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Abstract: The subject of this article is the dynamics of water in a soil pedostructure sample whose
internal environment is subjected to a potential gradient created by the departure of water through
surface evaporation. This work refers entirely to the results and conclusions of a fundamental
theoretical study focused on the molecular thermodynamic equilibrium of the two aqueous phases
of the soil pedostructure. The new concepts and descriptive variables of the hydro-thermodynamic
equilibrium state of the soil medium, which have been established at the molecular level of the
fluid phases of the pedostructure (water and air) in a previous article, are recalled here in the
systemic paradigm of hydrostructural pedology. They allow access to the molecular description of
water migration in the soil and go beyond the classical mono-scale description of soil water
dynamics. We obtain a hydro-thermodynamic description of the soil's pedostructure at different
hydro-functional scale levels including those relating to the water molecule and its atoms. The
experimental results show a perfect agreement with the theory, validating at the same time the
systemic approach which was the framework.

Keywords: Pedostructure; Systemic modelling; Systemic variables, hydro-thermodynamic
equilibrium; Gibbs free energy; Fundamental thermodynamic variables; molecular, real and
Eulerian fluxes, hydric conductivity of the pedostructure.

1. Introduction

The problem of water transfer equations in soil dates back to the beginning of soil science. The
best-known equation and the basis of all models of water circulation in the soil, is the “Richards”
equation, which associates Euler's law of continuity and Darcy's law extended to unsaturated soils:

D=-% and f=kZ, (1)

dt dz

where 6 is the volumetric water content (unit less), ¢ is time, f the flow, z the vertical coordinate, k
the water conductivity and & the soil water retention pressure.

We resume here the study of the water transfer equation in the soil with a completely new
approach: that of the systemic approach we recently theorized [1-3] from the work of Bertalanffy,
initiator of the general theory of systems [4] and Le Moigne [5] author of the General System model.
The application of this systemic approach applied to pedology has created a new paradigm of
characterization, water modeling, and representation of the natural environment (multi-scale
mapping). It is named hydrostructural pedology [1-3] and is presented schematically in figure (1).
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Hydrostructural pedology allowed the development of a new physics of soil water, qualified as
systemic, based on the recognition of the pedostructure and the two types of water associated with it
[6-9]. We demonstrated that these two types of water in the pedostructure are two aqueous phases in
pressure equilibrium (h,,; (Wp,;) = hyq (W)) and distinguished by their thermodynamic properties.
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Figure 1: Place of hydrostructural pedology among the earth sciences [10]

This new physics of water in the soil has led to reconsideration the fundamental bases of
classical thermodynamics, in particular those of Gibbs free energy [11]. This study, associated with
the new concept of "system organized into organized subsystems that are molecules and their
atoms”, has made it possible to develop a new vision of the thermodynamic equilibrium of the soil
medium. The liquid and gas phases are all recognized as subsystems organized in molecules and
themselves in atoms, relative to the solid phase that makes up the soil structure. Classical variables
such as temperature, entropy, pressure, internal energy, and Gibbs free energy, could be physically
redefined and precisely explained because depending on the two levels of organization: molecular
and atomic.

In the present article, we will introduce these two levels of organization in the explanation of
the terms of the Richards equation (Appendix 1), after having rewritten it in the systemic framework
by taking into account the volume variable (volume of the organized system and subsystems). The
problem is knowing how to associate in the same equation an extensive variable (volume) and an
intensive variable (potential), empirically done today with Darcy's law extended to unsaturated
soils. We will see that the organization level, in which the extensive and intensive variables meet, is
the molecular level of organization. At this level, the terms internal / external energy, internal /
external pressure, internal / external chemical potential are in equilibrium relationship, as is well
explained in the previous article.
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2. Updated theoretical background of hydrostructural pedology
2.1 The pedostructure, test body of hydrostructural pedology

2.1.1. Preparation of a standard sample of pedostructure

The pedostructure is the fundamental concept at the basis of hydrostructural pedology.
Materially, it constitutes the first two levels of organization of the soil horizon: that of the clay
plasma and that of the assembly of primary aggregates between them and possibly with other
mineralogical or biological grains of sand size. Pedostructure is present in all soil horizons (Figure
la); its volume percentage in the horizon and its specific hydrostructural properties, due to the clay
plasma that makes up the primary aggregates, characterize the hydrostructural behavior of a soil
horizon.

It is therefore necessary to define the representative sample of pedostructure in the laboratory:
that sample upon which all the measurements of the hydro-functional curves of the soil will relate to
determine their parameters. These are the shrinkage curve,V (W), the water retention curve h(W),
the unsaturated soil water conductivity k(W) and the swelling curve of primary aggregates as a
function of time W,,;(t) [2, 10].

In our study, a standard laboratory pedostructure sample is a soil sample that is reconstituted
with what is traditionally called "fine earth", the 2mm sieved soil from the fractionation of a
moderately dry soil sample (<pF3) on a 2mm sieve (can be 4mm when the sample is very clayey with
swelling clay). The fine earth is added layer by layer in a cylinder of 5cm diameter and 5 cm height,
placed on a damp terry cloth; each layer added wets along with the filling. The objective is to obtain
a homogeneous sample in terms of structure and hydrostructural behavior. The soil cylinder is then
subjected to 2 cycles of desiccation-humidification, the desiccation being carried out using either the
Richards press at pF3 (15 bar) or evaporation in ambient air, the sample being positioned, in this
case, so that the evaporation occurs simultaneously on both sides of the cylinder.

These preparation standards for the pedostructure sample are at the same level of importance
as the oven temperature standard of 105 ° for the definition of dry soil. The term "pedostructural
mass" is the mass of the solid phase that constitutes the pedostructure of the sample: it constitutes
the universal benchmark for the extensive variables of a soil horizon (water content, salts etc.
referred to the pedostructural mass).

2.1.2. Characterization and modelling of the hydrostructural properties of the soil

The parameters of the two equilibrium equations of the hydrostructural state of the
pedostructure, the shrinkage curve V(W) and the soil water retention curve h(W), are determined
from the curves measured on the standard sample using the TypoSoil® device which can
simultaneously process up to 8 samples [12]. This characterization is totally accepted by the soil
water model Kamel [9,13] and was fully established within the systemic paradigm of
hydrostructural pedology with constant reference to the notions of nested organizations,
hydro-functional levels of organizations (primary aggregate, pedostructure, soil horizon, pedon,
primary soil unit, etc.), and using only variables, functions and parameters, said to be systemic
because they are defined in the systemic description network of the hydrostructural pedology [1-3].
All the extensive variables of the studied homogeneous organized system, in particular the cut
volume of the sample taken, are related to the fixed mass of the solid phase comprising the structure
cut out in this volume.

However, the exact thermodynamic formulation of the water retention curve h(W) at
equilibrium with the two aqueous phases of the pedostructure [8] and, from this, the exact
distribution of the two kinds of water content (W,,, and W,,;) in the pedostructure according to W,
raises a new and important question about the descriptive variables of the model. This equation
h(W) links an extensive variable (water content) to an intensive variable (water suction). Indeed, we
use a mini tensiometer (2mm thick) planted laterally in a soil sample at depths z, to simultaneously
obtain water suction (h = h,,; = h,,,), micro and macro water contents (W,,; and W,,,) at
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thermodynamic equilibrium, locally in the same soil mini-layer. To answer the fundamental
question of what exactly is the spatial extension of W,,,; and W,,,corresponding to h,,; and h,,,we
must recall the principal results of the previous article [11] on hydro-thermodynamic equilibrium at
the molecular and atomic organization scale levels.

2.2. Molecular thermodynamic equilibrium of the fluid phases of the pedostructure

2.2.1. Internal molecular organization of the aqueous phases at equilibrium

The water molecule and simple gas molecules constitute the material point of the fluid phases
of the natural environment. These molecules have a specific energy volume V;,, the sum of the
volumes occupied by their constituent atoms, and a mass, the sum of the masses of their atoms. The

free energy that the atom develops in the parent molecule is of the oscillatory type: %mlzvz. The sum

of the atomic free energies of the molecule constitutes the oscillatory energy of the molecule
contained in its volume (V,, = X V;). It is this internal "free" energy of the molecule that has been
identified as the temperature of a molecule. Thus, not only is the internal pressure equal everywhere
in the molecule (P = g = %), but also the chemical potential defined by u,,, = % = ;—“a‘l

In the aqueous or gaseous fluid phases in which the molecules, while being optionally ionized,
maintain their chemical compositions in atoms, the internal oscillatory energies (T;) of the
molecules are balanced with the kinetic energies acquired and maintained by what can be called
thermal agitation: the “shocks” or meetings of molecules of the fluid phase between them. We can
then associate each molecule with an occupancy volume: V., that contains the two types of energy:
oscillatory and linear kinetics (Figure 2).

At equilibrium, the volume concentrations of the internal and external energies (pressures) of

the molecules are the same and this is where the molecular entropy of the phase (S;) comes in. S,
XVt

m
where all molecules have the same internal and external pressure.

is a fractional number equal to which makes possible thermodynamic equilibrium possible
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Figure 2. Conceptual model of the thermodynamic equilibrium at molecule organization

scale; v is the celerity of the molecule and v, is the number of shocks per unit of time [511]

Moreover, given that each molecule necessarily has the same chemical potential u,,; = T;/m; as
that of its atoms and the same mass volume, equilibrium is achieved if the chemical potential of the
molecules is the same in all the phases. Molecules of chemical masses have different temperatures in
the fluid phase in equilibrium, but have the same molecular chemical potential (u,, = T;/m;) and a
chemical potential (Up,q = umS,) that depends on the entropy (S,) of the @ phase. We can define
the chemical potential of the phase that concerns only the external kinetic energy of the molecules,
which we will call the intermolecular chemical potential, pu,,, (index v void):
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Hya = ,um(Sa - 1) 2

The big difference with statistical thermodynamics is in the definition of temperature and the
understanding of the free energy of the thermodynamic system (homogeneous liquid and gaseous
fluid phases in equilibrium). The temperature of the phase is not the statistical average of a variable
temperature around a value but, rather, the exact average of the temperatures of a finite number of
molecules of different chemical species, the molecules of the same species having the same
temperature (internal energy).

A phase is characterized by its entropy S,, an intensive state variable having the same value
throughout the phase. At phase equilibrium, since the internal chemical potential of molecules, u,,,
is the same everywhere, the overall molecular chemical potential of the phase, u, = i, Sy, is
therefore an intensive variable characteristic of the phase. It is the same for the external chemical
potential of molecules of the phase (u,,), more specifically the characteristic kinetic potential of the
phase (% v?). This means that all molecules, regardless of their mass, have the same linear speed in

the phase.
We therefore have a fundamental relationship between the chemical potential of the molecule,
the entropy of the phase and the speed of the molecules in the phase:

2
Hvazﬂm(sa_l)zﬂma_ﬂmz% 3

where v, is the linear speed of molecules of the phase at the thermodynamic equilibrium state. The
pressure of the water molecules in this intermolecular space is T,, (S, — 1)/ (thw - Vmw) which is
equal to the internal molecular pressure T, /V;, and the total molecular pressure in the phase:
(Twsa)/thw'

However, the suction pressure measured by the tensiometer in soil science, as shown
previously [11], has the expression:

h = pw(“w - Hw") 4

where pu,. is the chemical potential of free water under air pressure and standard temperature.
According to the equation (3), and because p,, is equal everywhere in all phases of the system at
thermodynamic equilibrium, we can substitute the chemical potential of the water (u,) by the
intermolecular chemical potential (y,,,) without changing the value of the pressure h.

h = pu (tow — Bowe) 5

This allows u,, to be identified with the pressure potential of the water in the tensiometer,
relating h to the speed squared of molecules in the phase (equations (3) and (5)).

The particularity of this speed is being the same for all molecules of the phase, whatever their
mass, at thermodynamic equilibrium state since the criterion of intra and inter phase
thermodynamic equilibrium is the molecular chemical potential (u,,,) and not the temperature (T;) as
was shown in [11]. The temperature, identified with molecular energy, is in fact different for each
chemical species of the phase since it is obtained from the molecular chemical potential pu,, of the
fluid phases of the system in equilibrium (T; = m;u,,). The temperature of water molecules, for
example, is equal to:

Twzmwﬂmzmw%z w% 6
With these state variables of the thermodynamic equilibrium of the fluid phases (liquid and
gaseous) of the pedostructure defined at the two organization levels, the molecule and the phase, we
are able to search for the existing relationships between these newly defined variables and the usual
ones (flow, water content, pressures, suction, etc.). It should be remembered that this link is only
possible between variables defined according to the systemic approach, whether intensive or
extensive.
We give below the exhaustive list of hydro-thermodynamic variables qualified as systemic and
which cover the 4 levels of organization: macroscopic and microscopic of the aqueous phase then
molecular and atomic of the phase.
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Table 1. Primary thermodynamic variables and their units

Variable Type Units
Temperature T Energy joule
Potential pu Energy/Mass joule/kg

Pressure P Energy/Volume joule/dm3 ; kPa
Entropy S Volume/Volume nombre

! Temperature is pseudo-intensive, the others are true intensive variables and they represent each point of the
medium and stay unchanged across scales [6]

2.2.2. Identification of constants E,, and E,,; as intermolecular free energies of the pedostructure

We know that at the macroscopic level of the phases of the pedostructure, the free energies of
the two aqueous phases of the pedostructure (E,,; and E,,,) are observed constant despite a change
in the water content of this phase in the defined system of the pedostructure. Following Sposito [13]
E,; and E,,was identified before as the free energy Gn; = UymiWmi and Gma = twmaWna, Wi
and W,,, being the water contents micro and macro of the pedostructure. Now, following our
previous study [11] which differentiates the intermolecular energy (T (S, — 1)) from the total energy
(TSa), Emi and E,, are defined as the intermolecular energy, corresponding to kinetic energy of
molecules:

= 1 2 _ —_ =
EWma - Emwmavma - Mymamwma - nwmamwyvma 7

Ewmi = %777'Wmivmi2 = UymiMwmi = MywmiMy Hymi 8

This relationship involves the number of water molecules 7, in the aqueous phase "wa"
(macro or micro), whose molecular mass is m,,. The horizontal line above the extensive variables
signifies the ratio to the solid mass present in the same elementary volume.

Recall that these two aqueous phases coexist in the section (elementary layer) at z, one
surrounding the other, in the pedostructure sample. They are indexed: W;,, and W,,;. The fact that
the energy of the phase a (macro or micro), E,,, is constant despite a change in phase’s water
content (Mm,,) or in its chemical potential (u,,), appears as a displacement constraint for the
molecules since a potential gradient is created as soon as a deficit of water molecules appears in the
system. This constraint is written:

dEwa =0 = Myadllyg + HygdMyq = 0 9

or, for each a aqueous phase (macro or micro):

diya I dMyg

similar to dlog(u,,) = —dlog(m,,,) 10

Hva Mwa

As the soil medium of the pedostructure is in thermodynamic equilibrium, we have, at every point
of the medium, equality of the retention pressures between the two phases:

h, = hma = i = Pw(Uoma — Bomae)z = Pw(Momi — Homie) z- 11

This gives the following general equation, since pUyma — Uymas = Hymi — Hymie and according to (10):

Uoma @ 108(Myyma) = Hymid 10g(Mymi) = —dlyma = —Allym; 12

Note that this equation is valid only if the saturated state corresponding to h = 0 is set and
therefore the potential py;qe and pym;e corresponds to Wpge = Wipq ,, and Wye = Wy and that
all these equilibrium equations are deduced from the fact that the “free” energies E,;q and Ey,p;
of the two aqueous phases in equilibrium, defined and expressed by the fundamental expressions (7)
and (8), are constant and characteristic of the pedostructure.
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2.2.3. Definition of the molecular flux f,,, in the pedostructure in thermodynamic equilibrium

Consider the two aqueous phases of the pedostructure, one in the inter-aggregate space (macro
phase), surrounding the other (micro phase) in the clay plasma of the primary peds. Only the macro
phase is in contact with air and in capillary continuity throughout the sample. It has the possibility
of moving according to a potential gradient created by the departure of water molecules from the
surface. The micro phase has no capillary continuity and is in contact only with the macro phase
with which it locally comes into pressure equilibrium by exchanging water molecules.

In the absence of a potential gradient, the sum of the "speed" vectors of all molecules is zero
(zero divergence). When a potential gradient is set up, on the z axis for example, automatically an
acceleration field derives from the potential and is applied to the molecules placed in this gradient;
in the case of the macro phase:

du
VYma, = ;;n < 13

In the case of our standard experiment of drying a soil cylinder by evaporation of water on the
surface, the force exerted on all molecules of the phase is, in accordance with Newton's second law:
F; = MVuma- This force determines the elementary pressure carried by each molecule of the phase
on its environment: (p = py,Ywma 5 cf. [11]) which causes a molecular flux f,,, through the surface

(Sma) (occupied by the macro aqueous phase) of the sample section at depth z, such as:

_ Gfma _ dlvma
Ymaz = 74 dz 14

where f,,, is the molecular flux of the macro phase, identified to the molecular speed of phase
molecules along a gradient line if it exists (non-zero divergence). It is therefore an intensive phase
variable which has the same value for each molecule in the phase. This is what conceptually
distinguishes this type of (molecular) flux from the flows usually considered as flow in the Euler
equation, defined as the speed of passage of a volume of n molecules through a chosen surface and
not the actual passage of molecules. Moreover, as said above, the argument of velocity vectors of
molecules of a phase is equal throughout the phase in thermodynamic equilibrium, whatever their
molecular masses. This molecular speed of the macro phase can be identified as v,,, of equation (2):

fma = Vma = Y, 2Uyma 15

or

_1 2 _1 2
Hyma = ;fma - Evma 16

3. Materials and Methods
3.1. Soils

3.1.1. Provenance

All tested soils in this study come from Martinique: they were collected and characterized as
part of a IRD project to establish a SIRS-Sols of Martinique (Braudeau, 2007). The goal of the project
was to physically characterize the hydrostructural properties of the soils described in the notice of
the very detailed existing soil map of Martinique. This was drawn up in 1968, follow ing 10 years of
field and laboratory work by soil scientists of ORSTOM*. The soils are clayey of volcanic origin,
differentiated by pedogenesis according to the geomorphological situation and geographical
position they occupy around the ancient volcano. These lead, over small distances, to
well-differentiated pedohydric regimes and different microclimates and plant cover on the surface.

3.1.2. Hydrostructural characterization

Hydrostructural characterization consists of measuring the shrinkage curve and the potential
curve performed at the same time on the same sample (Braudeau, 2015; Braudeau et al., 2016; Assi et
al. 2014). At the time of the project, TypoSoil did not exist yet and the hydrostructural
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characterization was accomplished by measuring the shrinkage curve V (W) and the suction curve h
(W) (or water retention) of the soil on two separate samples. The porous ceramic of the tensiometer
had to be placed in the center of the sample, and the water had to evaporate uniformly over the
entire surface so that the curve was representative of the sample.

3.2. Measuring apparatus of the hydric conductivityof the pedostructure

The apparatus used was manufactured to measure the water conductivity of the soil
pedostructure (figure 3). It is composed of a balance on which rests a metal cylinder of 5 cm in
diameter and 5 cm in height containing the soil sample, collected at a moisture state close to the field
capacity. The cylinder is provided with two holes that allow the introduction of two
mini-tensiometers T1 and T2 (diameter 2mm), positioned lcm and 2 cm respectively from the
surface. The sample, reshuffled or not, is first brought to saturation with its cylinder on a sandbox.
The upper surface is then leveled at the edge of the cylinder while the lower surface is covered with
plastic film to prevent any evaporation on this side. Finally a flat ring, with an outer diameter equal
to the diameter of sample and forming a strip a few millimeters in width, is laid on its upper face to
limit the lateral evaporation that occurs after reduction in the diameter by shrinking.

Evaporation surface

/ Flat ring

Measured variables

1cm |:
——————— < 1 1 T1 :> Wl,Wmal,Wmil, hl, Wmal, L mil

1 cm [ \
_______ — 1 \ 1 T2 I:> W2, Winaz, Winiz, h2, timaz, pimi2

Tensiometers T1 and T2

v\ Perforated metal cylinder

Balance 0.01g \

Figure 3. Device for measuring the hydric conductivity of the pedostructure

The tensiometers are connected to a box of pressure sensors, in turn connected to a computer.
The assembly is placed in a thermostatic chamber at 34 °C. Tensions and weights are recorded every
5 minutes. We deduce the values of the overall water content (W;), the water potential (t;, ma) Of
the micro and macro phases at two postions of the tensiometer as well as the corresponding local
water contents (W,,;, Wp,q) by using the following relationships:

M¢—M
w, = tMS S5 h= hma = hmi = Pw(tma = Bmae) = Pw(lmi — Hmie)
— 1 1 Il 1 L
h = 'DWEma (Wma B WmaSat) - pwEmi (W_rm - WmiSat) o

Ema = Winalwma and Emi = Wmilwmi

where E;, Ema, Winasae and Wysqe are the characteristic parameters of the retention curve h (W)
given by the previous hydrostructural characterization of a soil horizon.

3.3. Systemic variables used for modelling the water movement at the different organization levels of the
pedostructure
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3.3.1. Hierarchical arrangement of liquid, solid and air phases at depth z

The standard object of the study being a sample of pedostructure of cylindrical shape by which
we study the variation of the water state along the z axis, all the descriptive variables used must
relatable to the same level of scale: that of the horizontal section of the sample at depth z, then
allowing us to relate the two microscopic and macroscopic aspects of the sample. We can imagine
this section, over an elementary height dz, surfaces occupied by the well identified phases: the solid
phase (s;), two aqueous phases (s;,,;) and (s;,4), and the gas phase (sq;) such that the total surface of
the section s, is the sum s; = S5 + Sp; + Spg + Sair- The entire surface is homogeneously filled with
these 4 phases with the essential constraint that the arrangement of the 4 phases between them is
respected: the solid phase is surrounded by micro water, which is surrounded by the macro phase,
and the macro phase surrounded by the air phase.

Recall that the basic assumption of the systems approach is to consider the solid phase of the
structure as invariant in mass in the discretization of space: the elementary horizontal layers of
volume 6V = s.dz all contain the same quantity of structural mass.

dms _ psSsdz __ _ My 18

dz dz sSs =
where pgs; is a fixed characteristic of the homogeneous sample in terms of structure and its
structural mass Mg; ps is the actual density of the solid phase, My is the total mass of the dry
sample and L is its length.

The extensive variables, such as water contents and organized volumes and sub-volumes (W,
Wi, Wi, V, etc.), are all related to the mass of the local structural phase: §m = pgssdz, the mass
contained in the same volume 8V as that in which the other variables are defined. We have for
example:

PwSwdz PwSw
= = Z 19
z PsSsdz PsSsz
In the systemic approach, this structural mass is the fixed reference to which are attached all the
variables of the same volume and which, in turn, is variable with the water content. This ensures
consistency in the creation and definition of descriptive variables as well as their correct use.

3.3.2. Extensive variables such as volumes and water contents

The crucial problem is indeed that defining the extensive variables of water content and of
volumes that depend on the organizational scale at which the variable is considered: the
macroscopic level of the entire system (V;, W,, etc.) or a discretized subsystem between two depths
(Vz1-z2 = AV, _;) or that considered at the molecular level, that of the horizontal section at depth z.

1 °) The global variables W;, V;, etc. marked with the index ¢, are considered homogeneous and in
thermodynamic equilibrium over the entire pedostructural system, the subject of the study. The
volume (V;) divided by the total mass of the solid phase (M) constituting the structure of the
system, is the mass volume, which we write as V,: V, = V,/M,. Likewise, the overall water content
of the system, W;, is the mass water content of the system (M,,) divided by the structural mass
(M) and written as: W, = M,,/M,;. These variables, all related to the same structural mass, are
additive: W, = Wp,,, + Wy, We have the following equalities:

Wy ZPW%prVWt ZZ_:; 20
The mass volume of the pedostructure (mass pedostructural volume) is variable with its water
content in accordance with a characteristic property of the soil: its shrinkage curve: V, = f(W,).

2 °) A second type of variable is the local variable, defined for a delimited part of the
homogeneous medium of the total system. In our case of a standard sample of pedostructure, this is
a horizontal layer of the sample between the dimensions z1 and z2. This layer is a subsystem of the
overall system, and has the same structural characteristics but the extensive variables of volume and
water content of the various mobile phases of the system (aqueous and gaseous) are not related to
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the total structural mass of the system. They are related to the local structural mass of the medium,
between the depths z1 and z2. This type of variable with an extensive character is indexed with Az

Vwaz _
Mspz

— Mwaz 21

WAZ = Pw pWVWAZ - Mgz

3) The third category of variables of an extensive nature is the “molecular” variable, a function
of z. These variables are attached to the horizontal section of the sample identified by the
corresponding z score. Let us redefine the mass volumes, like 7, using all the descriptive variables
of the aqueous and gas phases defined at this depth z:

7, = lim 2% =% = y 13 22
dz—0 Ps Ss Az c
where
C=%szdz=%=psss at depth z. 23

Subsequently, the z index, indicating that the variable is molecular, will generally be omitted.
Assuming that the medium is homogeneous from the perspective of its structure, we can

consider c as a constant that can be estimated at C = % = % for a cylindrical sample of height L

and structural massM;. We define the water content variables in the same way:

_ PwSma _ Pw _ 7
Wma - - Sma = pmea 24
Ps Ss c
_ PwSmidz _ pw _ 7
Wmi = o= Smi = pmei 25

ps Ss dz c

W=Lwwd_ tw = pu ¥, 26

ps Ss dz T c

Note that, since p,, and C are constants, any ratio of two occupied surfaces of a section in z

(Sma/Smi at depth z, for example) is equal to the ratio of the volumes based on these surfaces and

for height dz. This ratio of two differentiated surfaces at the molecular level of a horizontal section of

the sample, at z, can be considered equivalent to the ratio of the corresponding extensive variables at
the same z, for example:

s £ 14
wotw Py _g W 27
St v v

where s, is the area of the section at z occupied by water (s,, = Sy + Smi) and s, is the total area, at
Z.

3.3.3. Fluxes variables at depth z

Just as we have defined the extensive variables at depth z (V; W; Wyq; Wy), we must also
define the associated types of fluxes at depth z:

1 °) The global or Eulerian flux (fe,,): the flux of water crossing the entire horizontal section (s;),
of the sample, without distinction of the surface actually crossed by this section:

few

_ mydny, _ dVy, _ sydz _ sgdly _ dly 28
Pw Stdt sgdt s¢ dt s¢ dt dt

where m,, is the molecular mass of water and n,, is the number of water molecules in the
elementary water volume dV}, = s,,dz, which is in the elementary soil volume dV; = s,dz. This

defines the elementary high of water (dl,) such that s.dl, = dV,, = s,,dz. It follows that % is the

rate of transfer of water molecules through the surface (s;), while di,,/dt is the rate of drainage of
the height of water in the volume element (dV = s.dz).

This implies the equivalence: s, dz = s.dl, and the different forms of writing of the Eulerian flux
that we obtain by using equation (28) of equivalences with the ratio of molecular surfaces:

dly Sw dz dz W dz

fewz—l =——=9W—=__ .
dt Ss¢ dt dat pw V dt

29
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2 °) The real flux, f,,, transfer speed of water molecules through their real surface of passage
(Sma), the surface occupied by the macro water molecules, the aqueous phase external to the primary
aggregates:

ﬂdnw_de_stle _feW_WE

_ pwV
T w few_e T Wing dt
ma ma ma

fw= 30

- Pw Smadt - Smadt - Sma dt

where the ratio % represents, as in equation (29), the speed of movement of water molecules on the
z axis.

3 ©) The molecular flux (f;,,), the real speed of the water molecules of the surface s, is the
speed (modulus) of the molecules of the macro phase determined by the chemical potential of the
phase different fromf;, related to the number of micro and macro water molecules leaving the
surface during the time dt):

f — My dNwma _ SmadZ — E 31
ma Pw Smadt Smadt dat

Indeed, the speed % defined by this equation (31) is that of the water molecules of the phase,
namely, the speed of agitation of the molecules of the macro phase.

Thus, the Eulerian and real fluxes of the water in the pedostructure are linked to the speed of
agitation of the molecules of the macro aqueous phase through the intermediary of the molecular
flux f,, and therefore directly linked to the state variables of thermodynamic equilibrium of the
phase (temperature, chemical potential, entropy etc.)

