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Abstract: High-performance motor drives that operate in harsh conditions require an accurate
and robust angular position measurement to properly estimate the speed and reduce the torque
ripple produced by angular estimation error. For that reason, a resolver is used in motor drives as a
position sensor due to its robustness. A resolver-to-digital converter (RDC) is an observer used to
get the angular position from the resolver signals. Most RDCs are based on angle tracking observers
(ATOs). On the other hand, generalized predictive control (GPC) has become a powerful tool in the
development of controllers and observers for industrial applications. However, no GPC-based RDC
with zero steady-state error during constant speed operation was proposed. This paper proposes an
RDC based on a second-order difference GPC (SOD-GPC). In SOD-GPC, the second order difference
operator is applied to design a GPC model with two embedded integrators. Thus, the SOD-GPC is
used to design a type-II ATO whose steady-state angle estimation error tends to zero during constant
speed operation. Simulation and experimental results prove that the proposed RDC system has better
performance than other approaches in literature.

Keywords: angle tracking observer, generalized predictive control, resolver, resolver-to-digital
converter, tracking.

1. Introduction

High-performance applications based on electrical motors drives, such as electric/hybrid vehicles
(EV/HEVs), aircraft, CNCs, and robotics, work under harsh conditions [1–3]. In those applications, an
accurate motor shaft angular position measurement is required to get the angular speed and to perform
vector control techniques [4–6]. Besides, a high error in the angular position estimation produces a
high torque ripple that may lead to motor drive malfunctions [6]. Hence, a robust angular position
sensor is required to guarantee the motor drive performance and reliability.

Encoder and resolver are the most used angular position sensors in industry [7–10]. Resolver
is most used for harsh applications as it can resist higher temperatures, shocks, and vibrations than
encoders [9,10]. A resolver generates two amplitude-modulated output voltages. For that reason,
getting an angular position from resolver signals is a difficult task. Observers called resolver-to-digital
converters (RDC) are used to estimate the angular position from the resolver outputs. Many RDCs
were proposed in literature [11–18]. These approaches can be divided into open-loop RDCs and
closed-loop RDCs. Closed-loop RDCs are more robust to noise and are usually based on an angle
tracking observer (ATO): a closed-loop estimator that reduces the difference between the actual and
the estimated angular position [13–18].
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On the other hand, model predictive control (MPC) becomes an interesting research topic due
to its fast response and robustness [19–22]. In the ’60s, the modern control theory began to diffuse
by the need to control more complex plants [23]. Interest in MPC begins in the late 1970s with the
emergence of several papers and consolidating MPC in the industry [24]. This interest existed for
his behavior in the time domain, and its robustness since the industrial engineers tend to use robust
control [22]. Clarke, in [25,26], presented a generalized predictive control (GPC) model, one of MPC‘s
robust methods [21]. The objective of GPC is to calculate a sequence of future control signals that
minimize a cost function that represents the system performance [21,22]. That cost function is defined
over a prediction window (a set of predicted plant responses). An augmented model of the plant is
used to predict the plant responses. In recent works, predictive control is applied in driving systems
[27–29], microgrids [30–32], HVAC systems [33,34], and other applications.

In [35], it was proposed for the first time the application of the conventional GPC described in
[22] in the development of an ATO. In that approach, the ATO was modelled as a tracking system
where the reference is the actual angular position and the system output is the estimated angle. Thus,
the angle estimation is represented as a tracking problem. However, the ATO proposed in [35] has a
steady-state angle estimation error during constant speed operation. In order to explain this error, let
define R(s), G(s) and C(s) be, respectively, the transfer function of the reference, the plant transfer
function and the controller. According to the internal model principle, if the product G(s)C(s) contains
R(s), then the plant output will asymptotically track the reference [36]. The angular position during
constant speed operation is modeled as a ramp signal (θ(t) = ωt). Besides, the Laplace transform of
a ramp signal is 1/s2. However, the conventional GPC system used in [35] has only one embedded
integrator (1/s). Furthermore, the GPC cost function used in [35] considers that the reference signal is
constant for the predicted outputs, which is false when the reference is a ramp signal. As a result, the
ATO in [35] has an estimation error during constant speed operation.

