax infections, nor reliable biomarkers for relapse 

detection due to limited technologies and substantial knowledge gaps in the biology of P. vivax 

hypnozoites and relapse.  

 

3. Erythrocyte invasion mechanisms in non-Plasmodium vivax  

3.1 Plasmodium falciparum  

Our current knowledge in the molecular mechanisms of erythrocyte invasion in several Plasmodium 

species offers a reference model on candidate invasion ligands in P. vivax. Plasmodium falciparum 

invades a wide range of red blood cells from young reticulocytes to mature normocytes. One of the 

main binding protein ligands is the erythrocyte binding ligand (EBL) family that includes multiple 

members such as EBA-175, EBA-140, EBL-1 and EBA-181. EBA-175 that bind to the sialic acid 

containing structure on human erythrocyte receptor glycophorin A (GpA) during invasion [56]. The 

role of the EBA-175 protein has been shown to be critical for erythrocyte invasion as antibodies raised 

against EBA-175 prevent binding to GpA in vitro [57,58]. EBA-175 triggers changes in the erythrocyte 

membrane [59,60] and shedding of EBA-175 causes uninfected red blood cells to cluster or form 

rosette that allows for immune evasion [61]. The host immune responses may explain the 

polymorphisms and diversifying selection observed in EBA-175 [62]. Other ligands such as EBA-140 

and EBL-1 are known to bind to glycophorin C (GpC) [63] and glycophorin B (GpB), respectively, on 

the erythrocytes. Unlike GpA and GpC, the GpB exhibits high levels of polymorphisms, particularly 

in people of African ancestry, suggesting that a strong selective pressure may have provided an 

evolutionary advantage to parasite invasion [64]. For example, the S-s-U- and Dantu GpB phenotypes 
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were both showed with moderate protection against invasion, although this does not hold true for 

all GpB phenotypes [64-67]. To our best knowledge, the specific receptor for EBA-181 is 

chymotrypsin-sensitive, trypsin-resistant, and neuraminidase sensitive to erythrocytic treatment 

[68,69], although it remains to be identified.  

 Another important binding protein family of P. falciparum is the reticulocyte-binding homologue 

(PfRh) that includes PfRh1, PfRh2a, PfRh2b, PfRh4, and PfRh5. PfRh1 binds to an unidentified 

receptor “Y”, which has been characterized to be trypsin- and chymotrypsin-resistant and 

neuraminidase-sensitive [70,71]. PfRh1 is necessary for sialic acid-dependent invasion of human red 

blood cells [71]. Antibodies raised against PfRh1 have been shown to block invasion by inhibiting 

calcium signaling in the merozoite [72]. PfRh2a and PfRh2b are identical for much of the N-terminus 

region but each with a unique 500 C-terminus region [73] and differential expressions in various P. 

falciparum lines including deletions, such as a deletion of PfRh2b in P. falciparum D10 [73,74]. The loss 

of PfRh2b does not appear to impact invasion or growth of the parasites and suggests compensatory 

mechanisms for the loss of PfRh2b [75]. PfRh2a binds to more than one receptor on erythrocytes, 

although these receptors have yet to be identified [76,77]. PfRh2b has been shown to be involved in 

merozoite calcium signaling [77]. It binds to an unknown receptor “Z” on erythrocytes, which is 

neuraminidase and trypsin-resistant and chymotrypsin-sensitive [78]. PfRh4 has been shown to have 

sialic-acid independent binding activity with the complement receptor type I (CR1) on erythrocytes 

[79,80]. The PfRh5 complex is composed of PfRh5, Ripr, CyRPA, and Pf113, which collectively 

promote successful merozoite invasion of erythrocytes by binding to basigin (BSG, CD147) [81,82]. A 

BSG variant on erythrocytes, known as Oka-, has been shown to reduce merozoite binding affinities 

and invasion efficiencies [83]. This variant was reported so far only from people of Japanese ancestry 

[84]. Previous knockout or double knockout experiments have indicated that the EBL and PfRh gene 

families work cooperatively or can functionally compensate for the loss of each other [85, 86]. For 

example, a loss of EBA-175 can activate PfRh4 [85,86]. When EBA-181 expression was disrupted, 

PfRH2b was no longer functional [86]. When EBA-181 and EBA-140 genes were disrupted, the 

parasite deleted the PfRh2b gene [86]. Further study is needed to gain a deeper understanding of how 

they may work synergistically to promote invasion and immune evasion.    

  

3.2 Plasmodium knowlesi  

Until recently, P. knowlesi was considered primarily a simian malaria that infects Macaca fascicularis, 

Macaca nemestrina, and Presbystis melalophos [87]. P. knowlesi is now confirmed to cause malarial 

infections in humans [88]. P. knowlesi has been shown to use different ligands to invade macaques 

and human erythrocytes [87]. Two gene families, DBL and RBP, are responsible for erythrocyte 

binding. The DBL gene family comprises PkDBP-α, PkDBP-β, and PkDBP-γ. In humans, the parasite 

ligand responsible for erythrocyte invasion is PkDBP-α that binds to the DARC receptor. The other 

two Duffy binding proteins, PkDBP-β and PkDBP-γ, bind only to macaque but not human 

erythrocytes [14]. The normocyte-binding protein Xa (NBPXa) is required for binding in human 

erythrocytes but not necessary for invasion of Macaca mulatta erythrocytes [89]. Variation in PkNBPXa 

has been shown to be linked with parasite virulence and severity of disease [90]. The receptors for 

NBPXa and NBPXb necessary for invasion for either human or M. mulatta erythrocytes have yet to 

be identified [87]. Unlike P. vivax, both P. falciparum and P. knowlesi can be maintained in long-term 

culture, making them ideal systems to study invasion mechanisms [91,92].  
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3.3 Plasmodium cynomolgi 

P. cynomolgi is a vivax-like simian malaria that shares many genomic and phenotypic characteristics 

with P. vivax and has been often used as a reference model of P. vivax [93]. Two gene families, 

erythrocyte binding-like (EBL) and reticulocyte binding-like (RBL), are responsible for erythrocyte 

binding and invasion in P. cynomolgi [94-96]. The EBL gene family encodes PcyDBP-1 and PcyDBP-2, 

similar to PkDBP that binds to the complementary DARC receptor on Duffy-positive erythrocytes. 

PcyDBP-1 is an ortholog for PkDBP-α, while PcyDBP-2 has no known orthologs with other 

Plasmodium DBPs [97]. Previous studies have shown no variation in gene copy number of either 

PcyDBP-1 or PcyDBP-2 among P. cynomolgi laboratory strains [98]. Studies of field isolates of both P. 

cynomolgi and P. knowlesi have shown that PcyDBP-1 exhibit high levels of nucleotide diversity 

compared to PcyDBP2 or PkDBPs [99]. The RBL gene family is composed of PcyRBP1, PcyRBP1a, 

PcyRBP1b, PcyRBP2a, PcyRBP2b, PcyRBP2c, PcyRBP2d, PcyRBP2e, PcyRBP2f, and PcyRBP3, most of 

which responsible for mediating parasite invasion into reticulocytes [98]. Functional studies of 

PcyRBPs are further complicated as different strains of P. cynomolgi have different set of RBL genes. 

For example, PcyRBP2a is present in the P. cynomolgi B and P. cynomolgi Cambodian strains but absent 

in the P. cynomolgi Berok strain. Similarly, PcyRBP1b is present in the P. cynomolgi Berok and Gombak 

strain but absent in the P. cynomolgi B, Cambodian and Rossan strain [93]. While it is possible that the 

loss of PcyRBP1b can be compensated by the presence of PcyRBP2a [98], the relative role of PcyRBP1b 

and PcyRBP2a in RBC invasion requires further investigations [100]. 

 

4. Plasmodium vivax ligand proteins and host receptors for erythrocyte invasion  

The Duffy binding protein of P. vivax (PvDBP) and P. knowlesi (PkDBP-α) interact with DARC on 

erythrocytes [101]. A 140kD region II of PvDBP (amino acids at site 198-522; Table 1) was identified 

as the key binding sites to human erythrocytes [14]. In humans, there are two major, codominant 

alleles for DARC, Fya and Fyb, which differ by a single nucleotide substitution at amino acid position 

42 with glycine and aspartic acid, respectively. Individuals who are Fya+b- have been shown to be at 

reduced risk for clinical P. vivax in comparison to Fya-b+ individuals [102,103]. Individuals with a 

single point mutation c.1-67T>C (rs2814778) in the GATA-1 box of the DARC gene are considered 

Duffy-negative (Fy-) as erythrocytic expression of DARC is abolished. Duffy-negative (Fy-Fy-) 

individuals are previously thought to be resistant to infection by P. vivax and P. knowlesi due to the 

parasites inability to infect erythrocytes [104], but several recent studies have shown that P. vivax can 

infect Duffy-negative individuals potentially utilizing another invasion ligand(s) [105]. The P. vivax 

erythrocyte binding protein (PvEBP), which is similar to PcyM DBP2 sequences in P. cynomolgi and 

contains a Duffy-binding like domain, was discovered in 2013 by de novo genome assembly of field 

isolates from Cambodia [106]. Binding assay of PvEBP region II (amino acids at site 171-484; Table 1) 

showed that unlike PvDBP region II, PvEBP is able to moderately bind to Duffy-negative erythrocytes 

[17], lending support to the hypothesis of an alternative invasion pathway in P. vivax.   

The comparison of genomic sequences between P. vivax and other Plasmodium species have 

identified several members of the P. vivax reticulocyte binding protein (RBP) gene family [47,107,108]. 

P. vivax RBP gene family comprises several full-length genes including PvRBP1a, PvRBP1b, PvRBP2a, 

PvRBP2b and PvRBP2c, partial genes including PvRBP1p1, PvRBP2p1, and PvRBP2p2, as well as 

pseudogenes including PvRBP2d, PvRBP2e, and PvRBP3. PvRBP1 comprises PvRBP1a and PvRBP1b 

and shares homologous regions with P. falciparum PfRh4 [109]. The binding regions of PvRBP1a and 
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PvRBP1b are homologous to that of PfRh4 and the amino acids at site ~339-599 were confirmed to 

interact with human reticulocytes [80,110] (Table 1). PvRBP1a is orthologous to the pseudogene of 

PkNBP1, but no orthologous region of PvRBP1b was detected in P. knowlesi [93]. While the host 

receptors of both PvRBP1a and PvRBP1b proteins are unclear, it has been shown that the receptors 

are neuraminidase resistant [80]. PvRBP1p1 contains a fragment which has 95% similarity to a C-

terminal sequence in PvRBP1b [111]. Several members of PvRBP2 (PvRBP2a, PvRBP2b, PvRBP2c, 

PvRBP2d, PvRBP2e, PvRBP2p1, and PvRBP2p2) are orthologous to PfRH2a and PfRH2b [80,107] as 

well as PcyRBP2 [93]. Some of them, such as PvRBP2a and PfRh5 also share high structural similarity 

[112]. PvRBP2b and PvRBP2c are orthologous to PcyRBP2b and PcyRBP2c, respectively [93]. Recently, 

the receptor for PvRBP2b has been identified as transferrin receptor 1 (TfR1) and the PvRBP2b-TfR1 

interaction plays a critical role in reticulocyte invasion in Duffy-positive infections [113]. While 

PvRBP2p1 has been identified in all human P. vivax infections, PvRBP2p2 was only present in certain 

lineages of P. vivax [114]. PvRBP2d, PvRBP2e, and PvRBP3 are pseudogenes that share homology 

with other PvRBPs but encode for nonfunctional proteins [114]. In addition, PvRBP2e is present in the 

Cambodian field isolates but not in the P. vivax Salvador I [106]. The role of these PvRBP genes in 

erythrocyte invasion remains unclear. 