3.3.4. Concomitant variation of organizational and fluxes variables at z

The two water fluxes, fe, and f,,, are, according to their physical definition (30) and (31),
proportional to the molecular flux according to:

Pw erw = Whnafw =W fna 32
or, dividing by p,, V :
few = Owmafw = Owfma 33

However, these equations (32) and (33) do not provide any information on their reciprocal
variations in time and space: it must be the same dz for the same dt that makes up the equations
defining the three types of variable containing the equation (flux, volume and mass). It is possible to
resolve the uncertainty about dz by considering the derivative of these variables with respect to z.
The derivative of f,,,defined by equation (31) gives:

dfma _ d (sma —dz) _ d (smadz) _ AWmag _  dInWpg 34
Sma dt dt \spmadz

dz ;

AtWiq dt

The change in sign results from the fact that one passes from a variation of speed, %, to a variation of

volume calculated with the height dz taken in the opposite direction of the speed. In the same way,
we also have:

dfw _ d sy dz _ sy d sydz W dinw _ aw

= == — 35
dz dz spq dt Sma 4z sy dt Wmna dt Wimnaqdt
dfey _ d(sydz) _  dlnWsy, _  dlnw W aw 36
dz ~ dzspdt dt s¢ dt pwV  pwidt

Note that the relations (34) to (36) participate in the definition of local extensive variables (at
depth z); we have in fact:

The indeterminacy having been lifted, it is allowed to relate these 3 equations to each other,
which gives:

dfw /dfma — d_W/dWma — (1 dWmi/dt) 37
az! dz at! " at AWima/dt
dfey % — Wma _ 38

dz ! dz pwV  wma

and we can rewrite the continuity equation in this form:
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aw _ _ dfw _ Afma AWpi/dt
=—PuV = ~Whna dz Wina dz (1 + dWma/dt) 39

3.3.5. Variation of the momentum product f,,W,,, over space

We saw that f,, is a molecular flux of the aqueous phase macro, and W,,,is the water content
of this phase at depth z, given by equation (24). The problem is the constant C that makes reference
to the solid phase. By taking the correct expression for the solid phase, we can then consider f,,, as
the speed of each molecule and f;;,,W,,, as the concentration of momentum whose derivative with
respect to time is a force.

Consider the molecular expression of the product: f,,, Wy, in accordance with equations (24) to
(27) and (31) of the physical definition of the two variables and their derivatives with respect to z:

w. _ Epwsma _ PwSmadz _ _ PwéVima _ _ PwdVma _ PwdVma __ _ AWma 40
fma ma —

d - §
dt ¢ s Ssd_idt %dt azms, . dt azdt azdt

where C is the constant of the material (C = p; s;) defined by equations (22) and (23), 6V, the
element of volume equal to 6V, = spadz, dms = ps sgdz, the mass of the solid phase concomitant,
and ms, the mass of the solid phase at the level of the section at z associated with the volume

. e d(s; -
variation dV,, = %; a,=C/my, =L"
4

We give for «a, the following physical definition:

cdt %dt azmgdt azdt azdt
VA

PwSmadZ __ _Pw5Vma _ _Pdema _ _Pdema _ AWma 41

where §myis the solid mass element corresponding to 6V;,, and such that:

Smg
dz

= A,;Mgma 42

Mgy being the element (mass) of the solid phase associated with dV,,, and such that:
AVina

= dVna 43

Msma

Comparing equations (39) and (40) we deduce that:

df, aw,
a2 fmaWma = d-rzna Wina = — d:za 44
thus,
dafi
Az fma = d":a 45
. daz
Since fnq = o we also have:
AWma _ 4z dWina _ dWmga
fma dz ~ dt dz ~ dt 46
and from (44), the general equation:
df, aw, aw,
a:Winafma = Wma dnzw = —fma d;na = _ﬁ 47
The consequence of equation (47) is that:
dlnfina _ _ dinWpnga d In(Wmafma) _
= o = and — =0 48

3.4 Writing of the physical process at a z-section level of scale

Having defined the descriptive variables of the organization of the internal environment of the
pedostructure at depth z, we can now introduce the physical processes that govern the movement of
water (fundamental equation of dynamics) and the regulation of liquid phases by relative to the
solid phase (thermodynamic equilibrium) due to evaporation of surface water.
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3.4.1. Application of Newton's law

The relation of flux with time, when it comes to a speed of movement, goes through the
fundamental law of mechanics and Newton's 2nd law, mentioned above (14). These laws apply to
the molecular flux (f;;,,) which proceeds from the chemical potential gradient of the macro aqueous
phase, the relationship of which is known with the water content of the phase at depth z:

The upward force F,,, which drives the water molecules, of molecular mass: m,,, present at
the s, surface at the coordinate z is equal to:

_ _ dfma _ du
Fma = My¥Yma = Mw at +mwz 49

They undergo an acceleration of:

Uma _ diva 50
dt daz
The + sign of equation (49) is negative in the literature but must be corrected as positive. In fact,
the negative sign arises from the fact that the potential, 1, is taken negative in a standard way, in
accordance with current thinking about potentials. However, we showed [11] that the chemical
potential of the thermodynamic phases (u,,, in this case) is always positive.

The products: (faWne) and (Wma di ’:“) are therefore respectively: the linear momentum,
MLT? and the force of inertia, MLT?, of the #,,, molecules of mass m,,, both refer to the local
structural mass m,, = C/a, as we saw above.

Let us derive the linear momentum of molecules of water (f;;,,W;,,) with respect to time:

d af;
i (fmaWma) = Wna % + fima

AWma

51
at

By replacing dVdV’t"a by its equivalent _W%dema given by equation (34) and % by d’;% (50), we
obtain:

d d dfy d dfma’

E(fmawma) = Wina l;-rzna = fmaWma dr;za = Wha ( I;r;a - ﬁ) 52

2
Let us try to determine the relation between the two terms %and % of relation (52). The

product f,,Wp, written with its fundamental variables is equal to — d;”";t“ from equation (40). The
4

derivative with respect to time is therefore the second derivative of W,,,:

d(fmana) - — dema 53
dt azdt?
From equations (52) and (53) we therefore have:
AWma _  dfma _ AWma _ (d#ma _ dfmaz)
agdt: dt Wina dt fma = ~Wna dz 2dz 54

AW
at
verified experimentally below:

Suppose that % is an exponential function of time, in its most general form, as will be

Wina = A¢=o exp(a;t) + B et = ZT“ = a;*Ar-o exp(a;t) = dVZna = a;*(Wynq — B) 55
Equation (54) is then written:
*Wma | Wmna _ __Afma
agdt? + dt fma = dt Wina 56
AWma (@t _ __Afma _ __ Alma
dt (az + fma) - dt Wina = dz Wina 57

By dividing all the members of equation (57) by W,,, and using equation (34), we obtain the

. o d d d
relation which links together=-22, fma ang Yme .
daz dat dz
Adfma _ Alma _ _ dInWipq (ﬂ ) _ Adfma (ﬂ )
dt ~ dz dt az+fma T dz az+fm“ 58

Knowing that % = Uzfma (45)
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Adfma _ Alma _ 2 _ 1 dfmaz
it dz atfma + azfma - atfma + 2 dz 59

That conforms to the relations (15) and (16) between f,,, the chemical potential p,,,, and the speed
of the particles vy, for the macro phase: fy,* = Upme? = 2Uyma- Then report (59) in equation (52)

gives:
d du dfma’
E(fmawma) = Wha ( erna - ﬁ) = a:Wnafma 60
Thus, the momentum f;;,,W;,, is an exponential of time tending towards 0 (a; < 0) and we
have:
a. = dIn(fmaWma) — dln fina + dInWpnq 61
t= dt dt dt

Hence the general relation, according to the hypothesis of the exponential expression of W,