Adaptations of GPC for ramp reference tracking were proposed [37–39]. Most of them require
information about the reference and the solution of their cost functions to get their control law is not
straightforward. However, in [39] is proposed a simple adaptation of the conventional GPC described
in [22] for ramp reference tracking. That approach applies the second-order difference operator in
order to create an augmented prediction model with two embedded integrators. Thus, according to
the internal model principle, the GPC approach in [39] asymptotically tracks ramp references. Besides,
the prediction window in [39] is composed by the predicted tracking errors. Due to the desired value
of an error is always zero, then the prediction window reference vector is a set of zeros (i.e., a constant
reference). Thus, the optimization and the receding horizon techniques used in [22] can be used to
get the control law for ramp reference tracking. In this paper, in order to simplify the notation, the
GPC approach described in [39] is called as second-order difference generalized predictive control
(SOD-GPC).

In order to develop an ATO with the advantages of the GPC and with a zero steady-state
angle estimation error during constant speed operation, this paper proposes an ATO based on the
second-order difference generalized predictive control (SOD-GPC) described in [39]. As in [35], the
ATO is modelled as a tracking system whose reference is the actual angular position and whose output
is the estimated angle. During constant speed operation, the angular position (the reference) is a ramp
signal. Thus, the SOD-GPC can be used for the angle estimation error to be asymptotically zero during
constant speed operation.

The remainder of the paper is organized as follows. Section II describes the structure of the
resolver and GPC. The proposed ATO is described in Section III. Simulation and experimental results
shown in Section IV prove the good performance of the proposed ATO. Finally, conclusions are
outlined. In this paper, A ∈ <n×m denotes that A is a n×m matrix.
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2. Theoretical Foundations

2.1. Resolver

Figure 1 shows the schematics of the resolver. It is composed by a excitation winding and two
output windings. The excitation winding is coupled to the motor shaft and receives a sinusoidal
excitation voltage ve(t) of several kHz (1-10 kHz) [11–18]:

ve(t) = arcos(ωrt), (1)

where ar is the excitation voltage amplitude, ωr = 2π fr and fr is the excitation voltage frequency. Two
amplitude-modulated voltages vs(t) and vc(t) in the output windings. Those signals depend on the
angular position [14]:

vs(t) = krve(t)sin(θ(t)), (2)

vc(t) = krve(t)cos(θ(t)). (3)

where θ(t) is the angular position to be measured, while kr is the transformation ratio. The objective of
a resolver-to-digital converter (RDC) is to get the angular position from ve(t), vs(t) and vc(t).

2.2. Difference Operation

Let a(k) and b(k) be discrete-time signals (vectors or scalars). The first-order difference operator
(∆) and the second-order difference operator (∆2) are defined as follows [40]:

∆a(k) = a(k)− a(k− 1), (4)

∆2a(k) = ∆[∆a(k)] = ∆a(k)− ∆a(k− 1). (5)

Let M1 and M2 be matrices such as M1a(k) + M2b(k) exists. The aforementioned operators are
linear [39,40]:

∆[M1a(k) + M2b(k)] = M1∆a(k) + M2∆b(k), (6)

∆2[M1a(k) + M2b(k)] = M1∆2a(k) + M2∆2b(k). (7)

The operator ∆ corresponds to the discrete transfer function C(z) = 1− z−1 [22].

2.3. Conventional GPC

Consider that a n-order SISO (single-input single-output) plant has the following discrete-time
space-state model:

xm(k + 1) = Amxm(k) + Bmu(k), (8)

y(k) = Cmxm(k), (9)

Figure 1. Schematic diagram of the resolver sensor.
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where u(k) is the plant input, y(k) is the system output, xm(k) ∈ <n×1 is the plant state vector, while
Am ∈ <n×n, Bm ∈ <n×1 and Cm ∈ <1×n. Let consider that the plant does not have an embedded
integrator. The control system must have an integrator so that the steady-state error is zero for a step
reference. Conventional GPC requires the development of an augmented model with an embedded
integrator. This model will be used to predict the plant responses.

Applying the first-order difference operator (∆) into (8) and (9), and based on (6), yields:

∆xm(k + 1) = ∆[Amxm(k) + Bmu(k)] (10)

= Am∆xm(k) + Bm∆u(k),

∆y(k) = ∆[Cmxm(k)] (11)

= Cm∆xm(k),

where
∆xm (k) = xm (k)− xm (k− 1) , (12)

∆xm (k + 1) = xm (k + 1)− xm (k) , (13)

∆u(k) = u(k)− u(k− 1), (14)

∆y(k) = y(k)− y(k− 1). (15)

On the other hand, (16) can be proved based on (9), (15) and (10) [22]:

y(k + 1) = y(k) + ∆y(k + 1) (16)

= y(k) + Cm∆xm(k + 1)

= y(k) + Cm Am∆xm(k) + CmBm∆u(k).

The augmented model defined in (17) is obtained by placing (10) and (16) together in matrix form
[22]:

[
∆xm(k + 1)

y(k + 1)

]
=

A︷ ︸︸ ︷[
Am oT

m
Cm Am 1

] x(k)︷ ︸︸ ︷[
∆xm(k)

y(k)

]
+

B︷ ︸︸ ︷[
Bm

CmBm

]
∆u(k)

y(k) =

C︷ ︸︸ ︷[
om 1

] x(k)︷ ︸︸ ︷[
∆xm(k)

y(k)

]
,

, (17)

where A, B and C, in 17 are the matrices of the augmented model, while om ∈ <1×n vector composed
of zeros. This augmented model allows predicting the plant responses. Consider that the state vector
at the instant ki, x(ki), is known. The future control trajectory is defined as:

∆u(ki), ∆u(ki + 1), · · · , ∆u(ki + Nc − 1), (18)

where Nc is a variable called the control horizon. On the other hand, the future state variables are:

x(ki + 1|ki), x(ki + 2|ki), · · · , x(ki + Np|ki), (19)
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where x(ki + j|ki) is the predicted state vector at instant ki + j based on x(ki), while Np is the prediction
horizon, being Nc ≤ Np. The value of Np defines the length of the prediction window [22]. In GPC,
the future state variables are predicted using the control future trajectory and x(ki) [22]:

x(ki + 1|ki) = Ax(ki) + B∆u(ki),

x(ki + 2|ki) = A2x(ki) + AB∆u(ki) + B∆u(ki + 1),
...

x(ki + Np|ki) = ANp x(ki) + ANp−1B∆u(ki)+

ANpk−2B∆u(ki + 1) + · · ·+ ANp−Nc B∆u(ki + Nc − 1).

(20)

As y(k) = Cmx(k), the plant outputs are predicted based on (20):

y(ki + 1|ki) = CAx(ki) + CB∆u(ki),

y(ki + 2|ki) = CA2x(ki) + CAB∆u(ki) + CB∆u(ki + 1),
...

y(ki + Np|ki) = CANp x(ki) + CANp−1B∆u(ki)+

CANp−2B∆u(ki + 1) + · · ·+ CANp−Nc B∆u(ki + Nc − 1).

(21)

Putting (21) into a matrix form, yields:

Y = Fx(ki) + φU, (22)

where Y ∈ <Np×1 is vector with the predicted responses, U ∈ <Nc×1 is the vector with the future
control actions, while F and φ are defined in (25) :

Y =
[
y(ki + 1|ki) y(ki + 1|ki) · · · y(ki + Np|ki)

]T
, (23)

U =
[
∆u(ki) ∆u(ki + 1) · · · ∆u(ki + Nc − 1)

]T
, (24)

F =


CA
CA2

...
CANp

 , φ =


CB 0 · · · 0

CAB CA · · · 0
...

