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Two removal and cancellation laws associated with a complex
matrix and its conjugate transpose
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Abstract. A complex square matrix A is said to be Hermitian if A = A", the conjugate transpose of A.
The topic of the present note is concerned with the characterization of Hermitian matrix. In this note, the
we show that each of the two triple matrix product equalities AA*A = A*AA* and A% = AA* A implies
that A is Hermitian by means of decompositions and determinants of matrices, which are named the two-
sided removal and cancellation laws associated with Hermitian matrix, respectively. We also present several
general removal and cancellation laws as the extensions of the preceding two facts about Hermitian matrix.
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Throughout this note, let C™*™ denote the collections of all m x n matrices over the the field
of complex numbers; A* denote the conjugate transpose A € C™*"; | A| denote the determinant
of A € C"™*™; and I,,, denote the identity matrix of order m.

Recall that an A € C™*"™ is said to be Hermitian if and only if it satisfies the following equality

A= A", (1)

or element-wise, a;; = @j; for ¢,7 = 1,2,...,m. Hermitian matrices are basic conceptual objects
and building blocks in matrix theory and linear algebra, which have many elegant and pleasing
formulas and facts, and have many significant applications in the research areas of both theoretical
and applied mathematics. Although there have many studies and results concerning Hermitian
matrices, there are various new and challenging problems that can be proposed or encountered in
matrix analysis and its many areas of application. Given a square matrix A € C"*™ the assump-
tion that A is Hermitian is a strong requirement from the matrix equation point of view, but it
occurs naturally in the representations of quadratic forms, as well as in the Toeplitz decomposition
of any square matrix A:

A= (A+ A2 —i(iA+ (iA)")/2, 2)

where two matrices (A+ A*)/2 and (iA+ (¢4)*)/2 are Hermitian (cf. [4]). Hence, it is well known
that Hermitian matrices play central role in the developments of matrix theory and applications.

Apart from the definition, there are some characterizations of Hermitian matrix in the literature.
Here we should mention the following two well-known cases

A2 = AA* & A= A% (3)
A2 = A"A e A= A" (4)

The underlying meaning of these two facts is that we can cancel A from the left- and right-hand
sides of the first two equalities in (3) and (6) to yield the definition equality for Hermitian matrix
without assuming that A is invertible. Obviously, these two cancellation laws can be utilized
to simplify matrix equalities that involve the corresponding matrix products. The reader is to
referred to [1-3, 14, 15] for their expositions and derivations. The above cancellation laws seem
to be certain generalizations of the cancellation properties associated with invertible matrices
although they are obtained by some other indirect matrix operations, so that they let people
perceive relationships between different kinds of matrix equalities. It has been realized (cf. [8])
that this kind of cancellation problems can be regarded as special cases of the following two-sided
implication facts

FAA) =0 A=+A", (5)

where f(-) is certain conventional algebraic operation of A and A* namely, Hermitian/skew-
Hermitian matrices are exclusive solutions of the matrix equation on the left-hand side.

In this note, the author considers some extensions of the two cancellation laws to the cases
for triple matrix products composed of A and A*, and establishes some new equivalent facts for a
matrix to be Hermitian as follows.
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Theorem 1. Let A € C™*™. Then the following three statements are equivalent:
(a) A is Hermitian.
(b) AA*A is Hermitian, i.e., AA*A = A*AA*.
(c) A% = AA*A.
To show Theorem 1, we need to use the following known results.
Lemma 2. Let A € C"™*" and B, C € C"*P. Then the following results hold:
(a) [7] A*AB = A*AC < AB = AC.
(b) [13] The principal nth root of positive semi-definite matriz exists and is unique.

Lemma 3 ( [5]). Let A € C™*™. Then there exists a unitary matriz U such that A admits the
following decomposition:

YK XL]..
a=u[ 2y ©

where ¥ is a positive diagonal matriz, K is square matriz, and KK* + LL* = I with s = rank(A).