 Tryptophan-rich antigens (TRAgs) are a family of antigens found on human and rodent malaria 

parasites. In P. vivax, the number of encoded tryptophan-rich proteins is much higher than that of P. 

falciparum. In the latter case, some of these proteins have been shown to play important role in red-

cell invasion and thus are proposed as potential vaccine candidates against P. falciparum malaria 

[18,19]. Although as to why such a large number of tryptophan-rich proteins are being expressed by 

P. vivax, the stage-specific expression of these genes is indicative of their different roles in the 

parasite's life cycle [20,152]. The PvTRAg family contains 36 members each with a positionally 

conserved tryptophan-rich domain in the C-terminus region [115,116]. Of the 36 PvTRAgs, 33 

transcribe differently during the ring, trophozoite, and schizont stages of P. vivax, indicating their 

involvement in blood-stage development [35]. A majority of transcription takes place during the 

schizont-ring transition [117], suggesting their role in erythrocyte invasion. The proportion of non-

synonymous SNPs in PvTRAg genes was shown to be significantly high, suggesting the effect of 

diversifying selection related to antigenic function [118]. Nine PvTRAgs have been shown to bind to 

human erythrocytes, including PvTRAg33.5, PvTRAg35.2, PvTRAg69.4, PvTRAg34, PvTRAg38, 

PvTRAg36, PvTRAg74, PvTRAg26.3, and PvTRAg36.6. These proteins possess erythrocyte-binding 

activity with predicted protein localization to be during the schizont stage [119,120] and each protein 

recognizes multiple erythrocyte receptors [120]. A comparison of P. vivax transcriptomes between 

Aotus and Saimiri monkeys indicated the expression of six PvTRAg genes in Saimiri P. vivax was 37-

fold higher than in the Aotus monkey strains [39]. Five of these highly expressed PvTRAg genes were 

previously shown to bind to human erythrocytes [38,119]. Although most TRAg receptors remain 

poorly characterized and unnamed, the receptor of PvTRAg38 has been identified as Band 3 that bind 

to amino acid positions 197-214 [121] (Table 1). The 10 PvTRAg ligands cross-compete with one other 

and each receptor is shared by more than one TRAg ligand, e.g., PvTRAg38 and PvTRAg74 share a 

common chymotrypsin-sensitive erythrocyte receptor [119,120]. In addition, the expression of the 10 

PvTRAgs varies and is stage-specific, suggesting their differential roles in parasite growth and 

development. For example, PvTRAg, PvTRAg26.3, PvTRAg36.6, and PvTRAg69.4 are all expressed 

at the ring and early trophozoite stages of the parasites, indicative of an important role in rosetting; 

PvTRAg35.2, PvTRAg38, PvTRAg36, and PvTRAg34 are expressed during the schizont and 

merozoite stages, indicative of invasion properties [120]. Further, PvTRAg36.6 interacts with early 

transcribed membrane protein (PvETRAMP) to form a protein complex that is apically localized in 

merozoites, suggesting that this protein is critical for development or maintenance of the 

parasitophorous vacuole membrane [38]. Recent studies have shown that the PvTRAg35.2 gene 

sequences were highly conserved in the parasites and amino acid residues 155-190 and 263-283 were 
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involved in erythrocyte binding [122] (Table 1). PvTRAg35.2 competes with PvTRAg 33.5 and 

PvTRAg28 and may play a redundant role in erythrocyte invasion [122]. Orthologs of Pv-fam-a are 

present in P. knowlesi, P. falciparum, and P. yoelii, suggesting that these genes may play a critical role 

for invasion throughout Plasmodium evolution [108]. Other PvTRAgs such as PvTRAg56.6 and 

PvTRAg56.2 interact with PvMSP1 and PvMSP7 to stabilize surface protein complexes on merozoites 

and are likely not involved in erythrocyte binding [38]. Additionally, PvTRAgs elicit a strong IgG 

antibody immune response in P. vivax-infected individuals with memory lasts up to 5-12 years after 

being infected [35]. Nine TRAgs (PvTRAg3, PvTRAg7, PvTRAg13, PvTRAg14, PvTRAg15, 

PvTRAg18, PvTRAg20, PvTRAg26, and PvTRAg35) showed high IgG positivity and conserved IgG 

reactivity in three Asian countries with low malaria endemicity [35], demonstrating the universal 

antigenicity of these TRAg proteins. 