... · · · 0
CANp−1 CANp−1 · · · CANp−Nc

. (25)

Let r(k) be the reference signal of the plant. The objective of GPC is to calculate an optimal vector
U that minimize the error between the reference and the predicted plant outputs. Let Rs ∈ <Np×1 be a
vector that contains the references of the predicted responses that composes Y. It is considered that
RS is constant inside the prediction window (the set of predictions) [22]. Equation (26) defines the
reference vector Rs according to [22] :

RT
S =

[
1 1 · · · , 1

]
︸ ︷︷ ︸

Np

r(ki). (26)

The cost function J, which reflects the control system performance, is defined in [22] as:

J = (RS −Y)T(RS −Y) + UT RwU, Rw = rw Ic, (27)
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where Ic ∈ <Nc×Nc is an identity matrix, while rw is a tuning parameter used to control the magnitude
of U [22]. The optimal solution of (27) makes ∂J

∂U = 0 [22]:

∂J
∂U

= −2φT(RS − Fx(ki)) + 2(φTφ + Rw)U = 0. (28)

By replacing (22) into (28) and after mathematical manipulations, the optimal solution U is [22]:

U = (φTφ + Rw)
−1φT(RS − Fx(ki)). (29)

According to receding horizon approach, only the first element of the optimal control trajectory,
i.e., ∆u(ki), is used as control law. Thus:

∆u(ki) =

Nc︷ ︸︸ ︷[
1 0 · · · 0

]
(φTφ + Rw)

−1(φT RSr(ki)− φT Fx(ki)) (30)

= Kyr(ki)− Kmpcx(ki),

where Ky is the first element of φTφ + Rw)−1(φT RS) and Kmpc is the first line of φTφ + w)−1(φT Fx(ki)).
The gain vector Kmpc can be expressed as Kmpc = [Kx Ky], where Ky ∈ <1×1 is the last element of Kmpc,
while Kx ∈ <n×1. Based on (30) and the definition of x(k) in (17), it is possible to prove [22]:

∆u(ki) = Ky(r(ki)− y(k1)− Kx∆xm(ki). (31)

The closed-loop GPC system described in [22] can be described as shown in Figure 2, where z−1

block indicates the discrete delay operator, 1− z−1 is the discrete transfer function equivalent to the
∆ operator, while 1

1−z−1 corresponds to the discrete-time integrator. The plant input is obtained by
integrating ∆u(ki) in (31).

3. Proposed RDC System based on SOD-GPC

3.1. Second Order Difference GPC (SOD-GPC)

According to the internal model principle, if the plant has no integrator, then the controller must
have two embedded integrators in order to track ramp references [36]. However, the conventional GPC
approach in [22] only has one embedded integrator. Besides, the cost function of the GPC described
in (27) considers that the prediction window reference vector (RS) is constant within the prediction
window [22]. However, the reference vector defined in (26) is not constant when the plant reference
r(k) is a ramp signal.

In [39] was proposed an adaptation of the GPC algorithm for track reference tracking. This
approach is based on the application of the second-order difference operator in (4) to create an

Figure 2. Conventional Generalized Predictive Control described in [22].
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augmented model with two embedded integrators and whose output is the tracking error. In order
to simplify the notation, the GPC approach in [39] will be called as second-order difference GPC
(SOD-GPC) in this paper.

Applying the second-order difference operator into (8), and as this operator is linear, yields:

∆2xm(k + 1) = Cm Am∆2xm(k) + CmBm∆2u(k). (32)

Let e(k) be the tracking error:
e(k) = r(k)− y(k). (33)

Hence
e(k + 1) = r(k + 1)− y(k + 1). (34)

Applying the first-order difference operator into (16), (33) and (34) yields [39]:

∆e(k) = ∆r(k)− ∆y(k), (35)

∆e(k + 1) = ∆r(k + 1)− ∆y(k + 1), (36)

∆y(k + 1) = ∆ [y(k) + Cm Am∆xm(k) + CmBm∆u(k)] (37)

= ∆y(k) + Cm Am∆2xm(k) + CmBm∆2u(k).

On the other hand, let r(k) = αk + β be the ramp reference signal. Observe that ∆r(k) =

r(k)− r(k− 1) = α. Besides, ∆r(k + 1) = r(k + 1)− r(k) = α. Therefore:

∆r(k + 1) = ∆r(k). (38)

Replacing (35), (37) and (38) into (36), yields

∆e(k + 1) = ∆r(k)−
[
∆y(k) + Cm Am∆2xm(k) + CmBm∆2u(k)

]
(39)

= ∆e(k)− Cm Am∆2xm(k)− CmBm∆2u(k).

Observe that ∆e(k + 1) = e(k + 1)− e(k). Hence:

e(k + 1) = e(k) + ∆e(k + 1). (40)

Replacing (39) into (40), yields:

e(k + 1) = e(k) + ∆e(k + 1) (41)

= e(k) + ∆e(k)− Cm Am∆2xm(k)− CmBm∆2u(k).

The augmented model proposed defined in (42) is obtained from (32), (39) and (41) [39]:

x(k + 1) = Ax(k) + B∆2u(k),

Output: e(k) = Cx(k),
(42)

where

x(k) =

∆2xm(k)
∆e(k)
e(k)

 , A =

 Am oT
o oT

o
−Cm Am 1 oT

o
−Cm Am 1 1

 , B =

 Bm

−CmBm

−CmBm

 ,

C =
[
oo 0 1

]
.

(43)
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Observe that the input and the output of (42) are ∆2u(k) and e(k), respectively. In [39], the
prediction window is composed by the predicted tracking errors e(ki + 1|ki), e(ki + 2|ki), · · · , e(ki +

Np|ki), while the future control trajectory is ∆2u(ki), ∆2u(ki + 1), · · · , ∆2u(ki + Nc − 1). Thus, the
vector with the predicted response (Ya) and the vector with the future control signals (Ua) for the
SOD-GPC system proposed in [39] are defined as follows:

Ya =
[
e(ki + 1|ki) e(ki + 1|ki) · · · e(ki + Np|ki)

]T
, (44)

Ua =
[
∆2u(ki) ∆2u(ki + 1) · · · ∆2u(ki + Nc − 1)

]T
. (45)

The proposed augmented model in (42) has a similar structure of the GPC augmented model in
(17). Thus, it is possible to apply the method defined in (22) to predicted the tracking error (the outputs
of the augmented model in (42):

Ya = Fx(ki) + φUa, (46)

where F and φ are defined in (25) but using the matrices A, B and C in (43).
Observe that the desired values of the predicted errors that composes Ya is zero. Therefore, the

reference vector is a set of zeros, i.e., RS = 0, which is constant. As a result, the optimal solution Ua for
SOD-GPC is obtained through replacing Y, U and RS by Ya, Ua and 0 into (27), (28) and (29) [39]:

J = YT
a Ya + UT

a RwUa, (47)

∂J
∂Ua

= 2φT Fx(ki) + 2(φTφ + Rw)Ua = 0, (48)

Ua = −(φTφ + Rw)
−1φT Fx(ki). (49)

Furthermore, the first element of Ua, i.e., ∆2u(ki) is used to get the control law of the SOD-GPC,
according to the receding horizon approach:

∆2u(ki) = −

Nc︷ ︸︸ ︷[
1 0 · · · 0

]
(φTφ + R)−1φT Fx(ki). (50)

The plant input is obtained by integrating ∆2u(ki) in (50) twice. Figure 3 shows the structure of
the SOD-GPC system described in [39]. The dynamics of the control system depends on the tuning of
Np, Nc and Rw.