(55):
dIn(Wing fina) _ dInfing |, dInWpg _4a _
" =— Tt == dtln(Wma B) 62
This has a consequence on the variation of a;. Let us differentiate equation 65 with respect to z:
d*(fmaWma) da df; aw,
# = d_thmafma + aWhna % + atfina % 63
Since d(f%r/m“) = 0 (48), equation (63) is nul:
@*(fmaWma) — @*(fmaWma) =0 and dar _ 0 64
dzdt dtdz dz
a, is constant with depth.
3.4.2. Equations of W,,, and f,, and their derivatives
We can deduct from (62) the derivatives of f,,,as functions of W,,,:
aln fma _ a — AWma _ a — a; (Wma—B) =a, B 65
dt AdtWimna Wma Wina
. dInWing _ _ dfma _
and since Y - Ta a2 finas
dfma _ __dInWng _ dInfmg  _ _ B
dz Uzfma = e dt de = (ng_ 1) 66
which gives
_ at (B-Wmqa) _ —dWpmg/dt _ dz
fma = t; Wma  —-dWpe/dz  dt 67
Finally, retaking (68)
dfma _ B _a’ B (B—Wma
ac - Mg, fma = @z Wing \ Wing ) 68
We deduce the equation of W,,, depending on t and z:
Wina — Wmaf = Wmazzo exp(—a,z) — Wmaf = (Wma" - Wmaf) exp(a,t) exp (—a,z) 69
with the condition that W,,, < W,,,.; thus:
aw,
d_zma = Wmazzo exp(—a,z) = _az(Wma - Wmaf) 70
aw,
d:w = at(Wma" - Wmaf) exp(att) eXp(—azZ) = at(Wma - Wmaf) 71
a*w, a*w,
TZ“ = —a,at,(Wgo — Wmaf) exp(a;t) exp(—a,z) = anm 72

3.4.3. Application of the equilibrium equations between the two pedostructure aqueous phases
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The pressure balance between the two aqueous phases which is established simultaneously
with the migration of macro water to the surface can be seen as follows.

The molecular flux fp,, of the macro phase is really the molecular speed of the molecules of this
phase when they pass through the section §,,, under the effect of a potential gradient, specific for
this phase, determined at z by the equation:

dH _ dhyg

dz dz

pwg = pu (H2t — g) 73

dz

The molecules of the micro phase (of potential u,,;) which are found in the clay plasma of the
primary aggregates are themselves subjected to the pressure difference (h,,, — h,,;) Which appears
between the two phases as soon as there is a change in macro water content W,,, atz, i.e. as soon as
a variation in the flux of molecules of this phase along the z axis appears (df,,/dz # 0).

In this case, dfp,,/dz # 0), the pressure balance between the two phases expressed by h,,, =
hpn; is broken and must be reestablished by a lateral flux of molecules from the micro phase to the
macro phase.

We can then describe the process of water migration in the sample following the evaporation of

water at the surface as follows: the variation of the flux of inter-aggregate water at depth z, % *0,

has the effect of a change in water content W, at this same depth z, which simultaneously causes a
new micro to macro flux totally determined by the equilibrium pressure equation h,,, = h,,;. This
equality was studied above, giving rise to relations (10) to (12).

Moreover, starting from the equilibrium condition: h,,; = h;,,, we have every moment

.ufr?i — Hmisat = .urer?a — Hmasat 74
which is written, according to W,,; and W, :

Emi _ Emi — Ema _ Ema 75
Wmi  Wmisat Wma  WmaSat

By setting the constant parameters of the shrinkage curve:

E i = - -
A = (Umasat — Hmisat) = Wm"z:at - Wrgat and E = Ep; + Engq 76

we get the following equalities:

Wi _ Wina _ w .
= = - ; 77
Emi  Ema=AWma  E—-AWna
. L W W w .
showing that the ratios : and are all functions of W,,, alone. So we have:
Wma" Wmi ma

Wina(E—AW, EmiW;

W = YmaE-Wma) o W,y = ———e 78

(Ema_AWma) Ema_AWma

Having the distribution of W,,, in space and its variation with time, we automatically have the
values and variations of W and W,,; in any point of the medium.
The following equations can be verified:

AW — % Emi’® — Ema (Wmi)z 79
AWma Emi (E_ma_AWma)2 E_mi Wma
leading to:
d_W_dWma Ema Wi 2 — _ Em_a M 2
dat ~ dt (1 + Emi (Wma) ) - at(Wm“ Wm“f) <1 + Emi (Wma) ) 80
and
aw _ dWimna Ema (Wimi\?\ _ _ Ema (Wini)?
dz ~ dz (1 + Emi (Wma) ) =~ Wina (1 + Emi (Wma) ) 81

The continuity equation (39) becomes:

d_W__ _dfew__ m__ dfma % Wmi)2
dt pwV dz Wna dz Wna dz (1+Emi (Wma ) 82
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4. Results

Linear relationships between Wz, Wt and Time

Riviere Lézard Ponterre 60cm
1400 -
& Meas. h1(Wt)
< 1200 -
) Mod. h1(Wt)
> .
a 1000 Meas. h2(Wt)
g 800 - 1 Mod. h2(Wt)
g 600 - N T Meas. h(W)
— 1
£ 400 - LR Mod. h(W)
2 ! [
S 200 - Lo
0 W1 w2 ¥
0.4 0.45 0.5 Olé/g 0.6 0.65
Water content (kg/kg solids)

Figure 4. Representation on the same graph of the water retention characteristic curve h(W),
measured and modelled, and of the tensiometric reading h; and h, according to the total water
content W;. Modelled curves of h(W), h;(W,) and h,(W;) used the same pedostructural
parameters characteristic of the sample: Wigsas, Winisar) Ema and Enp;.

The characteristic retention curve of the sample h(W) is shown in Figure 4, which also shows
the two curves (h; and h;,) of the continuous reading of tensiometers T1 and T2 as a function of the
total water content (W) of the sample. The curves are homothetic: the total water content of the
sample (W, = (M — M,)/M;) corresponds the values of the suction pressures h; and h, measured
by the tensiometers and the local water contents W; and W, encountered at the level of the
tensiometers and read on the retention curve h(W) characteristic of the sample.

The following relationships are observed:

WZl = a1Wt + b1 and sz = a2Wt + b2 83

where a; and b; are constants associated with the depth z;. At a given depth, the local water
content is in constant proportion to the overall water content of the sample. The same applies to the
difference in water content between two depths:

Wy, — Wy = We(ay — ay) — (b, — by) 84

Let’s find the relationship between a; and b;. At water saturation W, of the sample,

Wisar = aiWesar + by and Wisqe = Wsae = Wy 85
thus,
by = Wo(1 - a;) 86
and
a; = % 87

For a; to be time independent, whatever z, it is necessary that:
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da; = _ Wy Wz=Wo awy _We=Wo =0 88
dt dt (We—wy)? dt (We—Wp)?
dw; daw,
d_tt (VVZ - Wo) = dtz (Wt - Wo) 89
or else
d]n(Wt—Wo) _ d]n(WZ—Wo) 90

dt dt
The relation between the water content local, W, and total, W;, is such that:

AWy dwe  (Wy—=Wp)
_Z/_ — 2z7 o) _ ; 91
dt dt We—=Wy

Sma*‘smi)

W, being defined as the ratio of the areas s,, = Spq + 5p; and sg atz: W, = ( .
S

z

Wz Vs Wt W,,, W,, & W, Vs Time
0.6 1 0.65 -
y2 = 1.8191x - 0.5357 06 -
055 1 R?=0.9985 :
05 [V1=2.2889x-0.8135 0.55 - \
27 R? = 0.9997 -
o 0.5 A *
.45 - z w2
s &3 0.45 -
04 - ‘:‘. ¢ wi
: S 4 | Yt=-9E-05x+0.6106
035 - . W2 d y1 =-1.96E-04x + 5.84E-01 Wt
' . Wi = 0.35 - y2=-1.56E-04x + 5.75E-01
R? = 9.99E-01
0.3 ; ; ; ; . 03 . . .
05 052 054 056 058 06 0 500 1000 1500
Wt kg/kg Minutes

Figure 5. Linear relationships between Wz, Wt and Time. The z-area ratio a; is given in the figure:
2.29 for z=z1 and 1.82 for z=z2

The 2 graphs in Figure 5 give the values of a; and of d::z at the two positions of the
tensiometers z; and z,, which gives us, according to (91), % = dW;—(cu = -8.56 and -8.57 10-5

minutes-1 respectively.

Logarithmic relation between Wz and Wina-Winas

We can see in Figure 6 that the relation between W, and W,,, is, for the two cases of z, a
simple logarithmic function such as:

% = In(Wpa, = Winas) + C 92

where C is a dimensionless constant and 1/W, = a,, is a constant parameter of the exponential of
w,.
What is remarkable is that this logarithmic form of W, (92) exactly represents the equation (78)
of W, function of W,

i Wma(E_AWma)

& = — =
we = 0Wna, = Wonar) + € = 507 %
By differentiating (117) with respect to time and using relation (71), we obtain:
(Wma_W f) dWy _ aw, _
Tma?—ﬁ—at(wma_wmaf) 94
We therefore have, whatever z in the unsaturated zone :
Wz = aW, = cte 95

dt
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aw; g Wna

and according the relation (104) that exists between and —~
& 2
_ Ema (Wmi _
W = (Wma - Wmaf) (1 + E_(W_ml) ) - (Wma - Wmaf)Rz 96
mi ma
W, Vs (Wma,-Wmaf) Wt VS (Wma,-Wmaf)
0.54 - 0.60 -
0.59 -
0.52 -
0.58 -
0.50 - - |
= y= 0.025In(x) +0.6978 0.57 & Wmal-Wmaf
X 048 - R*=0.9999 £ 056 1
£ 046 y =0.0499In(x) + 0.6974 055 - o Wina2-Winaf
046 1 R? = 0.9997 ’ mas-Wma
3 0.54 -
0.44 - oW1l W2 0.53 - y =0.0214In(x) + 0.6582
0.42 -
0.52 1 y = 0.0275In(x) + 0.678
0.40 . . . 0.51 - ; ; .
0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06
Wma-Wmaf (kg/kg) Wma-Wmaf

Figure 6 : Relationship between W, W, and (Wma , Wmaf). Riviere Lézarde - Ponterre (halloysite
soil) 60 - 65 cm. The constant W, read on the left figure is 0.04995 kg of water/kg of soil

The fundamental relationships between flux,water potential and water content at macroscopic scale

Central role of W,,,

Figure 7 shows the experimental result of the relationship between the macro water content

AWma

gradients and the pressure % of a thin soil layer and the average water content of this layer.

We are in the case of a systemic discretization of the soil medium to apply transfer equations [9].

Wma*DH/ Dz Vs Wma DWma/Dz*DH/ Dz Vs Wma
2.5 +
7 -
2.0 - y = 3.123-54.04x 6 - y = 14.629¢107.4
R2 = 0.9991 5 - R?=0.9992
1.5 -
4 .
- ¢ Wma*Dh/Dz ~
*1.0 - / e ¢ Dwma/DZ* Dh/Dz
0.5 - 2
1 .
0.0 ; ; . 0 .
0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06
Wma (kg water/kg soil) Wma (kg water/kg soil)

Figure 7 : Measurement result of functions F1 and F2 which are simple exponentials of W,,,.The
function F3 not shown is the ratio of the first two.

The values of Wy, and W,,,, are calculated from the data of tensiometers T1 and T2 using

the characteristic soil retention curve. They are supposed to represent the average water contents in

. . . Ah AR AW, Alnw,
the 1 cm thick slices around tensiometers 1 and 2. The products W, , e and me
pwiz pwlhz Az Az

named F1, F2 and F3 are presented as functions of W,,(;2) , mean of W, between z1 and z2.
We observe three simple exponentials of W,,,, two of which are represented in Figure 7:

F1=W,, % = kyexp (@,Wyg) ; ky=3.123 and a,=-54.04 97

F2= iwfggi—’z’ = kyexp (@;Wina) ; ko=-14.629 and a,=-107.4 98
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F3 = 2208 = koexp (@3Wing) 7 ks=-4721 and ;= -53.61 99

To interpret these results, recall that the basic variables, suction pressure (1), chemical potential
(Umq), and molecular flux of the mobile phase (f;,,), are linked by the relation:

_dh _ dkma _ dEmi _ dfma 100
pwdz  dz dz dt
and knowing that
dInpi, = —dInW,, et Wyalime = Ema 101
we then have:
Wina s = W 52 = W 28 = By S50 = e 102

Assuming that the discretization is fine enough to maintain at the macroscopic scale the
relationship observed at the molecular scale between extensive and intensive variables, we should
observe, after (97):

_ AMWmg R kP
F2=—"% iz exp(2a, W) 103
Aln Wing k
F3 = “A—Z = —alaexp (CA4) 104

We actually find that a; can be taken as the average of a given by the curves F1 and F2, that
is @; = a3 = —53.8 which is near the value of @, = 2a; found (-107.4 instead of -107.6) .

Likewise, knowing E,, = 0.65 j/kg, the value of k; can be evaluated as the average of k,
and ky = —k3Ep,: 3.09 joules/kg soil/dm

Pedostructure water conductivity kg

Thus we have all the physical equations determining the space-time relationship of variation of
the three variables describing the dynamics of the medium: the fluxes, water contents and chemical
potentials of the two aqueous phases.

Recall the equation of continuity (82) that takes account of the thermodynamic equilibrium.

. . daz .
Using the relation f,, = -, We can write:

aw  dzdw _ dw
—_— == — 1
fma dz  dt dz dt 05

so the equation of continuity can be written such as:

W _ AWma (1| Emi (bma)*) _ _yy Ww _ e AW pdfew
at - at <1+ ( )>_ Wina Y, = fma oy = =PV = 106

Ema \tmi

Furthermore, experience has shown that

- a W, = cte 107
dt

aw
dac

cte (equations (105) and (106) that % and therefore also f,, are simple exponentials with the

same coefficients as W,,. Thus, as the soil water conductivity by definition is written:

W being an exponential of time and space, we deduce from the fact thatW,,, % =

= few _ _fw few _ _fw
PS ™ d4n/dz ~ dh/dz f,  dh/dz ™% 107
by multiplying (107) up and down by a,W,,, (= - %) (47) we get:
k. = azWmafw _ Wnaldfw/dz) __ —dw/dt 0
PS T g Wimadh/dz ™% T (Wpq/dz)(dh/dz) T T R ma

k,s = %chemaexp (—a W) 108
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Iy ? .
The constants: a,, W, k, = _ﬁ and a, = 2a,, are all determined by measurement as we
ma

showed above.

5. Discussion

The systemic modeling of the hydrostructural soil water properties by the model Kamel [9, 12]
successfully accounted yet for the levels of internal organization of the “soil factory”. It precisely
identified the pedostructure as assembly of primary peds containing two thermodynamically
distinct aqueous phases, intra-aggregate (macro) phase and inter-aggregate (micro) phase. However,
this modeling still ignored the lower levels of organization (molecular and atomic) of fluid phases of
the pedostructure. It therefore retained a semi-empirical character because, as our recent study [11]
showed, it is at these two levels of organization that the thermodynamic concepts of temperature,
entropy and chemical potential are clearly defined. And these all these concepts intervene in
hydro-thermodynamic equilibria as we know them at higher scales (soil suction gradient, soil water
retention curve, hydric conductivity ...).

By understanding the internal organization of the aqueous phases and their roles in the
evaporation process, we were able to relate the variables at each level to each the others in a
comprehensive and orderly manner. The present study focused on the notions of flux: molecular
flux (fins), water flux (fv, fueand fmi) and Eulerian flux (fw). Only fms is molecular and so, equal to the
speed of molecules the phase (the same for all molecules of the phase). Application of Newton's
second law makes it possible to identify the gradient of the chemical potential of the inter-aggregates

aqueous phase (macro) to the time derivative of its molecular flux, leading to the relation: % =

dlfi%. This important relationship could not be obtained without the acknowledgement of these

molecular and atomic organization levels.

Above this molecular level we find the nested levels of organization that we have dealt with
exhaustively in hydrostructural pedology [1-2]. This study has defined and highlighted the meeting
place of both worlds by studying the molecular descriptive variables (intensive and extensive)
attached to the z-depth where each description variable can be considered punctual and continuous.
The link between molecular thermodynamics and macroscopic thermodynamics was made by

setting that f,, = %: on the one hand d{i% = d’;% is compatible with % Afma = édf,%la = dlyma
that is fiug = +/2Uyma = Ima, the speed of molecules of phase macro, and on the other, f,, =
AWmga/dt _ dWp/dt _ dw/dt aw _ aw _ dfw
AWina/dz  dWp;/dz  dW/dz' fmaz T ar - maTg,

Finally, the equation of water conductivity (108) which is given here theoretically from a
combination of hydro-thermodynamic variables is of the same form as that found semi-empirically
and published recently in [13]. This result solves one of the many points of soil science questioned
[14] and which was not yet fully resolved by hydrostructural pedology, in particular the physical
equation of the water conductivity of unsaturated soils and its measurement [15]. The resolution of
this last point confirms the validity of the "systemic approach” such it was redefined by the authors
[1-3] to face the “black-box” modelling in soil hydrodynamics and in hydro-thermodynamics as we
just saw it, and to be at the basis of the soil water science that is named hydrostructural pedology. It
also justifies the new methods of characterization of the water functions of the soil [16, 17]
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Appendix A

The Richards equation, an Eulerian point of view

The Richards equation is the combination of two physical equations of different conceptual
origins:
a) conservation law of the matter which is expressed mathematically by the Euler equation
0w _ _ dfew Al

- 7

dt dz

where 6, is the volume water content of the soil and where fe,, isthe Eulerian flow, understood as
the volume flow velocity on z (upward positive);
b) Darcy's law extended to unsaturated porous media, the classical expression of which is

few = kAH/Az A2
where 2 =2_ Pw gA—Z is the pressure gradient of the soil water with respect to z, sum of the
Az Az Az

water retention pressure gradients and the pressure gravity.

This relationship is called "Darcy's law extended to unsaturated soils" and its application to the
Euler equation constitutes the Richards equation used in all soil-water models of water dynamics in
soil:

=k (E) A3

The question that arises when one goes from the verified Darcy law for saturated soils to the
extension of the law for unsaturated soils concerns the surface area of the flux at depth z. We
generally take s; the total surface of the sample but would it not be s,,, the surface occupied by the
water molecules which decreases with the water content, or else only s,,,, the surface corresponding
to the inter-aggregate of water, which should be considered? The systems approach helps answer
this question as we will see below. In fact the variable 6,,, which is the ratio of the volume of water
to the volume of soil 6,, =V,,/V,, is a non-systemic variable defined according to the notion of REV
(Representative Elementary Volume), which implies that the variable fe, cannot be defined by
equation (8): we do not know what it is spatially represents. The notions of surfaces occupied by
water molecules and solids at the depth z of the cylinder and of common thickness of the soil layer
do not appear in the concept of REV.

The so-called Richards equation (A3) is therefore empirical and cannot be related to
fundamental physics. To write it correctly, we must first understand the exact physical meaning of
the flux variables above, f,, et fe,, but also that of the thermodynamic variables which describe the
energy equilibria which are established at the molecular scale between the molecules of each fluid
phase as well as at the global scale between the thermodynamic phases of the pedostructure. Indeed,
these thermodynamic variables, like chemical potential, temperature and entropy, take on their full
physical significance at the molecular scale as we have shown in [11]. We have to take this level of
molecular scale into account to describe the process of migration of water molecules in the soil (its
pedostructure) submitted to a potential gradient at thermodynamic equilibrium.

Euler's equation for conservation of the mass

As mentioned above, the Richards equation comes from the introduction of Darcy's law
"extended to unsaturated media" into the Euler continuity equation. We need to study the terms,
including the meaning of flow, to relate it exactly to the speed of molecules and the thermodynamic
variables that were defined at the molecular level in the first part.
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Euler's equation for the conservation of the mass of water moving in the soil is written:
2 +V(pwv) =0 Ad

where p is the volume concentration of water in the soil (mass of water in the volume V of soil: p =
%), tis time and v the Eulerian velocity of the fluid (water) with density p,, assumed constant. The
Eulerian speed can be identified, except for the sign, with a flow that we will call Eulerian flux and
. My dly
write: fe,, (o, = —,v = fe, = +—7).
Viw dt ~

Let us rewrite this equation (A4) using the systemic variables (W and V =V /m;) rather than
the non-systemic variables (p and 8 =V,,/V) in order to discern the internal process variables
involved in the migration of water in the sample subjected to evaporation. Let us first recall the
existing relationships between these types of variables, m,, and m; being the mass of water and
solids contained in the volume V of soil (pedostructure):

_ Mw _ V_w_ _mw/ms_Z_PwVw

p_V_pWV_pWe_V/mS_V_ v A5
dp _ dW/V) _ pwdf A6
dt dt dt

since p,, = cte at constant temperature and pressure.
The second term is written such as:
_ _ dfey dfey dfey
V(puv) = puV = py, (T + e+ ) A7

where fe, = v isthe Eulerian flow which has the dimensions of a velocity, in LT-1.
Thus, the Euler equation that is known in hydrology is:

do  dfe,

dt  dz

Appendix B

Equations of W, f,, and their derivatives according to W,,, and f,,

Consider now the products f,,W and fe,p,V; we have, according to the definition of the
derivatives of fluxes (39-41) :

dfw 1 dw
w2 Bl
dz Wina dt
and
dfey 1 daw
AP L4 B2
dz pwV dt

We then obtain the general equation, similar to the Euler equation written with the systemic

variables:
aw = dfey dfw
—=—p,V — B
dt Pwl —a ma ggz 3
. . dz .
Moreover, using the relation f,, = 2 Wecan write:
dw _ dzdw _ aw
ar =287 _ 27 B4
fma dz dt dz  dt
so we have
dfw aw _ aw
ma gz fna dz  dt
that we can compare to
dfma dWma dWma
-W, = =— B6
ma gz fma dz dat

By subtracting the two equations term by term, we obtain:
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— dfw _ dfma) _ aw _ dWma) _ AW _ dWmq
Wina ( dz dz ) = fma (dz dz ) T oat dt B7
equivalent to:
_ m _ dfma _ AWmi\ _ dWmi
Wma(dz dz)_fma( dz)_ dt B8

Defining f,; = fi — fma as the virtual speed of molecules of the micro phase at z, we have the
following fundamental relationships:

Af mi AW AWy
—-W mi _ mi _ mi B9
ma gz fma dz dt

We find here the central role of f,,,and W,,, :

_ dWoy/dt  dWpg/dt  dw/dt

fma = AWoyi/dz  dWpma/dz  dW/dz B10
and
__ dWp/dt _ _ dWpg/dt __ dw/dt
Wna = dfmi/dz ~  dfma/dz  dfw/dz Bll
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