Proof of Theorem 1. Result (a) obviously implies (b) and (c¢) by the definition of Hermitian
matrix. On the contrary, if (b) holds, then we have the following implication facts:
AATA = ATAA" = (AATA)(ATAA") = (A"AA™)(AATA)
= (AA*)® = (A*A)® = AA* = A*A  (by Lemma 2(b))
= A*A? = A*AA* = A% = AA* (by Lemma 2(a))
= A=A" (by (3)),

namely, (b) implies (a). By (6), the following decomposition equalities for the four matrix products
A% AA* A3A*, and AA*)%:

2 2
A2 = U[(E(I){ ) EKOEL} U, AA =T [20 8} U, (7)
2y2 4
A3Ar = U[(EKO) = 8} Ut (AA*)? =T [20 8} ad (8)

hold. Based on these decomposition equalities, we have the following derivations:

A% = AA*A

0 0 0 0
= (K)??2?*=%"and KK* + LL* = I,
= (BK)?=%%and KK* 4+ LL* = I,
= |(ZK)? = |2P|K|* = |2|? and KK* + LL* = I,
= |K|?=1, 0< KK*<I,, 0<LL* <I,, and |I, — LL*| = |KK*| = |K||K*| = |K||K|
=0<LL*<I,and |I, - LL*| =1
= (XK)?*=%*and L =0
= A% = AA* (by (7))
= A=A" (by (3)),

232 4

namely, (¢) implies (a). a

The equivalences of the three assertions in Theorem 1 shows that we can remove A and A* from
both sides of AA*A = A*AA* simultaneously to yield A* = A, while the equivalence of Theorem
1(a) and (c) shows that we can also cancel A from both sides of A3 = AA* A simultaneously to yield
A = A*. Hence, we call the two facts in Theorem 1 (a) and (b), (a) and (c) the two-sided removal
and cancellation laws, respectively. It should be pointed out that the two removal/cancellation
laws are not isolated facts associated with conjugate transpose operation of a square matrix, but we
are able to propose and prove many types of removal/cancellation facts for the multiplications of
complex square matrices and their conjugate transposes. As direct consequences of the preceding
results, we present the following three groups of removal and cancellation facts:
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(a) Let A € C™*™. Then following facts hold:
(AA*A)? = (AA*)? & (AA*A)? = (A*A)P < A= A7,
(AA*A)® = (AA*)?A(A*A)? & A%A*A? = AATAA"A & A= A%,
A% = A*AA* and A® = A*AAAA* & A =AY,
AP = AA*AA*A and AT = AA*AA*AA*A & A= A%,

which are obtained by replacing A with AA*A in (3) and Theorem 1 and some algebraic
derivations.

(b) Let A € C™*™ and B € C™*™. Then the following fact holds:
(BA)? = BB*A*A < AB = B*A*.
(c) Let A e C™*" B e C"*P, and C € CP*™, Then the following fact holds:

CABCA=CC*"B*A*A < ABC =C*B*A™.

As concrete cases of the equivalence problems described in (5), there are some other mixed
cancellation laws associated with Hermitian matrices that were proposed and proved (cf. [1,3,15]).
In comparison, the preceding removal/cancellation laws link several fundamental matrix equalities
together, so that they should be recognized as some fundamental facts and common knowledge
regarding Hermitian matrices and their algebraic operations in matrix theory and applications.

Recall that as an extension of the concept of the conjugate transpose of complex matrix, the
x-involution operation of an element in an associative ring R (or semigroups and algebras) is
defined to be a mapping a — a* if it satisfies the equalities (a*)* = a, (a + b)* = a* + b*,
and (ab)* = b*a* for all a, b € R. In this case, it would be interest to consider the previous
removal/cancellation laws in the algebraic setting with *-involution, where self-adjoint elements
can be defined (cf. [2,8-12]). Notice that the proof of Theorem 1 uses some well-known facts
regarding the existence and uniqueness of the p-th root of positive semi-definite Hermitian matrix,
as well as matrix decompositions, and determinants of matrices, which are no longer available to use
in general algebraic settings. Thus, the proofs or disproofs of the preceding removal/cancellation
laws for self-adjoint elements in general algebraic settings should be given by means of other kinds
of analysis and calculation methods.
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