Merozoite Surface Proteins (MSPs) are a large family of genes found on the surface of merozoites 

and a few members are suggested to be involved in non-DBP1 erythrocyte invasion pathways [56]. 

MSP1 is a 200 kDa highly conserved antigen that undergoes several cleavage events as invasion 

occurs [75,84]. MSP1 shows a strong binding affinity between 20 and 150nM at the 42 and 19kDa 

fragment cleavage sites with high activity binding peptides (HABPs) clustered close to these two 

fragments at positions 280-719 and 1060-1599 respectively [56], suggesting its critical role in 

erythrocyte invasion. MSP1 has the potential to be a vaccine target due to its strong immunogenicity 

[123], but further research is needed [124,125]. MSP3 transcribes during the trophozoite and schizont 

stages of P. vivax [126] and is highly expressed in Saimiri infections [39]. Although it is yet unclear 

whether MSP3 binds to human erythrocytes, MSP3.3 and MSP3.5 were expressed on the surface of 

mature schizonts and interact with MSP1, MSP7, and MSP9 [39]. The MSP3 gene family contained 

RNA expression of 11 members during the trophozoite and schizont stages, hint at the MSP3 family 

playing an important role in both maturation and binding [126]. Interestingly, MSP3.7 was detected 

at the apical end of merozoites which differentiates probable roles from other MSP3 family members 

[126]. Additionally, MSP3.11 transcripts were present but with no corresponding protein being 

detected, questioning the exact role of this protein [126]. Although the MSP7 gene family has not been 

shown to bind to erythrocytes, it forms a complex with PvTRAg36.6 and PvTRAg56.2 and localize on 

the surface likely assisting in stabilization of the protein complex at the merozoite surface [38]. Several 

MSP7 genes, including MSP7C, MSP7H, and MSP7I, are strong antibody targets and contain high 

genetic diversity due to frequent positive selection [127]. The MSP9 family also undergoes frequent 

selection and recombination and forms a co-ligand complex with the 19kDa fragment of MSP1, but 

no erythrocytic binding activity was observed [128]. It is possible that MSP9 assists MSP1 in binding 

to erythrocytes. MSP9 is highly immunogenic at conserved regions 795-808, making it a good vaccine 

candidate [129,130]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Currently known P. vivax genes and amino acid regions responsible for binding human 

erythrocytes. 
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5. Humoral immune response against P. vivax and vaccine targets 

The severity of malaria infection during the erythrocyte stage of Plasmodium depends on various 

factors, such as the location of parasitized red blood cells in the target organs, the local and systemic 

action of the parasite’s bioactive products, pro-inflammatory cytokine production, as well as innate 

and adaptive immune system at the cellular levels that involves cytokine and chemokine regulators, 

and the activation, recruiting, and infiltration of inflammatory cells [132]. During P. vivax infection, 

some individuals can acquire immunity naturally. Such immunity consists of humoral IgG 

antibodies, cellular cytokines, and proteolytic enzymes production as part of the host response to 

the pathogen [133,134]. Apart from the invasion capability of P. vivax, host immune response to the 

pathogen is also a key factor determining parasitemia and pathology. For example, patients with 

moderate parasitemia in endemic regions of Colombia were shown with cellular immune responses 

including high IFN-γ and TNF-α levels and a pro-inflammatory cytokine profile in unstable 

transmission regions [135]. The balance in interleukin (IL)-10/TNF-α rate could prevent increased 

parasitemia and host pathology [136]. To date, DBP is the primary target antigen for P. vivax vaccine 

development. Serological studies have shown that region II of PvDBP, which P. vivax uses to bind to 

human erythrocytes, induces antibodies against DBP and is naturally immunogenic in people 

residing in endemic regions through repeated exposure to the infection [137,138]. However, the 

naturally acquired neutralizing antibodies against DBP are short-lived, increasing with acute 

infection, and are strain specific [139,140]. Antibodies from plasma from naturally exposed people 

and from animals immunized with recombinant Duffy binding protein (rDBP) have blocked the 

specific interaction between the PvDBP ligand domain in vitro and its receptor on erythrocyte surface 

[139,140]. Such inhibitory activity was correlated with antibody titers. The DBP1 binding domain is 

polymorphic, tending to compromise the efficacy of any vaccine associated with strain-specific 

immunity [141]. While almost all mutations in polymorphic residues did not alter RBC binding [142], 

such polymorphism has a synergic effect on the antigenic nature of DBP [143]. Though polymorphic, 

SNP variants in the binding domain of PvDBP1 had no effect on the degree of inhibition by anti-DBP 

monoclonal antibodies. On a contrary, a higher PvDBP gene copy number was shown to reduce 

Gene name Amino acid binding region Target cell(s) 

PvDBP1 198 – 522 [14] Duffy-positive erythrocytes 

PvEBP/DBP2 171-484 [17] Erythrocytes 

PvRBP1a 352-599 [110] Reticulocytes 

PvRBP1b 339-587 [80] Reticulocytes 

PvRBP2a 160-1000 [112] Mature RBCs and reticulocytes 

PvRBP2b 161-1454 [113] Reticulocytes 

PvRBP2c Native protein [47] Reticulocytes 

 168-524 [131] 10% reticulocytes 

 

PvTRAg38 

PvTRAg35.2 

 

PvMSP1 

464-876 [131] 

197-214 [121] 

155-190 [122] 

263-283 [122] 

280-719 [56] 

1060-1599 [56] 

34% reticulocytes 

Erythrocytes 

Erythrocytes 

Erythrocytes 

Erythrocytes 

Erythrocytes 
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susceptibility to anti-PvDBP antibody response [144], but not for better invasion of FyA/FyA and 

FyA/FyB reticulocytes.  

Apart from DBP, the MSP family is responsible of the interaction between merozoites and 

reticulocytes during the erythrocyte phase. PvMSP1, PvMSP3, and PvMSP9 are potential vaccine 

candidates since they are exposed to the immune system and are recognized by antibodies from 

naturally infected individuals [145]. Cytoadherence assays demonstrated that MSP119 is an essential 

adhesion molecule used in P. vivax invasion to erythrocytes [146] and is immunogenic in people 

living in areas of unstable malaria transmission in Southeast Asia, Papua New Guinea, and Brazil 

[147]. Two recombinant polypeptides, rPvMSP114 and rPvMSP120, from the MSP1 C-terminal region 

show high binding activity to reticulocytes, but no antibodies against these peptides were detected 

in immunized Aotus monkeys [84]. MSP3 is an abundant ligand on merozoite surface essential for 

reticulocyte invasion. PvMSP3α block II and the C-terminal region were shown to be highly 

immunogenic. Individuals living in an endemic region and with high number of previous episodes 

of malaria were shown with increased IgG1 and IgG3 anti-PvMSP3α [145,148,149]. Likewise, the 

PvMSP9 C-terminal and NT domains have also been shown to induce memory T-cell response 

(higher IFN-γ and IL-4 cytokine production) in individuals living in P. vivax endemic regions of the 

Brazilian Amazon and Papua New Guinea [149,150] and are specific targets of P. vivax vaccine. It is 

unclear if Duffy-negative individuals acquire high levels of antibodies against the 19-kDa C-terminal 

region of the P. vivax PvMSP1, PvMSP3, and PvMSP9, resulting in a low susceptibility to P. vivax 

infection [103].   

PvRBP2b was recently shown to bind transferrin receptor 1 of the reticulocytes through the 

apical domain and the protease-like domain of TfR1 and the N-terminal region of Tf [113]. RBP2P1 

protein was found to be expressed in schizonts and localized at the apical end of the merozoite, and 

preferentially bind reticulocytes over normocytes. Monoclonal antibodies raised against PvRBP2b 

prevent reticulocyte binding and reduce P. vivax invasion [113]. P. vivax malaria patients had higher 

IgG levels against rRBP2P1 than did naive individuals. Human antibodies to this protein also exhibit 

erythrocyte binding inhibition and are associated with lower parasitemia [151]. PvRBP1a and 

PvRBP1b are highly transcribed during the parasite schizont stage [152]. PvRBP1a-34 and PvRBP1b-

32 proteins bounded specifically to reticulocytes and showed significantly higher reticulocyte 

binding activity than normocyte-binding activity [80]. Clinical assays have indicated that PvRBP1435–

777 is poorly immunogenic, likely because PvRBP1 had multiple promiscuous T-cell epitopes, which 

did not induce specific genetic restriction [153]. IgG prevalence against the NT region (including the 

most polymorphic region) of the PvRBP1a and b was intermediate in a population from Thailand 

[114], but IgG prevalence against the PvRBP1a-34 and PvRBP1b-32 proteins was significantly higher 

in P. vivax patients than healthy individuals in the Republic of Korea [80]. Also, the highly-conserved 

region III (between amino acids 1,941–2,229) with the greatest amount of high-affinity reticulocyte-

binding peptides and high binding affinity was shown to induce high antibody titers in Aotus 

monkeys and able to recognize the full PvRBP1 in parasite lysate [154]. The expression of PvRBPs in 

the African P. vivax and the antibody response against PvRBP in Duffy-negatives will provide 

important implications to the usefulness of future vaccine in vivax malaria control in Africa. 

While the circumsporozoite protein (CSP) is one of the most important proteins described in 

hepatocyte invasion by Plasmodium sporozoites, previous studies involving individuals residing in 

P. vivax malaria-endemic regions in Brazil showed low responses for antibodies directed against the 
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repeat and C-terminal regions [155]. On the other hand, members of the TRAg gene family that were 

highly expressed in non-DARC Saimiri-infected P. vivax have also shown to induce antibody response 

in people from vivax endemic regions. A recent study of 383 children in Papua New Guinea showed 

that antibodies against PvFAM-D2 were significantly more common in children with active P. 

vivax infections [156]. The coexpression of PvFAM-A2 and PvFAM-D2 proteins in infected 

reticulocytes is spleen-dependent based on the Aotus monkey model [157]. These proteins were 

recognized by a high percentage of sera and are highly immunogenic targets of naturally acquired 

immune responses [157]. These results are in agreement with members of these families being highly 

expressed in transcriptional analysis of parasite isolates [39,158]. Besides, PVX_108770 (VIR14) of the 

multi-gene VIR family largely located at the subtelomeric regions also presented high sero-

positivity, despite the role of its conserved globular domains in eliciting cross-reacting antibodies is 

unclear [159,160]. Other proteins such as HYP that is 100% conserved among P. vivax isolates from 

Mauritania, North Korea, India, and Brazil, and had antibodies significantly associated with 

protection against clinical P. vivax episodes in children [156], a potential target of blood-stage vaccine. 

Taken together, it is possible that individuals with low to no DARC expression have lower 

susceptibility to infection than individuals having high DARC expression by eliciting high frequency 

and magnitude of anti-DBP, anti-MSP, anti-RBP, and anti-FAM antibody response against P. vivax 

during the blood stage. This may imply that one of P. vivax’s primary mechanisms for evading host 

immunity works through indirect, negative regulation of DARC, influencing the humoral response 

against erythrocyte invasion and parasite development. 

 

6. Conclusion 

The documentation of P. vivax infections in different parts of Africa where Duffy-negative 

individuals are predominant [161-168] suggested that there are alternative pathways for erythrocyte 

invasion. It is apparent that Duffy-negative individuals are no longer resistant to P. vivax malaria. 

The increased risk of P. vivax infection and the growing clinical burden across Africa as well as in 

Duffy-negative individuals certainly highlight the public health concern of P. vivax malaria. Future 

studies should clarify the function and immunogenicity of various candidate parasite ligand proteins 

and identify their corresponding receptors involved in alternative Duffy-independent erythrocyte 

invasion, critically examine the host antibody response with respect to P. vivax proteins across wide 

ethic groups, provide a rigid comparison and analysis of asymptomatic reservoirs and transmission 

mechanisms of P. vivax in Duffy-negative populations, and unveil the biological features of relapse 

infections in Africa. 
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