∆u(ki) = ∆2u(ki) + ∆u(ki − 1), u(ki) = ∆u(ki) + u(ki − 1). (51)

Let G(z) and Ga(z) be the discrete transfer functions of the plant and the SOD-GPC augmented
model. It is proved in [39]:

Figure 3. Schematic of the Second-Order Difference GPC system (SOD-GPC).
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Ga = −
[

z
z−1

]2
G(z). (52)

Equation (52) proves that the augmented model in (42) has two embedded integrators, when the
plant has no zeros at z = 1. Hence, the SOD-GPC can asymptotically track ramp references [39].

3.2. Proposed GPC-Based ATO

Figure 4 shows the structure of the proposed ATO based on SOD-GPC. Let consider that the
excitation signal is generated by the RDC. Thus, the value of this signal is known. Let t = k.ts, where t
is the discretized time, ts is the sampling time, while k denotes the k-th sample. Let θ(k) = θ(kts) and
θe(k) = θe(kts) be the actual and the estimated angle. Thus the resolver signals in (1), (2) and (3) can
be discretized as follows:

ve(k) = arcos(ωrtsk) = arcos(ωrsk), (53)

vs(k) = krve(k)sin(θ(k)), (54)

vc(k) = krve(k)cos(θ(k)), (55)

where ωrs = ωrts. According to (53), (54), (55) and Figure 4, the term g(k) is

g(k) =
2

kra2
r
[vs(k)cos(θe(k))− vc(k)sin(θe(k))] ve(k) (56)

=
2
a2

r
[sin(θ(k))cos(θe(k))− cos(θ(k))sin(θe(k))] v2

e (k)

= 2sin(θ(k)− θe(k))cos2(ωrsk)

= sin(θ(k)− θe(k)) [1 + cos(2ωrsk)]

= sin(eθ(k)) + sin(eθ(k))cos(2ωrsk),

where eθ(k) = θ(k)− θe(k) is the angle estimation error. Assuming that eθ(k) ≈ 0, then sin(eθ(k)) ≈
eθ(k). Thus (56) is rewritten as follows:

g(k) ≈ eθ(k) + eθ(k)cos(2ωrsk). (57)

Figure 4. Proposed ATO based on SOD-GPC.
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Let h(k) be the impulse response of the ATO. As the SOD-GPC is a linear system, it is possible to
apply the superposition principle in order to analyze the ATO response: the estimated angular position
(the ATO output) is the summation of the responses produced by eθ(k) and eθ(k)cos(2ωrsk):

θe(k) = h(k) ∗ g(k) (58)

= h(k) ∗ [eθ(k) + eθ(k)cos(2ωrsk)]

= h(k) ∗ eθ(k) + h(k) ∗ [eθ(k)cos(2ωrsk)] ,

where * denotes convolution. Through frequency shifting property, it is possible to prove that the
term eθ(k)cos(2ωrsk) is a high frequency signal, while the ATO acts as a low-pass filter that reject
high-frequency signals [18]. As a result, the effect of the signal eθ(k)cos(2ωrsk) in the angle estimation
will be rejected by the ATO:

h(k) ∗ [eθ(k)cos(2ωrsk)] ≈ 0. (59)

Replacing (59) into (58) yields:
θe(k) ≈ h(k) ∗ eθ(k). (60)

Equation (60) states that the estimated angle mainly depends on the term eθ(k). In consequence,
the ATO can be projected only considering the existence of eθ(k). Thus, the ATO can be approximated
as the closed-loop system in Figure 5, where the reference is θ(k), the output is θe(k) and the SOD-GPC
is the controller that reduce the error eθ(k). Besides, the plant whose output will be defined by the
SOD-GPC algorithm is the integrator represented by G(z) in Figure 5. The discrete-time model of the
integrator is described through (8) and (9), where Am = 1, Bm = ts, Cm = 1 and y(k) = xm(k) = θe(k).
Besides, the closed-loop error (e(k)) is the angle estimation error, i.e., e(k) = eθ(k). Replacing these
terms into (43) yields:

x(k) =

∆2θe(k)
∆e(k)
e(k)

 , A =

 1 0 0
−1 1 0
−1 1 1

 , B =

 ts

−ts

−ts

 , C =
[
0 0 1

]
. (61)

The matrices A, B and C in (61) must be used to obtain the gain matrix Ka and the control law
according to (25), (50) and (51). It is required the adequate tuning of the parameters Np, Nc, and Rw to
define the transient behavior of the ATO.

Figure 5. Simplified block diagram of the proposed ATO considering only the effect of eθ(k) in the
angle estimation.
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4. Results

4.1. Simulation Results

A set of simulation tests were performed in SIMULINK to demostrate the performance of the
proposed ATO. The sampling rate was set in 50 kHz. The parameters of the resolver sensor are listed
in Table (1). The angular position correspond to the speed curve shown in Figure (6). The proposed
ATO was tested considering different values of Np, Nc and Rw:

• Configuration 1: Np = 102, Nc = 2, Rw = 0.01,
• Configuration 2: Np = 120, Nc = 2, Rw = 0.01,
• Configuration 3: Np = 102, Nc = 10, Rw = 0.01.

The proposed approach was compared with the RDC described in [41]. The type-II tracking
system shown in Figure 7 is used in [41] to estimate the angular position. The dynamics of that

ATO depends on the eingenvalues of the matrix M =

 0 0 0
−1 0 0
0 1 0

 −
0.5 (krar)

2

0
0

 [k0 − k1 − k2]︸ ︷︷ ︸
K

.

Ackermann formula can be used to get the matrix K in order to set the eigenvalues of M. In this paper,
those eigenvalues were set in −100 + j100, −100− j100, and −500.

For each ATO configuration, two tests were performed: without adding noise to the resolver
outputs, and adding a noise (zero mean and 0.0002 variance) to the resolver outputs. Figures 8, 9, 10
and 11 show the angle estimation error for each simulation test.

Table 1. Simulation Parameters of the Resolver Sensor.

Parameters Values

Excitation amplitude (ar) 8 V
Excitation frequency ( fr) 2.5 kHz
Transformation ratio (kr) 0.5

Figure 6. Speed curve used in the tests.

Figure 7. RDC system described in [41].
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Table 2 shows the root mean square error (RMSE) and the error settling time (the time required
for the error signal to achieve its steady-state value) for each simulation test. The errors without noise
are negligible in all cases. However, it is possible to see that ATO in [41] has higher RMSE and settling
time than the proposed approach. As a result, the proposed RDC system based on SDO-GPC has faster
response and more robustness than the approach in [41].

Figure 8. Simulation results for Np = 102, Nc = 2, Rw = 0.01. a) Without noise, b) With noise.

Figure 9. Simulation results for Np = 120, Nc = 2, Rw = 0.01. a) Without noise, b) With noise.
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Figure 10. Simulation results for Np = 102, Nc = 10, Rw = 0.01. a) Without noise, b) With noise.

Figure 11. Simulation results for the ATO in [41]. a) Without noise, b) With noise.

Table 2. RMSE and Settling Time in the Simulation Tests.

Configuration RMSE (without noise) RMSE (with noise) Settling Time (s)

Np = 102, Nc = 2, Rw = 0.01 0.16× 10−3 0.48× 10−3 4.90× 10−3

Np = 120, Nc = 2, Rw = 0.01 0.20× 10−3 0.47× 10−3 5.10× 10−3

Np = 102, Nc = 10, Rw = 0.01 0.04× 10−3 0.68× 10−3 2.10× 10−3

ATO in [41] 0.61× 10−3 0.88× 10−3 55.0× 10−3
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4.2. Experimental Results

In order to test the proposed ATO, an experimental platform based on hardware-in-the-loop (HIL)
was set up. The experimental setup shown in Figure 12 consists of a PC and the FPGA Development
and Education Board DE2-115 of ALTERA (based on the FPGA EP4CE115F29C7). An Ethernet cable
allows the communication between the FPGA board and the PC.

In the HIL testing method used in this paper, the resolver signals are generated through a
SIMULINK block diagram in the PC. These signals are sent to the FPGA board through the Ethernet
cable. The FPGA board receives these signals, estimates the angular position through the proposed
ATO algorithm, and sends this estimation to the block diagram in the PC in order to calculate the angle
estimation error. One advantage of using the HIL method is that the angular position in known in each
instant. Thus, the angle estimation error can be calculated with accuracy. On the other hand, when a
practical resolver is used, an additional angular position sensor with better accuracy (which is difficult
to obtain) is required to get the actual angular position.

The proposed ATO was implemented in the FPGA board through a VHDL code, considering the
same signal sampling frequency (50 kHz) and the SOD-GPC parameters used in the simulation tests.
It was used 32-bits fixed-point data format in order to perform the arithmetic operations. However,
the estimated angular position was represented using 40 bits (30 fractional bits) in order to do a better
comparison between the actual and the estimated angle. The emulated resolver signals are the same as
those used in the simulation tests.

Figures 13, 14 and 15 show the results for the HIL tests. In the tests without noise, it is possible to
see a ripple in the angular position error during constant speed operation (from 0 s to 1 s). This ripple
is produced by the limited number of bits used for the arithmetic operations. However, that ripple is
negligible (that ripple has an amplitude less than 5× 10−5 rad). Table (3) presents the RMSE and the
settling time obtained in each HIL test. These values are similar to those obtained in simulations. The
greater the value of Nc, the faster the ATO response but the greater the RMSE.

Figure 12. Experimental setup.

Table 3. RMSE and Settling Time in the Experimental HIL Tests.

Configuration RMSE (without noise) RMSE (with noise) Settling Time (s)

Np = 102, Nc = 2, Rw = 0.01 0.18× 10−3 0.48× 10−3 5.50× 10−3

Np = 120, Nc = 2, Rw = 0.01 0.23× 10−3 0.47× 10−4 5.90× 10−3

Np = 102, Nc = 10, Rw = 0.01 0.06× 10−3 0.69× 10−4 3.90× 10−3
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Figure 13. Experimental results for Np = 102, Nc = 2, Rw = 0.01. a) Without noise, b) With noise.

Figure 14. Experimental results for Np = 120, Nc = 2, Rw = 0.01. a) Without noise, b) With noise.

It was not possible to properly implement the ATO in Figure 7 in the FPGA using 32 bits fixed-point
number representation. The main problem was the discretization of the integrators considering a
sampling rate of 50 kHz. On the other hand, the SOD-GPC is a discrete-time control system, being
easier to implement in a digital processor (no discretization is needed). As a result, the proposed RDC
based on a SOD-GPC based ATO has a fast response, robustness against noise and it is suitable to be
implemented in digital processors such as FPGAs.
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Figure 15. Experimental results for Np = 102, Nc = 10, Rw = 0.01. a) Without noise, b) With noise.

5. Conclusions

This paper presented a new angle tracking observer (ATO) based on second-order difference GPC
system (SOD-GPC). The proposed ATO has a steady-state error that tends to zero during constant
speed operation, a faster response and it is more robust than other ATOs. The GPC approach applied
in this work is a discrete-time control system. Hence, the GPC structure suitable for its implementation
in digital processor. Other ATOs, as in [41], are based on the discretization of continuous-time tracking
systems. The discretization may reduce the performance of a control system. The dynamic behavior of
the proposed ATO depends on the values of Np, Nc and Rw. As future work, an heuristic technique
such as genetic algorithms will be used for the ATO tuning.
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