Preprint
Article

Experimental Study on the Fracture Parameters of Concrete

Altmetrics

Downloads

191

Views

186

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

27 November 2020

Posted:

30 November 2020

You are already at the latest version

Alerts
Abstract
Abstract: This study was aimed to determine the influence of the volume fraction of steel fibers and on fracture parameters of concrete. Fifty notched steel fiber reinforced concrete (SFRC) beams and ordinary concrete beams with dimensions of 100mm×100mm×515mm were cast and tested via three-point bending test. Among them, the type of steel fiber is milling type (MF), and the volume fraction of steel fiber added is 0%, 0.5%, 0.5%, 1.5%, 1.5%, 2%, respectively. The effects of the steel fiber volume fraction (VF) on the critical stress intensity factor (KIC), fracture energy (GF), the deflection at failure(δ0), the critical crack mouth opening displacement (CMODC) and the critical crack tip opening displacement (CTODC)were studied. Through the analysis of test phenomena and test data such as load-deflection (P-δ) curve, load-crack mouth opening displacement (P-CMOD) curve and load-crack tip opening displacement (P-CTOD) curve following conclusions are drawn: With the increase of steel fiber volume fraction, some fracture parameters increase gradually and maintain a certain linear growth. The gain ratio of fracture parameters increases significantly, and the gain effect is obvious. Through this law of growth, the experimental statistical formulas of fracture energy and critical stress intensity factor are summarized.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated