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Abstract: The subject of this article is the dynamics of water in a soil pedostructure sample whose 

internal environment is subjected to a potential gradient created by the departure of water through 

surface evaporation. This work refers entirely to the results and conclusions of a fundamental 

theoretical study focused on the molecular thermodynamic equilibrium of the two aqueous phases 

of the soil pedostructure. The new concepts and descriptive variables of the hydro-thermodynamic 

equilibrium state of the soil medium, which have been established at the molecular level of the 

fluid phases of the pedostructure (water and air) in a previous article, are recalled here in the 

systemic paradigm of hydrostructural pedology. They allow access to the molecular description of 

water migration in the soil and go beyond the classical mono-scale description of soil water 

dynamics. We obtain a hydro-thermodynamic description of the soil's pedostructure at different 

hydro-functional scale levels including those relating to the water molecule and its atoms. The 

experimental results show a perfect agreement with the theory, validating at the same time the 

systemic approach which was the framework. 

Keywords: Pedostructure; Systemic modelling; Systemic variables, hydro-thermodynamic 

equilibrium; Gibbs free energy; Fundamental thermodynamic variables; molecular, real and 
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1. Introduction 

The problem of water transfer equations in soil dates back to the beginning of soil science. The 

best-known equation and the basis of all models of water circulation in the soil, is the “Richards” 

equation, which associates Euler's law of continuity and Darcy's law extended to unsaturated soils: 

𝑑𝜃

𝑑𝑡
= −

𝑑𝑓

𝑑𝑧
  and 𝑓 = 𝑘

𝑑ℎ

𝑑𝑧
,        (1) 

where 𝜃 is the volumetric water content (unit less), t is time, f the flow, z the vertical coordinate, k 

the water conductivity and h the soil water retention pressure.  

We resume here the study of the water transfer equation in the soil with a completely new 

approach: that of the systemic approach we recently theorized [1-3] from the work of Bertalanffy, 

initiator of the general theory of systems [4] and Le Moigne [5] author of the General System model. 

The application of this systemic approach applied to pedology has created a new paradigm of 

characterization, water modeling, and representation of the natural environment (multi-scale 

mapping). It is named hydrostructural pedology [1-3] and is presented schematically in figure (1).   
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Hydrostructural pedology allowed the development of a new physics of soil water, qualified as 

systemic, based on the recognition of the pedostructure and the two types of water associated with it 

[6-9]. We demonstrated that these two types of water in the pedostructure are two aqueous phases in 

pressure equilibrium (ℎ𝑚𝑖(𝑊𝑚𝑖) = ℎ𝑚𝑎(𝑊)) and distinguished by their thermodynamic properties.  

Figure 1: Place of hydrostructural pedology among the earth sciences [10] 

This new physics of water in the soil has led to reconsideration the fundamental bases of 

classical thermodynamics, in particular those of Gibbs free energy [11]. This study, associated with 

the new concept of "system organized into organized subsystems that are molecules and their 

atoms", has made it possible to develop a new vision of the thermodynamic equilibrium of the soil 

medium. The liquid and gas phases are all recognized as subsystems organized in molecules and 

themselves in atoms, relative to the solid phase that makes up the soil structure. Classical variables 

such as temperature, entropy, pressure, internal energy, and Gibbs free energy, could be physically 

redefined and precisely explained because depending on the two levels of organization:  molecular 

and atomic.  

In the present article, we will introduce these two levels of organization in the explanation of 

the terms of the Richards equation (Appendix 1), after having rewritten it in the systemic framework 

by taking into account the volume variable (volume of the organized system and subsystems). The 

problem is knowing how to associate in the same equation an extensive variable (volume) and an 

intensive variable (potential), empirically done today with Darcy's law extended to unsaturated 

soils. We will see that the organization level, in which the extensive and intensive variables meet, is 

the molecular level of organization. At this level, the terms internal / external energy, internal / 

external pressure, internal / external chemical potential are in equilibrium relationship, as is well 

explained in the previous article.     
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2. Updated theoretical background of hydrostructural pedology 

2.1 The pedostructure, test body of hydrostructural pedology 

2.1.1. Preparation of a standard sample of pedostructure 

The pedostructure is the fundamental concept at the basis of hydrostructural pedology. 

Materially, it constitutes the first two levels of organization of the soil horizon: that of the clay 

plasma and that of the assembly of primary aggregates between them and possibly with other 

mineralogical or biological grains of sand size. Pedostructure is present in all soil horizons (Figure 

1a); its volume percentage in the horizon and its specific hydrostructural properties, due to the clay 

plasma that makes up the primary aggregates, characterize the hydrostructural behavior of a soil 

horizon.  

It is therefore necessary to define the representative sample of pedostructure in the laboratory: 

that sample upon which all the measurements of the hydro-functional curves of the soil will relate to 

determine their parameters. These are the shrinkage curve,𝑉(𝑊), the water retention curve ℎ(𝑊), 

the unsaturated soil water conductivity k(W) and the swelling curve of primary aggregates as a 

function of time 𝑊𝑚𝑖(𝑡) [2, 10].  

In our study, a standard laboratory pedostructure sample is a soil sample that is reconstituted 

with what is traditionally called "fine earth", the 2mm sieved soil from the fractionation of a 

moderately dry soil sample (<pF3) on a 2mm sieve (can be 4mm when the sample is very clayey with 

swelling clay). The fine earth is added layer by layer in a cylinder of 5cm diameter and 5 cm height, 

placed on a damp terry cloth; each layer added wets along with the filling. The objective is to obtain 

a homogeneous sample in terms of structure and hydrostructural behavior. The soil cylinder is then 

subjected to 2 cycles of desiccation-humidification, the desiccation being carried out using either the 

Richards press at pF3 (15 bar) or evaporation in ambient air, the sample being positioned, in this 

case, so that the evaporation occurs simultaneously on both sides of the cylinder. 

These preparation standards for the pedostructure sample are at the same level of importance 

as the oven temperature standard of 105 ° for the definition of dry soil. The term "pedostructural 

mass" is the mass of the solid phase that constitutes the pedostructure of the sample: it constitutes 

the universal benchmark for the extensive variables of a soil horizon (water content, salts etc. 

referred to the pedostructural mass). 

2.1.2. Characterization and modelling of the hydrostructural properties of the soil 

The parameters of the two equilibrium equations of the hydrostructural state of the 

pedostructure, the shrinkage curve 𝑉(𝑊) and the soil water retention curve ℎ(𝑊), are determined 

from the curves measured on the standard sample using the TypoSoil® device which can 

simultaneously process up to 8 samples [12]. This characterization is totally accepted by the soil 

water model Kamel [9,13] and was fully established within the systemic paradigm of 

hydrostructural pedology with constant reference to the notions of nested organizations, 

hydro-functional levels of organizations (primary aggregate, pedostructure, soil horizon, pedon, 

primary soil unit, etc.), and using only variables, functions and parameters, said to be systemic 

because they are defined in the systemic description network of the hydrostructural pedology [1-3]. 

All the extensive variables of the studied homogeneous organized system, in particular the cut 

volume of the sample taken, are related to the fixed mass of the solid phase comprising the structure 

cut out in this volume.   

However, the exact thermodynamic formulation of the water retention curve ℎ(𝑊)  at 

equilibrium with the two aqueous phases of the pedostructure [8] and, from this, the exact 

distribution of the two kinds of water content (𝑊𝑚𝑎 and 𝑊𝑚𝑖) in the pedostructure  according to W, 

raises a new and important question about the descriptive variables of the model. This equation 

ℎ(𝑊) links an extensive variable (water content) to an intensive variable (water suction). Indeed, we 

use a mini tensiometer (2mm thick) planted laterally in a soil sample at depths z, to simultaneously 

obtain water suction ( ℎ = ℎ𝑚𝑖 = ℎ𝑚𝑎 ), micro and macro water contents ( 𝑊𝑚𝑖  and 𝑊𝑚𝑎 ) at 
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thermodynamic equilibrium, locally in the same soil mini-layer. To answer the fundamental 

question of what exactly is the spatial extension of 𝑊𝑚𝑖  and 𝑊𝑚𝑎corresponding to ℎ𝑚𝑖  and ℎ𝑚𝑎we 

must recall the principal results of the previous article [11] on hydro-thermodynamic equilibrium at 

the molecular and atomic organization scale levels.  

2.2. Molecular thermodynamic equilibrium of the fluid phases of the pedostructure 

2.2.1. Internal molecular organization of the aqueous phases at equilibrium 

The water molecule and simple gas molecules constitute the material point of the fluid phases 

of the natural environment. These molecules have a specific energy volume 𝑉𝑚, the sum of the 

volumes occupied by their constituent atoms, and a mass, the sum of the masses of their atoms. The 

free energy that the atom develops in the parent molecule is of the oscillatory type: 
1

2
𝑚𝜆²𝜈². The sum 

of the atomic free energies of the molecule constitutes the oscillatory energy of the molecule 

contained in its volume (𝑉𝑚  =  ∑ 𝑉𝑎𝑖). It is this internal "free" energy of the molecule that has been 

identified as the temperature of a molecule. Thus, not only is the internal pressure equal everywhere 

in the molecule (𝑃 =
𝑇

𝑉
=

∑ 𝑇𝑎𝑖

∑ 𝑉𝑎𝑖
), but also the chemical potential defined by 𝜇𝑚 =

𝑇

𝑚
=

𝑇𝑎𝑖

𝑚𝑎𝑖
. 

In the aqueous or gaseous fluid phases in which the molecules, while being optionally ionized, 

maintain their chemical compositions in atoms, the internal oscillatory energies (𝑇𝑖)  of the 

molecules are balanced with the kinetic energies acquired and maintained by what can be called 

thermal agitation: the “shocks” or meetings of molecules of the fluid phase between them. We can 

then associate each molecule with an occupancy volume: 𝑉𝑚𝑡, that contains the two types of energy: 

oscillatory and linear kinetics (Figure 2). 

At equilibrium, the volume concentrations of the internal and external energies (pressures) of 

the molecules are the same and this is where the molecular entropy of the phase (𝑆𝑎) comes in. 𝑆𝑎 

is a fractional number equal to 
∑ 𝑉𝑚𝑡

∑ 𝑉𝑚
 which makes possible thermodynamic equilibrium possible 

where all molecules have the same internal and external pressure. 

 

Moreover, given that each molecule necessarily has the same chemical potential 𝜇𝑚𝑖 = 𝑇𝑖 𝑚𝑖⁄  as 

that of its atoms and the same mass volume, equilibrium is achieved if the chemical potential of the 

molecules is the same in all the phases. Molecules of chemical masses have different temperatures in 

the fluid phase in equilibrium, but have the same molecular chemical potential (𝜇𝑚 = 𝑇𝑖 𝑚𝑖⁄ ) and a 

chemical potential (𝜇𝑚𝛼 = 𝜇𝑚𝑆𝛼) that depends on the entropy (𝑆𝛼) of the 𝛼 phase. We can define 

the chemical potential of the phase that concerns only the external kinetic energy of the molecules, 

which we will call the intermolecular chemical potential, 𝜇𝑣𝛼, (index 𝑣 void): 

Figure 2. Conceptual model of the thermodynamic equilibrium at molecule organization 

scale; 𝒗 is the celerity of the molecule and 𝝂𝟐 is the number of shocks per unit of time [511] 

𝐸𝑚𝑣 =  𝑇(𝑆 − 1 ) 

𝐷2, 𝑉𝑚𝑡 , 𝐸𝑚𝑡 = TS  

𝐷1,  𝐸𝑚 = 𝑇 

𝑚,  𝑉𝑚 , 𝜇𝑚 

𝑣 

𝑉𝑚𝑣 = 𝑉𝑚𝑡 − 𝑉𝑚 

Kinetic parameters 

𝑃 =
𝑇𝑆

𝑉𝑚𝑡

=
𝑇(𝑆 − 1)

𝑉𝑚𝑡 − 𝑉𝑚

=
𝑇

𝑉𝑚

 

Pressures Potentials 

𝜇
𝑚

=
𝑇

𝑚
;  𝜇

𝑚𝑣
=

𝑇(𝑆 − 1)

𝑚
 

𝜇
𝛼

=
𝑇𝑆

𝑚
 

𝐸𝑚 = 𝑇 =
1

2
𝑚(𝜆1𝜈1)2 

𝐸𝑚𝑣 = 𝑇(𝑆 − 1) =
1

2
𝑚𝑣2 =

1

2
𝑚(𝜆2𝜈2)2 

Energies 

𝜈2 =
𝑣

(𝐷2 − 𝐷1)
 𝜆2 = (𝐷2 − 𝐷1) 
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𝜇𝑣𝛼 = 𝜇𝑚(𝑆𝛼 − 1)        2 

The big difference with statistical thermodynamics is in the definition of temperature and the 

understanding of the free energy of the thermodynamic system (homogeneous liquid and gaseous 

fluid phases in equilibrium). The temperature of the phase is not the statistical average of a variable 

temperature around a value but, rather, the exact average of the temperatures of a finite number of 

molecules of different chemical species, the molecules of the same species having the same 

temperature (internal energy).  

A phase is characterized by its entropy 𝑆𝛼, an intensive state variable having the same value 

throughout the phase. At phase equilibrium, since the internal chemical potential of molecules, 𝜇𝑚, 

is the same everywhere, the overall molecular chemical potential of the phase, 𝜇𝛼 = 𝜇𝑚𝑆𝛼 , is 

therefore an intensive variable characteristic of the phase. It is the same for the external chemical 

potential of molecules of the phase (𝜇𝑣𝛼), more specifically the characteristic kinetic potential of the 

phase (
1

2
𝑣2). This means that all molecules, regardless of their mass, have the same linear speed in 

the phase. 

We therefore have a fundamental relationship between the chemical potential of the molecule, 

the entropy of the phase and the speed of the molecules in the phase: 

𝜇𝑣𝛼 = 𝜇𝑚(𝑆𝛼 − 1) = 𝜇𝑚𝛼 − 𝜇𝑚 =
𝑣𝛼

2

2
        3 

where 𝑣𝛼 is the linear speed of molecules of the phase at the thermodynamic equilibrium state. The 

pressure of the water molecules in this intermolecular space is 𝑇𝑤(𝑆𝛼 − 1) (𝑉𝑚𝑡𝑤
− 𝑉𝑚𝑤

)⁄  which is 

equal to the internal molecular pressure 𝑇𝑤 𝑉𝑚𝑤
⁄  and the total molecular pressure in the phase: 

(𝑇𝑤𝑆𝛼) 𝑉𝑚𝑡𝑤
⁄ . 

However, the suction pressure measured by the tensiometer in soil science, as shown 

previously [11], has the expression: 

 ℎ = 𝜌𝑤(𝜇𝑤 − 𝜇𝑤°)        4 

where 𝜇𝑤° is the chemical potential of free water under air pressure and standard temperature. 

According to the equation (3), and because 𝜇𝑚 is equal everywhere in all phases of the system at 

thermodynamic equilibrium, we can substitute the chemical potential of the water (𝜇𝑤) by the 

intermolecular chemical potential (𝜇𝑣𝑤) without changing the value of the pressure ℎ.  

ℎ = 𝜌𝑤(𝜇𝑣𝑤 − 𝜇𝑣𝑤°)        5 

This allows 𝜇𝑣𝛼 to be identified with the pressure potential of the water in the tensiometer, 

relating ℎ to the speed squared of molecules in the phase (equations (3) and (5)). 

The particularity of this speed is being the same for all molecules of the phase, whatever their 

mass, at thermodynamic equilibrium state since the criterion of intra and inter phase 

thermodynamic equilibrium is the molecular chemical potential (𝜇𝑚) and not the temperature (𝑇𝑖) as 

was shown in [11]. The temperature, identified with molecular energy, is in fact different for each 

chemical species of the phase since it is obtained from the molecular chemical potential 𝜇𝑚 of the 

fluid phases of the system in equilibrium (𝑇𝑖 = 𝑚𝑖𝜇𝑚). The temperature of water molecules, for 

example, is equal to: 

𝑇𝑤 = 𝑚𝑤𝜇𝑚 = 𝑚𝑤
𝜇𝑚𝛼

𝑆𝛼
= 𝑚𝑤

𝜇𝑣𝛼

𝑆𝛼−1
        6 

With these state variables of the thermodynamic equilibrium of the fluid phases (liquid and 

gaseous) of the pedostructure defined at the two organization levels, the molecule and the phase, we 

are able to search for the existing relationships between these newly defined variables and the usual 

ones (flow, water content, pressures, suction, etc.). It should be remembered that this link is only 

possible between variables defined according to the systemic approach, whether intensive or 

extensive. 

We give below the exhaustive list of hydro-thermodynamic variables qualified as systemic and 

which cover the 4 levels of organization: macroscopic and microscopic of the aqueous phase then 

molecular and atomic of the phase. 
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Table 1. Primary thermodynamic variables and their units  

Variable Type Units 

Temperature T Energy joule 

Potential µ 

Pressure P 

Entropy S 

Energy/Mass 

Energy/Volume 

Volume/Volume 

joule/kg 

joule/dm3 ; kPa 

nombre 
1 Temperature is pseudo-intensive, the others are true intensive variables and they represent each point of the 

medium and stay unchanged across scales [6] 

2.2.2. Identification of constants 𝐸̅𝑚𝑎 and 𝐸̅𝑚𝑖  as intermolecular free energies of the pedostructure 

We know that at the macroscopic level of the phases of the pedostructure, the free energies of 

the two aqueous phases of the pedostructure (𝐸̅𝑚𝑖  and 𝐸̅𝑚𝑎) are observed constant despite a change 

in the water content of this phase in the defined system of the pedostructure. Following Sposito [13] 

𝐸̅𝑚𝑖  and 𝐸̅𝑚𝑎was identified before as the free energy 𝐺̅𝑚𝑖 = 𝜇𝑤𝑚𝑖𝑊𝑚𝑖  and 𝐺̅𝑚𝑎 = 𝜇𝑤𝑚𝑎𝑊𝑚𝑎 , 𝑊𝑚𝑖  

and 𝑊𝑚𝑎  being the water contents micro and macro of the pedostructure. Now, following our 

previous study [11] which differentiates the intermolecular energy (𝑇(𝑆𝛼 − 1)) from the total energy 

(𝑇𝑆𝛼), 𝐸̅𝑚𝑖 and 𝐸̅𝑚𝑎 are defined as the intermolecular energy, corresponding to kinetic energy of 

molecules:  

𝐸̅𝑤𝑚𝑎 =
1

2
𝑚̅𝑤𝑚𝑎𝑣𝑚𝑎

2 = 𝜇𝑣𝑚𝑎𝑚̅𝑤𝑚𝑎 = 𝑛̅𝑤𝑚𝑎𝑚𝑤𝜇𝑣𝑚𝑎       7 

𝐸̅𝑤𝑚𝑖 =
1

2
𝑚̅𝑤𝑚𝑖𝑣𝑚𝑖

2 = 𝜇𝑣𝑚𝑖𝑚̅𝑤𝑚𝑖 = 𝑛̅𝑤𝑚𝑖𝑚𝑤𝜇𝑣𝑚𝑖        8 

This relationship involves the number of water molecules 𝑛̅𝑤𝛼  in the aqueous phase "𝑤𝛼" 

(macro or micro), whose molecular mass is 𝑚𝑤. The horizontal line above the extensive variables 

signifies the ratio to the solid mass present in the same elementary volume.  

Recall that these two aqueous phases coexist in the section (elementary layer) at z, one 

surrounding the other, in the pedostructure sample. They are indexed: 𝑊𝑚𝑎 and 𝑊𝑚𝑖 . The fact that 

the energy of the phase α (macro or micro), 𝐸̅𝑤𝛼 , is constant despite a change in phase’s water 

content (𝑚̅𝑤𝛼) or in its chemical potential (𝜇𝑤𝛼), appears as a displacement constraint for the 

molecules since a potential gradient is created as soon as a deficit of water molecules appears in the 

system. This constraint is written:  

𝑑𝐸̅𝑤𝛼 = 0 = 𝑚̅𝑤𝛼𝑑𝜇𝑣𝛼 + 𝜇𝑣𝛼𝑑𝑚̅𝑤𝛼 = 0     9 

or, for each α aqueous phase (macro or micro): 

𝑑𝜇𝑣𝛼

𝜇𝑣𝛼
= −

𝑑𝑚̅𝑤𝛼

𝑚̅𝑤𝛼
 similar to 𝑑 log(𝜇𝑣𝛼) = −𝑑 log(𝑚̅𝑤𝛼)   10 

As the soil medium of the pedostructure is in thermodynamic equilibrium, we have, at every point 

of the medium, equality of the retention pressures between the two phases:  

ℎ𝑧 = ℎ𝑚𝑎 = ℎ𝑚𝑖 = 𝜌𝑤(𝜇𝑣𝑚𝑎 − 𝜇𝑣𝑚𝑎°)𝑧 = 𝜌𝑤(𝜇𝑣𝑚𝑖 − 𝜇𝑣𝑚𝑖°)𝑧.    11 

This gives the following general equation, since 𝜇𝑣𝑚𝑎 − 𝜇𝑣𝑚𝑎° = 𝜇𝑣𝑚𝑖 − 𝜇𝑣𝑚𝑖° and according to (10): 

𝜇𝑣𝑚𝑎𝑑 log(𝑚̅𝑤𝑚𝑎) = 𝜇𝑣𝑚𝑖𝑑 log(𝑚̅𝑤𝑚𝑖) = −𝑑𝜇𝑣𝑚𝑎 = −𝑑𝜇𝑣𝑚𝑖       12 

Note that this equation is valid only if the saturated state corresponding to h = 0 is set and 

therefore the potential 𝜇𝑣𝑚𝑎° and 𝜇𝑣𝑚𝑖° corresponds to 𝑊𝑚𝑎° = 𝑊𝑚𝑎𝑠𝑎𝑡
 and 𝑊𝑚𝑖° = 𝑊𝑚𝑖𝑠𝑎𝑡

and that 

all these equilibrium equations are deduced from the fact that the “free” energies 𝐸̅𝑤𝑚𝑎  and 𝐸̅𝑤𝑚𝑖  

of the two aqueous phases in equilibrium, defined and expressed by the fundamental expressions (7) 

and (8), are constant and characteristic of the pedostructure.  
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2.2.3. Definition of the molecular flux 𝑓𝑚𝑎 in the pedostructure in thermodynamic equilibrium  

Consider the two aqueous phases of the pedostructure, one in the inter-aggregate space (macro 

phase), surrounding the other (micro phase) in the clay plasma of the primary peds. Only the macro 

phase is in contact with air and in capillary continuity throughout the sample. It has the possibility 

of moving according to a potential gradient created by the departure of water molecules from the 

surface. The micro phase has no capillary continuity and is in contact only with the macro phase 

with which it locally comes into pressure equilibrium by exchanging water molecules. 

In the absence of a potential gradient, the sum of the "speed" vectors of all molecules is zero 

(zero divergence). When a potential gradient is set up, on the z axis for example, automatically an 

acceleration field derives from the potential and is applied to the molecules placed in this gradient; 

in the case of the macro phase: 

 𝛾𝑚𝑎𝑧
=

𝑑𝜇𝑣𝑚𝑎

𝑑𝑧
           13 

In the case of our standard experiment of drying a soil cylinder by evaporation of water on the 

surface, the force exerted on all molecules of the phase is, in accordance with Newton's second law:  

𝐹⃗𝑖 = 𝑚𝑖𝛾⃗𝑤𝑚𝑎. This force determines the elementary pressure carried by each molecule of the phase 

on its environment: (𝑝 = 𝜌𝑤𝛾𝑤𝑚𝑎  ; cf. [11]) which causes a molecular flux 𝑓𝑚𝑎 through the surface 

(𝑠𝑚𝑎) (occupied by the macro aqueous phase) of the sample section at depth z, such as: 

 𝛾𝑚𝑎𝑧
=

𝑑𝑓𝑚𝑎

𝑑𝑡
=

𝑑𝜇𝑣𝑚𝑎

𝑑𝑧
         14  

where 𝑓𝑚𝑎 is the molecular flux of the macro phase, identified to the molecular speed of phase 

molecules along a gradient line if it exists (non-zero divergence). It is therefore an intensive phase 

variable which has the same value for each molecule in the phase. This is what conceptually 

distinguishes this type of (molecular) flux from the flows usually considered as flow in the Euler 

equation, defined as the speed of passage of a volume of n molecules through a chosen surface and 

not the actual passage of molecules. Moreover, as said above, the argument of velocity vectors of 

molecules of a phase is equal throughout the phase in thermodynamic equilibrium, whatever their 

molecular masses. This molecular speed of the macro phase can be identified as 𝑣𝑚𝑎 of equation (2):  

 𝑓𝑚𝑎 = 𝑣𝑚𝑎 = √2𝜇𝑣𝑚𝑎        15 

or 

  𝜇𝑣𝑚𝑎 =
1

2
𝑓𝑚𝑎

2 =
1

2
𝑣𝑚𝑎

2       16 

3. Materials and Methods 

3.1. Soils 

3.1.1. Provenance 

All tested soils in this study come from Martinique: they were collected and characterized as 

part of a IRD project to establish a SIRS-Sols of Martinique (Braudeau, 2007). The goal of the project 

was to physically characterize the hydrostructural properties of the soils described in the notice of 

the very detailed existing soil map of Martinique. This was drawn up in 1968, follow ing 10 years of 

field and laboratory work by soil scientists of ORSTOM*. The soils are clayey of volcanic origin, 

differentiated by pedogenesis according to the geomorphological situation and geographical 

position they occupy around the ancient volcano. These lead, over small distances, to 

well-differentiated pedohydric regimes and different microclimates and plant cover on the surface.  

3.1.2. Hydrostructural characterization 

Hydrostructural characterization consists of measuring the shrinkage curve and the potential 

curve performed at the same time on the same sample (Braudeau, 2015; Braudeau et al., 2016; Assi et 

al. 2014). At the time of the project, TypoSoil did not exist yet and the hydrostructural 
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characterization was accomplished by measuring the shrinkage curve V (W) and the suction curve h 

(W) (or water retention) of the soil on two separate samples. The porous ceramic of the tensiometer 

had to be placed in the center of the sample, and the water had to evaporate uniformly over the 

entire surface so that the curve was representative of the sample.    

 3.2. Measuring apparatus of the hydric conductivityof the pedostructure 

The apparatus used was manufactured to measure the water conductivity of the soil 

pedostructure (figure 3). It is composed of a balance on which rests a metal cylinder of 5 cm in 

diameter and 5 cm in height containing the soil sample, collected at a moisture state close to the field 

capacity. The cylinder is provided with two holes that allow the introduction of two 

mini-tensiometers T1 and T2 (diameter 2mm), positioned 1cm and 2 cm respectively from the 

surface. The sample, reshuffled or not, is first brought to saturation with its cylinder on a sandbox. 

The upper surface is then leveled at the edge of the cylinder while the lower surface is covered with  

plastic film to prevent any evaporation on this side. Finally a flat ring, with an outer diameter equal 

to the diameter of sample and forming a strip a few millimeters in width, is laid on its upper face to 

limit the lateral evaporation that occurs after reduction in the diameter by shrinking. 

  

Figure 3. Device for measuring the hydric conductivity of the pedostructure 

The tensiometers are connected to a box of pressure sensors, in turn connected to a computer. 

The assembly is placed in a thermostatic chamber at 34 °C. Tensions and weights are recorded every 

5 minutes. We deduce the values of the overall water content (𝑊𝑡), the water potential (𝜇𝑚𝑖 , 𝜇𝑚𝑎) of 

the micro and macro phases at two postions of the tensiometer as well as the corresponding local 

water contents (𝑊𝑚𝑖 , 𝑊𝑚𝑎) by using the following relationships:  

𝑊𝑡 =
𝑀𝑡−𝑀𝑆

𝑀𝑆
 ; ℎ = ℎ𝑚𝑎 = ℎ𝑚𝑖 = 𝜌𝑤(𝜇𝑚𝑎 − 𝜇𝑚𝑎°) = 𝜌𝑤(𝜇𝑚𝑖 − 𝜇𝑚𝑖°)   

ℎ = 𝜌𝑤𝐸̅𝑚𝑎 (
1

𝑊𝑚𝑎
−

1

𝑊𝑚𝑎𝑆𝑎𝑡
) = 𝜌𝑤𝐸̅𝑚𝑖 (

1

𝑊𝑚𝑖
−

1

𝑊𝑚𝑖𝑆𝑎𝑡
)        17 

𝐸̅𝑚𝑎 = 𝑊𝑚𝑎𝜇𝑊𝑚𝑎 and 𝐸̅𝑚𝑖 = 𝑊𝑚𝑖𝜇𝑊𝑚𝑖   

where 𝐸̅𝑚𝑖 , 𝐸̅𝑚𝑎, 𝑊𝑚𝑎𝑆𝑎𝑡 and 𝑊𝑚𝑖𝑆𝑎𝑡 are the characteristic parameters of the retention curve h (W) 

given by the previous hydrostructural characterization of a soil horizon.  

3.3. Systemic variables used for modelling the water movement at the different organization levels of the 

pedostructure   

  

T1 

T2 

1 cm 

1 cm 

W1,Wma1,Wmi1, h1, µma1, µ mi1 

W2,Wma2,Wmi2, h2, µma2, µmi2  

Evaporation surface 

Balance 0.01g 

Perforated metal cylinder 

Tensiometers T1 and T2 

Flat ring 

Measured variables 
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3.3.1. Hierarchical arrangement of liquid, solid and air phases at depth z 

The standard object of the study being a sample of pedostructure of cylindrical shape by which 

we study the variation of the water state along the z axis, all the descriptive variables used must 

relatable to the same level of scale: that of the horizontal section of the sample at depth z, then 

allowing us to relate the two microscopic and macroscopic aspects of the sample. We can imagine 

this section, over an elementary height dz, surfaces occupied by the well identified phases: the solid 

phase (𝑠𝑠), two aqueous phases (𝑠𝑚𝑖) and (𝑠𝑚𝑎), and the gas phase (𝑠𝑎𝑖𝑟) such that the total surface of 

the section 𝑠𝑡 is the sum 𝑠𝑡 = 𝑠𝑠 + 𝑠𝑚𝑖 + 𝑠𝑚𝑎 + 𝑠𝑎𝑖𝑟 . The entire surface is homogeneously filled with 

these 4 phases with the essential constraint that the arrangement of the 4 phases between them is 

respected: the solid phase is surrounded by micro water, which is surrounded by the macro phase, 

and the macro phase surrounded by the air phase.  

Recall that the basic assumption of the systems approach is to consider the solid phase of the 

structure as invariant in mass in the discretization of space: the elementary horizontal layers of 

volume 𝛿𝑉 = 𝑠𝑡𝑑𝑧 all contain the same quantity of structural mass.  

 
𝛿𝑚𝑠

𝑑𝑧
=

𝜌𝑠𝑠𝑠𝑑𝑧

𝑑𝑧
= 𝜌𝑠𝑠𝑠 =

𝑀𝑠

𝐿
       18 

where 𝜌𝑠𝑠𝑠  is a fixed characteristic of the homogeneous sample in terms of structure and its 

structural mass 𝑀𝑠; 𝜌𝑠 is the actual density of the solid phase, 𝑀𝑠 is the total mass of the dry 

sample and 𝐿 is its length. 

The extensive variables, such as water contents and organized volumes and sub-volumes (𝑊,

𝑊𝑚𝑖 , 𝑊𝑚𝑎 , 𝑉̅, etc.), are all related to the mass of the local structural phase: 𝛿𝑚𝑠 = 𝜌𝑠𝑠𝑠𝑑𝑧, the mass 

contained in the same volume 𝛿𝑉 as that in which the other variables are defined. We have for 

example: 

𝑊𝑧 =
𝜌𝑤𝑠𝑤𝑑𝑧

𝜌𝑠𝑠𝑠𝑑𝑧
=

𝜌𝑤𝑠𝑤𝑧

𝜌𝑠𝑠𝑠𝑧

        19 

In the systemic approach, this structural mass is the fixed reference to which are attached all the 

variables of the same volume and which, in turn, is variable with the water content. This ensures 

consistency in the creation and definition of descriptive variables as well as their correct use.  

3.3.2. Extensive variables such as volumes and water contents 

The crucial problem is indeed that defining the extensive variables of water content and of 

volumes that depend on the organizational scale at which the variable is considered: the 

macroscopic level of the entire system (𝑉𝑡 , 𝑊𝑡 , etc.) or a discretized subsystem between two depths 

(𝑉𝑧1−𝑧2 = ∆𝑉1−2) or that considered at the molecular level, that of the horizontal section at depth z.  

1 °) The global variables 𝑊𝑡, 𝑉𝑡, etc. marked with the index t, are considered homogeneous and in 

thermodynamic equilibrium over the entire pedostructural system, the subject of the study. The 

volume (𝑉𝑡) divided by the total mass of the solid phase (𝑀𝑠𝑡) constituting the structure of the 

system, is the mass volume, which we write as 𝑉̅𝑡  :  𝑉̅𝑡 = 𝑉𝑡 𝑀𝑠𝑡⁄ . Likewise, the overall water content 

of the system, 𝑊𝑡, is the mass water content of the system (𝑀𝑤) divided by the structural mass 

(𝑀𝑠)  and written as: 𝑊𝑡 = 𝑀𝑤 𝑀𝑠𝑡⁄ . These variables, all related to the same structural mass, are 

additive: 𝑊𝑡 = 𝑊𝑚𝑎𝑡
+ 𝑊𝑚𝑖𝑡

. We have the following equalities: 

𝑊𝑡 = 𝜌𝑤
𝑉𝑤𝑡

𝑀𝑠𝑡
= 𝜌𝑤𝑉̅𝑤𝑡 =

𝑀𝑤

𝑀𝑠𝑡
        20 

The mass volume of the pedostructure (mass pedostructural volume) is variable with its water 

content in accordance with a characteristic property of the soil: its shrinkage curve: 𝑉̅𝑡 = 𝑓(𝑊𝑡).  

2 °) A second type of variable is the local variable, defined for a delimited part of the 

homogeneous medium of the total system. In our case of a standard sample of pedostructure, this is 

a horizontal layer of the sample between the dimensions z1 and z2. This layer is a subsystem of the 

overall system, and has the same structural characteristics but the extensive variables of volume and 

water content of the various mobile phases of the system (aqueous and gaseous) are not related to 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 December 2020                   doi:10.20944/preprints202012.0119.v1

https://doi.org/10.20944/preprints202012.0119.v1


 

the total structural mass of the system. They are related to the local structural mass of the medium, 

between the depths z1 and z2. This type of variable with an extensive character is indexed with ∆𝑧 

𝑊∆𝑧 = 𝜌𝑤
𝑉𝑤∆𝑧

𝑀𝑠∆𝑧
= 𝜌𝑤𝑉̅𝑤∆𝑧 =

𝑀𝑤∆𝑧

𝑀𝑠∆𝑧
       21 

3) The third category of variables of an extensive nature is the “molecular” variable, a function 

of z. These variables are attached to the horizontal section of the sample identified by the 

corresponding z score. Let us redefine the mass volumes, like 𝑉̅𝑧, using all the descriptive variables 

of the aqueous and gas phases defined at this depth z:  

𝑉̅𝑧 = lim
𝑑𝑧→0

𝑠𝑡

𝜌𝑠 𝑠𝑠

𝑑𝑧

𝑑𝑧
=

𝑠𝑡

𝐶
≡ 𝑀𝑠

−1𝐿3      22 

where  

𝐶 =
𝜌𝑠 𝑠𝑠 𝑑𝑧

𝑑𝑧
=

𝑑𝑚𝑠

𝑑𝑧
= 𝜌𝑠 𝑠𝑠 at depth z.      23 

Subsequently, the z index, indicating that the variable is molecular, will generally be omitted. 

Assuming that the medium is homogeneous from the perspective of its structure, we can 

consider c as a constant that can be estimated at 𝐶 =
𝑑𝑚𝑠

𝑑𝑧
=

𝑀𝑠

𝐿
 for a cylindrical sample of height L 

and structural mass𝑀𝑠. We define the water content variables in the same way: 

𝑊𝑚𝑎 =
𝜌𝑤

𝜌𝑠

𝑠𝑚𝑎

𝑠𝑠
=

𝜌𝑤 

𝐶
𝑠𝑚𝑎 = 𝜌𝑤𝑉̅𝑚𝑎        24 

𝑊𝑚𝑖 =
𝜌𝑤

𝜌𝑠

𝑠𝑚𝑖

𝑠𝑠

𝑑𝑧

𝑑𝑧
=

𝜌𝑤

𝐶
𝑠𝑚𝑖 = 𝜌𝑤𝑉̅𝑚𝑖        25 

𝑊 =
𝜌𝑤

𝜌𝑠

𝑠𝑤

𝑠𝑠

𝑑𝑧

𝑑𝑧
=

𝜌𝑤

𝐶
𝑠𝑤 = 𝜌𝑤𝑉̅𝑤       26  

Note that, since 𝜌𝑤 and 𝐶 are constants, any ratio of two occupied surfaces of a section in z 

(𝑠𝑚𝑎 𝑠𝑚𝑖⁄   at depth z, for example) is equal to the ratio of the volumes based on these surfaces and 

for height dz. This ratio of two differentiated surfaces at the molecular level of a horizontal section of 

the sample, at z, can be considered equivalent to the ratio of the corresponding extensive variables at 

the same z, for example: 

𝑠𝑤

𝑠𝑡
=

𝑉𝑤

𝑉
=

𝑉𝑤

𝑉
= 𝜃𝑤 =

𝑊

𝜌𝑤 𝑉
        27 

where 𝑠𝑤  is the area of the section at z occupied by water (𝑠𝑤 = 𝑠𝑚𝑎 + 𝑠𝑚𝑖) and 𝑠𝑡 is the total area, at 

z. 

3.3.3. Fluxes variables at depth z 

Just as we have defined the extensive variables at depth z (𝑉̅; 𝑊; 𝑊𝑚𝑎; 𝑊𝑚𝑖), we must also 

define the associated types of fluxes at depth z: 

1 °) The global or Eulerian flux (𝑓𝑒𝑤): the flux of water crossing the entire horizontal section (𝑠𝑡), 

of the sample, without distinction of the surface actually crossed by this section: 

𝑓𝑒𝑤 =
𝑚𝑤

𝜌𝑤

𝑑𝑛𝑤

𝑠𝑡𝑑𝑡
=

𝑑𝑉𝑤

𝑠𝑡𝑑𝑡
=

𝑠𝑤

𝑠𝑡

𝑑𝑧

𝑑𝑡
=

𝑠𝑡

𝑠𝑡

𝑑𝑙𝑤

𝑑𝑡
=

𝑑𝑙𝑤

𝑑𝑡
      28 

where 𝑚𝑤  is the molecular mass of water and 𝑛𝑤  is the number of water molecules in the 

elementary water volume 𝑑𝑉𝑤 = 𝑠𝑤𝑑𝑧, which is in the elementary soil volume 𝑑𝑉𝑡 = 𝑠𝑡𝑑𝑧. This 

defines the elementary high of water (𝑑𝑙𝑤) such that 𝑠𝑡𝑑𝑙𝑤 = 𝑑𝑉𝑤 = 𝑠𝑤𝑑𝑧. It follows that 
𝑑𝑧

𝑑𝑡
 is the 

rate of transfer of water molecules through the surface (𝑠𝑡), while 𝑑𝑙𝑤 𝑑𝑡⁄  is the rate of drainage of 

the height of water in the volume element (𝑑𝑉 = 𝑠𝑡𝑑𝑧).  

This implies the equivalence: 𝑠𝑤𝑑𝑧 = 𝑠𝑡𝑑𝑙𝑤and the different forms of writing of the Eulerian flux 

that we obtain by using equation (28) of equivalences with the ratio of molecular surfaces: 

 𝑓𝑒𝑤 =
𝑑𝑙𝑤

𝑑𝑡
=

𝑠𝑤

𝑠𝑡

𝑑𝑧

𝑑𝑡
= 𝜃𝑤

𝑑𝑧

𝑑𝑡
=

𝑊

𝜌𝑤 𝑉

𝑑𝑧

𝑑𝑡
 .       29 
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2 °) The real flux, 𝑓𝑤, transfer speed of water molecules through their real surface of passage 

(𝑠𝑚𝑎), the surface occupied by the macro water molecules, the aqueous phase external to the primary 

aggregates: 

𝑓𝑤 =
𝑚𝑤

𝜌𝑤

𝑑𝑛𝑤

𝑠𝑚𝑎𝑑𝑡
=

𝑑𝑉𝑤

𝑠𝑚𝑎𝑑𝑡
=

𝑠𝑡

𝑠𝑚𝑎

𝑑𝑙𝑤

𝑑𝑡
=

𝜌𝑤𝑉

𝑊𝑚𝑎
𝑓𝑒𝑤 =

𝑓𝑒𝑤

𝜃𝑚𝑎
=

𝑊

𝑊𝑚𝑎

𝑑𝑧

𝑑𝑡
        30 

where the ratio 
𝑑𝑧

𝑑𝑡
 represents, as in equation (29), the speed of movement of water molecules on the 

z axis.  

3 °) The molecular flux (𝑓𝑚𝑎), the real speed of the water molecules of the surface 𝑠𝑚𝑎, is the 

speed (modulus) of the molecules of the macro phase determined by the chemical potential of the 

phase different from𝑓𝑤 related to the number of micro and macro water molecules leaving the 

surface during the time dt): 

𝑓𝑚𝑎 =
𝑚𝑤

𝜌𝑤

𝑑𝑛𝑤𝑚𝑎

𝑠𝑚𝑎𝑑𝑡
=

𝑠𝑚𝑎𝑑𝑧

𝑠𝑚𝑎𝑑𝑡
=

𝑑𝑧

𝑑𝑡
       31 

Indeed, the speed 
𝑑𝑧

𝑑𝑡
 defined by this equation (31) is that of the water molecules of the phase, 

namely, the speed of agitation of the molecules of the macro phase.  

Thus, the Eulerian and real fluxes of the water in the pedostructure are linked to the speed of 

agitation of the molecules of the macro aqueous phase through the intermediary of the molecular 

flux 𝑓𝑚𝑎 and therefore directly linked to the state variables of thermodynamic equilibrium of the 

phase (temperature, chemical potential, entropy etc.) 

3.3.4. Concomitant variation of organizational and fluxes variables at z 

The two water fluxes, 𝑓𝑒𝑤 and 𝑓𝑤, are, according to their physical definition (30) and (31), 

proportional to the molecular flux according to: 

𝜌𝑤 𝑉̅𝑓𝑒𝑤 = 𝑊𝑚𝑎𝑓𝑤 = 𝑊𝑓𝑚𝑎         32 

or, dividing by 𝜌𝑤 𝑉̅ : 

𝑓𝑒𝑤 = 𝜃𝑤𝑚𝑎𝑓𝑤 = 𝜃𝑤𝑓𝑚𝑎        33 

However, these equations (32) and (33) do not provide any information on their reciprocal 

variations in time and space: it must be the same dz for the same dt that makes up the equations 

defining the three types of variable containing the equation (flux, volume and mass). It is possible to 

resolve the uncertainty about dz by considering the derivative of these variables with respect to z. 

The derivative of 𝑓𝑚𝑎defined by equation (31) gives: 

𝑑𝑓𝑚𝑎

𝑑𝑧
=

𝑑

𝑑𝑧
(

𝑠𝑚𝑎

𝑠𝑚𝑎

−𝑑𝑧

𝑑𝑡
) = −

𝑑

𝑑𝑡
(

𝑠𝑚𝑎𝑑𝑧

𝑠𝑚𝑎𝑑𝑧
) = −

𝑑𝑊𝑚𝑎

𝑑𝑡𝑊𝑚𝑎
= −

𝑑 ln 𝑊𝑚𝑎

𝑑𝑡
      34 

The change in sign results from the fact that one passes from a variation of speed, 
𝑑𝑧

𝑑𝑡
, to a variation of 

volume calculated with the height 𝑑𝑧 taken in the opposite direction of the speed. In the same way, 

we also have: 

𝑑𝑓𝑤

𝑑𝑧
=

𝑑

𝑑𝑧

𝑠𝑤

𝑠𝑚𝑎

𝑑𝑧

𝑑𝑡
=

𝑠𝑤

𝑠𝑚𝑎

𝑑

𝑑𝑧

𝑠𝑤

𝑠𝑤

𝑑𝑧

𝑑𝑡
= −

𝑊

𝑊𝑚𝑎

𝑑 ln 𝑊

𝑑𝑡
= −

𝑑𝑊

𝑊𝑚𝑎𝑑𝑡
      35 

𝑑𝑓𝑒𝑤

𝑑𝑧
=

𝑑(𝑠𝑤𝑑𝑧)

𝑑𝑧 𝑠𝑡 𝑑𝑡
= −

𝑑 ln 𝑊

𝑑𝑡

𝑠𝑤

𝑠𝑡
= −

𝑑 ln 𝑊

𝑑𝑡

𝑊

𝜌𝑤𝑉
= −

𝑑𝑊

𝜌𝑤𝑉𝑑𝑡
      36 

Note that the relations (34) to (36) participate in the definition of local extensive variables (at 

depth z); we have in fact: 

The indeterminacy having been lifted, it is allowed to relate these 3 equations to each other, 

which gives:           

 
𝑑𝑓𝑤

𝑑𝑧

𝑑𝑓𝑚𝑎

𝑑𝑧
⁄ =

𝑑𝑊

𝑑𝑡

𝑑𝑊𝑚𝑎

𝑑𝑡
⁄ = (1 +

𝑑𝑊𝑚𝑖 𝑑𝑡⁄

𝑑𝑊𝑚𝑎 𝑑𝑡⁄
)      37 

𝑑𝑓𝑒𝑤

𝑑𝑧

𝑑𝑓𝑤

𝑑𝑧
⁄ =

𝑊𝑚𝑎

𝜌𝑤𝑉
= 𝜃𝑤𝑚𝑎       38 

and we can rewrite the continuity equation in this form: 
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𝑑𝑊

𝑑𝑡
= −𝜌𝑤𝑉̅

𝑑𝑓𝑒𝑤

𝑑𝑧
= −𝑊𝑚𝑎

𝑑𝑓𝑤

𝑑𝑧
= −𝑊𝑚𝑎

𝑑𝑓𝑚𝑎

𝑑𝑧
(1 +

𝑑𝑊𝑚𝑖 𝑑𝑡⁄

𝑑𝑊𝑚𝑎 𝑑𝑡⁄
)      39 

3.3.5. Variation of the momentum product 𝑓𝑚𝑎𝑊𝑚𝑎 over space 

We saw that 𝑓𝑚𝑎 is a molecular flux of the aqueous phase macro, and 𝑊𝑚𝑎is the water content 

of this phase at depth z, given by equation (24). The problem is the constant C that makes reference 

to the solid phase. By taking the correct expression for the solid phase, we can then consider 𝑓𝑚𝑎 as 

the speed of each molecule and 𝑓𝑚𝑎𝑊𝑚𝑎 as the concentration of momentum whose derivative with 

respect to time is a force.     

Consider the molecular expression of the product: 𝑓𝑚𝑎𝑊𝑚𝑎, in accordance with equations (24) to 

(27) and (31) of the physical definition of the two variables and their derivatives with respect to z:  

 𝑓𝑚𝑎𝑊𝑚𝑎 =
𝑑𝑧

𝑑𝑡

𝜌𝑤𝑠𝑚𝑎

𝐶
=

𝜌𝑤𝑠𝑚𝑎𝑑𝑧

𝜌𝑠 𝑠𝑠
𝑑𝑧

𝑑𝑧
𝑑𝑡

= −
𝜌𝑤𝛿𝑉𝑚𝑎

𝛿𝑚𝑠
𝑑𝑧

𝑑𝑡
= −

𝜌𝑤𝑑𝑉𝑚𝑎

𝛼𝑧𝑚𝑠𝑧𝑚𝑎𝑑𝑡
= −

𝜌𝑤𝑑𝑉𝑚𝑎

𝛼𝑧𝑑𝑡
= −

𝑑𝑊𝑚𝑎

𝛼𝑧𝑑𝑡
    40 

where 𝐶 is the constant of the material (𝐶 = 𝜌𝑠 𝑠𝑠) defined by equations (22) and (23), 𝛿𝑉𝑚𝑎  the 

element of volume equal to 𝛿𝑉𝑚𝑎 = 𝑠𝑚𝑎𝑑𝑧, 𝛿𝑚𝑠 = 𝜌𝑠 𝑠𝑠𝑑𝑧, the mass of the solid phase concomitant, 

and 𝑚𝑠𝑧𝑚𝑎
the mass of the solid phase at the level of the section at z associated with the volume 

variation 𝑑𝑉𝑚𝑎 =
𝑑(𝑠𝑚𝑎)

𝛼𝑧
; 𝛼𝑧 = 𝐶 𝑚𝑠𝑧𝑚𝑎

⁄ ≡ 𝐿−1. 

We give for 𝛼𝑧 the following physical definition: 

𝜌𝑤𝑠𝑚𝑎𝑑𝑧 

𝐶𝑑𝑡
= −

𝜌𝑤𝛿𝑉𝑚𝑎 
𝛿𝑚𝑠

𝑑𝑧
𝑑𝑡

= −
𝜌𝑤𝑑𝑉𝑚𝑎 

𝛼𝑧𝑚𝑠𝑑𝑡
= −

𝜌𝑤𝑑𝑉𝑚𝑎 

𝛼𝑧𝑑𝑡
= −

𝑑𝑊𝑚𝑎

𝛼𝑧𝑑𝑡
        41 

where 𝛿𝑚𝑠is the solid mass element corresponding to 𝛿𝑉𝑚𝑎  and such that: 

𝛿𝑚𝑠

𝑑𝑧
= 𝛼𝑧𝑚𝑠𝑚𝑎          42 

𝑚𝑠𝑚𝑎 being the element (mass) of the solid phase associated with 𝑑𝑉𝑚𝑎 and such that: 

𝑑𝑉𝑚𝑎

𝑚𝑠𝑚𝑎
= 𝑑𝑉̅𝑚𝑎            43 

Comparing equations (39) and (40) we deduce that: 

 𝛼𝑧𝑓𝑚𝑎𝑊𝑚𝑎 =
𝑑 𝑓𝑚𝑎

𝑑𝑧
𝑊𝑚𝑎 = −

𝑑𝑊𝑚𝑎

𝑑𝑡
        44 

thus, 

𝛼𝑧𝑓𝑚𝑎 =
𝑑 𝑓𝑚𝑎

𝑑𝑧
          45 

Since 𝑓𝑚𝑎 =
𝑑𝑧

𝑑𝑡
, we also have: 

𝑓𝑚𝑎
𝑑𝑊𝑚𝑎

𝑑𝑧
=

𝑑𝑧

𝑑𝑡

𝑑𝑊𝑚𝑎

𝑑𝑧
=

𝑑𝑊𝑚𝑎

𝑑𝑡
       46 

and from (44), the general equation: 

𝛼𝑧𝑊𝑚𝑎𝑓𝑚𝑎 = 𝑊𝑚𝑎
𝑑𝑓𝑚𝑎

𝑑𝑧
= −𝑓𝑚𝑎

𝑑𝑊𝑚𝑎

𝑑𝑧
= −

𝑑𝑊𝑚𝑎

𝑑𝑡
     47 

The consequence of equation (47) is that: 

𝑑 ln 𝑓𝑚𝑎

𝑑𝑧
= −

𝑑 ln 𝑊𝑚𝑎

𝑑𝑧
= 𝛼𝑧 and  

𝑑 ln(𝑊𝑚𝑎𝑓𝑚𝑎)

𝑑𝑧
= 0      48  

3.4 Writing of the physical process at a z-section level of scale 

Having defined the descriptive variables of the organization of the internal environment of the 

pedostructure at depth z, we can now introduce the physical processes that govern the movement of 

water (fundamental equation of dynamics) and the regulation of liquid phases by relative to the 

solid phase (thermodynamic equilibrium) due to evaporation of surface water.  
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3.4.1. Application of Newton's law 

The relation of flux with time, when it comes to a speed of movement, goes through the 

fundamental law of mechanics and Newton's 2nd law, mentioned above (14). These laws apply to 

the molecular flux (𝑓𝑚𝑎) which proceeds from the chemical potential gradient of the macro aqueous 

phase, the relationship of which is known with the water content of the phase at depth z: 

The upward force 𝐹𝑚𝑎, which drives the water molecules, of molecular mass: 𝑚𝑤, present at 

the 𝑠𝑚𝑎  surface at the coordinate z is equal to: 

𝐹𝑚𝑎 = 𝑚𝑤𝛾𝑚𝑎 = 𝑚𝑤
𝑑𝑓𝑚𝑎

𝑑𝑡
= +𝑚𝑤

𝑑𝜇

𝑑𝑧
        49 

They undergo an acceleration of: 

𝑑𝑓𝑚𝑎

𝑑𝑡
=

𝑑𝜇𝑣𝑎

𝑑𝑧
          50 

The + sign of equation (49) is negative in the literature but must be corrected as positive. In fact, 

the negative sign arises from the fact that the potential, μ, is taken negative in a standard way, in 

accordance with current thinking about potentials. However, we showed [11] that the chemical 

potential of the thermodynamic phases (𝜇𝑣𝑎 in this case) is always positive. 

The products: (𝑓𝑚𝑎𝑊𝑚𝑎) and (𝑊𝑚𝑎
𝑑𝑓𝑚𝑎

𝑑𝑡
)  are therefore respectively: the linear momentum, 

MLT-1 and the force of inertia, MLT-2, of the 𝑛̅𝑚𝑎 molecules of mass 𝑚𝑤, both refer to the local 

structural mass 𝑚𝑠𝑧
= 𝐶/𝛼𝑧 as we saw above. 

Let us derive the linear momentum of molecules of water (𝑓𝑚𝑎𝑊𝑚𝑎) with respect to time: 

𝑑

𝑑𝑡
(𝑓𝑚𝑎𝑊𝑚𝑎) = 𝑊𝑚𝑎

𝑑𝑓𝑚𝑎

𝑑𝑡
+ 𝑓𝑚𝑎

𝑑𝑊𝑚𝑎

𝑑𝑡
          51 

By replacing 
𝑑𝑊𝑚𝑎

𝑑𝑡
 by its equivalent 

−𝑊𝑚𝑎𝑑𝑓𝑚𝑎

𝑑𝑧
 given by equation (34) and 

𝑑𝑓𝑚𝑎

𝑑𝑡
 by 

𝑑𝜇𝑚𝑎

𝑑𝑧
 (50), we 

obtain: 

𝑑

𝑑𝑡
(𝑓𝑚𝑎𝑊𝑚𝑎) = 𝑊𝑚𝑎

𝑑𝜇𝑚𝑎

𝑑𝑧
− 𝑓𝑚𝑎𝑊𝑚𝑎

𝑑𝑓𝑚𝑎

𝑑𝑧
= 𝑊𝑚𝑎 (

𝑑𝜇𝑚𝑎

𝑑𝑧
−

𝑑𝑓𝑚𝑎²

2𝑑𝑧
)     52 

Let us try to determine the relation between the two terms 
𝑑𝜇𝑚𝑎

𝑑𝑧
and 

𝑑𝑓𝑚𝑎²

2𝑑𝑧
 of relation (52). The 

product 𝑓𝑚𝑎𝑊𝑚𝑎 written with its fundamental variables is equal to −
𝑑𝑊𝑚𝑎

𝛼𝑧𝑑𝑡
 from equation (40). The 

derivative with respect to time is therefore the second derivative of 𝑊𝑚𝑎: 

𝑑(𝑓𝑚𝑎𝑊𝑚𝑎)

𝑑𝑡
= −

𝑑²𝑊𝑚𝑎

𝛼𝑧𝑑𝑡²
       53 

From equations (52) and (53) we therefore have: 

𝑑²𝑊𝑚𝑎

𝛼𝑧𝑑𝑡²
= −

𝑑𝑓𝑚𝑎

𝑑𝑡
𝑊𝑚𝑎 −

𝑑𝑊𝑚𝑎

𝑑𝑡
𝑓𝑚𝑎 = −𝑊𝑚𝑎 (

𝑑𝜇𝑚𝑎

𝑑𝑧
−

𝑑𝑓𝑚𝑎²

2𝑑𝑧
)     54 

Suppose that 
𝑑𝑊𝑚𝑎

𝑑𝑡
 is an exponential function of time, in its most general form, as will be 

verified experimentally below: 

𝑊𝑚𝑎 = 𝐴𝑡=0 exp(𝛼𝑡𝑡) + 𝐵 et  
𝑑²𝑊𝑚𝑎

𝑑𝑡²
= 𝛼𝑡²𝐴𝑡=0 exp(𝛼𝑡𝑡) = 𝛼𝑡

𝑑𝑊𝑚𝑎

𝑑𝑡
= 𝛼𝑡²(𝑊𝑚𝑎 − 𝐵)    55 

Equation (54) is then written:  

𝑑²𝑊𝑚𝑎

𝛼𝑧𝑑𝑡²
+

𝑑𝑊𝑚𝑎

𝑑𝑡
𝑓𝑚𝑎 = −

𝑑𝑓𝑚𝑎

𝑑𝑡
𝑊𝑚𝑎         56 

𝑑𝑊𝑚𝑎

𝑑𝑡
(

𝛼𝑡

𝛼𝑧
+ 𝑓𝑚𝑎) = −

𝑑𝑓𝑚𝑎

𝑑𝑡
𝑊𝑚𝑎 = −

𝑑𝜇𝑚𝑎

𝑑𝑧
𝑊𝑚𝑎       57 

By dividing all the members of equation (57) by 𝑊𝑚𝑎 and using equation (34), we obtain the 

relation which links together
𝑑𝜇𝑚𝑎

𝑑𝑧
, 

𝑑𝑓𝑚𝑎

𝑑𝑡
 and 

𝑑𝑓𝑚𝑎

𝑑𝑧
 : 

𝑑𝑓𝑚𝑎

𝑑𝑡
=

𝑑𝜇𝑚𝑎

𝑑𝑧
= −

𝑑 ln 𝑊𝑚𝑎

𝑑𝑡
(

𝛼𝑡

𝛼𝑧
+ 𝑓𝑚𝑎) =

𝑑𝑓𝑚𝑎

𝑑𝑧
(

𝛼𝑡

𝛼𝑧
+ 𝑓𝑚𝑎)      58 

Knowing that  
𝑑𝑓𝑚𝑎

𝑑𝑧
= 𝛼𝑧𝑓𝑚𝑎 (45) 
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𝑑𝑓𝑚𝑎

𝑑𝑡
=

𝑑𝜇𝑚𝑎

𝑑𝑧
= 𝛼𝑡𝑓𝑚𝑎 + 𝛼𝑧𝑓𝑚𝑎

2 = 𝛼𝑡𝑓𝑚𝑎 +
1

2

𝑑𝑓𝑚𝑎
2

𝑑𝑧
      59 

That conforms to the relations (15) and (16) between 𝑓𝑚𝑎, the chemical potential 𝜇𝑣𝑚𝑎 and the speed 

of the particles 𝑣𝑚𝑎 for the macro phase: 𝑓𝑚𝑎
2 = 𝑣𝑚𝑎

2 = 2𝜇𝑣𝑚𝑎. Then report (59) in equation (52) 

gives: 

𝑑

𝑑𝑡
(𝑓𝑚𝑎𝑊𝑚𝑎) = 𝑊𝑚𝑎 (

𝑑𝜇𝑚𝑎

𝑑𝑧
 −

𝑑𝑓𝑚𝑎²

2𝑑𝑧
) = 𝛼𝑡𝑊𝑚𝑎𝑓𝑚𝑎     60 

Thus, the momentum 𝑓𝑚𝑎𝑊𝑚𝑎 is an exponential of time tending towards 0 (𝛼𝑡 < 0) and we 

have: 

𝛼𝑡 =
𝑑 ln(𝑓𝑚𝑎𝑊𝑚𝑎)

𝑑𝑡
=

𝑑 ln 𝑓𝑚𝑎

𝑑𝑡
+

𝑑 ln 𝑊𝑚𝑎

𝑑𝑡
         61 

Hence the general relation, according to the hypothesis of the exponential expression of 𝑊𝑚𝑎 

(55): 

𝑑 ln(𝑊𝑚𝑎 𝑓𝑚𝑎)

𝑑𝑡
=

𝑑 ln 𝑓𝑚𝑎

𝑑𝑡
+

𝑑 ln 𝑊𝑚𝑎

𝑑𝑡
= 𝛼𝑡 =

𝑑

𝑑𝑡
ln(𝑊𝑚𝑎 − 𝐵)      62 

This has a consequence on the variation of 𝛼𝑡. Let us differentiate equation 65 with respect to z:  

𝑑²(𝑓𝑚𝑎𝑊𝑚𝑎)

𝑑𝑧𝑑𝑡
=

𝑑𝛼𝑡

𝑑𝑧
𝑊𝑚𝑎𝑓𝑚𝑎 + 𝛼𝑡𝑊𝑚𝑎

𝑑𝑓𝑚𝑎

𝑑𝑧
+ 𝛼𝑡𝑓𝑚𝑎

𝑑𝑊𝑚𝑎

𝑑𝑧
     63 

Since 
𝑑(𝑓𝑚𝑎𝑊𝑚𝑎)

𝑑𝑧
= 0 (48), equation (63) is nul: 

𝑑²(𝑓𝑚𝑎𝑊𝑚𝑎)

𝑑𝑧𝑑𝑡
=

𝑑²(𝑓𝑚𝑎𝑊𝑚𝑎)

𝑑𝑡𝑑𝑧
= 0 and 

𝑑𝛼𝑡

𝑑𝑧
= 0        64 

𝛼𝑡 is constant with depth. 

3.4.2. Equations of 𝑊𝑚𝑎 and 𝑓𝑚𝑎 and their derivatives 

We can deduct from (62) the derivatives of 𝑓𝑚𝑎as functions of 𝑊𝑚𝑎: 

𝑑 ln 𝑓𝑚𝑎

𝑑𝑡
= 𝛼𝑡 −

𝑑𝑊𝑚𝑎

𝑑𝑡𝑊𝑚𝑎
= 𝛼𝑡 − 𝛼𝑡

(𝑊𝑚𝑎−𝐵)

𝑊𝑚𝑎
= 𝛼𝑡

𝐵

𝑊𝑚𝑎
      65 

and since 
𝑑 ln 𝑊𝑚𝑎

𝑑𝑡
= −

𝑑𝑓𝑚𝑎

𝑑𝑧
= −𝛼𝑧𝑓𝑚𝑎,  

𝑑𝑓𝑚𝑎

𝑑𝑧
= 𝛼𝑧𝑓𝑚𝑎 = −

𝑑 ln 𝑊𝑚𝑎

𝑑𝑡
=

𝑑 ln 𝑓𝑚𝑎

𝑑𝑡
− 𝛼𝑡 = 𝛼𝑡 (

𝐵

𝑊𝑚𝑎
− 1)     66 

which gives 

𝑓𝑚𝑎 =
𝛼𝑡

𝛼𝑧

(𝐵−𝑊𝑚𝑎)

𝑊𝑚𝑎
=

−𝑑𝑊𝑚𝑎 𝑑𝑡⁄

−𝑑𝑊𝑚𝑎 𝑑𝑧⁄
=

𝑑𝑧

𝑑𝑡
       67 

Finally, retaking (68) 

𝑑𝑓𝑚𝑎

𝑑𝑡
= 𝛼𝑡

𝐵

𝑊𝑚𝑎
𝑓𝑚𝑎 =

𝛼𝑡
2

𝛼𝑧

𝐵

𝑊𝑚𝑎
(

𝐵−𝑊𝑚𝑎

𝑊𝑚𝑎
)       68 

 

We deduce the equation of 𝑊𝑚𝑎 depending on t and z: 

𝑊𝑚𝑎 − 𝑊𝑚𝑎𝑓 = 𝑊𝑚𝑎𝑧=0
exp(−𝛼𝑧𝑧) − 𝑊𝑚𝑎𝑓 = (𝑊𝑚𝑎° − 𝑊𝑚𝑎𝑓) exp(𝛼𝑡𝑡) exp (−𝛼𝑧𝑧)    69 

with the condition that 𝑊𝑚𝑎 ≤ 𝑊𝑚𝑎°; thus: 

𝑑𝑊𝑚𝑎

𝑑𝑧
= 𝑊𝑚𝑎𝑧=0

exp(−𝛼𝑧𝑧) = −𝛼𝑧(𝑊𝑚𝑎 − 𝑊𝑚𝑎𝑓)        70 

𝑑𝑊𝑚𝑎

𝑑𝑡
= 𝛼𝑡(𝑊𝑚𝑎° − 𝑊𝑚𝑎𝑓) exp(𝛼𝑡𝑡) exp(−𝛼𝑧𝑧) = 𝛼𝑡(𝑊𝑚𝑎 − 𝑊𝑚𝑎𝑓)   71 

 
𝑑²𝑊𝑚𝑎

𝑑𝑧𝑑𝑡
= −𝛼𝑡𝛼𝑧(𝑊𝑚𝑎° − 𝑊𝑚𝑎𝑓) exp(𝛼𝑡𝑡) exp(−𝛼𝑧𝑧) =

𝑑²𝑊𝑚𝑎

𝑑𝑡𝑑𝑧
     72 

3.4.3. Application of the equilibrium equations between the two pedostructure aqueous phases 
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The pressure balance between the two aqueous phases which is established simultaneously 

with the migration of macro water to the surface can be seen as follows. 

The molecular flux 𝑓𝑚𝑎 of the macro phase is really the molecular speed of the molecules of this 

phase when they pass through the section 𝑠̅𝑚𝑎  under the effect of a potential gradient, specific for 

this phase, determined at z by the equation: 

𝑑𝐻

𝑑𝑧
=

𝑑ℎ𝑚𝑎

𝑑𝑧
− 𝜌𝑤𝑔 = 𝜌𝑤 (

𝑑𝜇𝑚𝑎

𝑑𝑧
− 𝑔)      73 

The molecules of the micro phase (of potential 𝜇𝑚𝑖) which are found in the clay plasma of the 

primary aggregates are themselves subjected to the pressure difference (ℎ𝑚𝑎 − ℎ𝑚𝑖) which appears 

between the two phases as soon as there is a change in macro water content 𝑊𝑚𝑎 at z, i.e. as soon as 

a variation in the flux of molecules of this phase along the z axis appears (𝑑𝑓𝑚𝑎 𝑑𝑧⁄ ≠ 0). 

In this case, 𝑑𝑓𝑚𝑎 𝑑𝑧⁄ ≠ 0), the pressure balance between the two phases expressed by ℎ𝑚𝑎 =

ℎ𝑚𝑖  is broken and must be reestablished by a lateral flux of molecules from the micro phase to the 

macro phase. 

We can then describe the process of water migration in the sample following the evaporation of 

water at the surface as follows: the variation of the flux of inter-aggregate water at depth z, 
𝑑𝑓𝑚𝑎

𝑑𝑧
≠ 0, 

has the effect of a change in water content 𝑊𝑧 at this same depth z, which simultaneously causes a 

new micro to macro flux totally determined by the equilibrium pressure equation ℎ𝑚𝑎 = ℎ𝑚𝑖 . This 

equality was studied above, giving rise to relations (10) to (12). 

Moreover, starting from the equilibrium condition: ℎ𝑚𝑖 = ℎ𝑚𝑎, we have every moment 

𝜇𝑚𝑖
𝑒𝑞

− 𝜇𝑚𝑖𝑆𝑎𝑡 = 𝜇𝑚𝑎
𝑒𝑞

− 𝜇𝑚𝑎𝑆𝑎𝑡          74 

which is written, according to 𝑊𝑚𝑖  and 𝑊𝑚𝑎  : 

 
𝐸̅𝑚𝑖

𝑊𝑚𝑖
−

𝐸̅𝑚𝑖

𝑊𝑚𝑖𝑆𝑎𝑡
=

𝐸̅𝑚𝑎

𝑊𝑚𝑎
−

𝐸̅𝑚𝑎

𝑊𝑚𝑎𝑆𝑎𝑡
        75 

By setting the constant parameters of the shrinkage curve: 

 𝐴 = (𝜇𝑚𝑎𝑆𝑎𝑡 − 𝜇𝑚𝑖𝑆𝑎𝑡) =
𝐸̅𝑚𝑎

𝑊𝑚𝑎𝑆𝑎𝑡
−

𝐸̅𝑚𝑖

𝑊𝑚𝑖𝑆𝑎𝑡
 and 𝐸̅ = 𝐸̅𝑚𝑖  +  𝐸̅𝑚𝑎    76 

we get the following equalities: 

𝑊𝑚𝑖

𝐸̅𝑚𝑖
=

𝑊𝑚𝑎

𝐸̅𝑚𝑎−𝐴𝑊𝑚𝑎
=

𝑊

𝐸̅−𝐴𝑊𝑚𝑎
 ;       77 

showing that the ratios 
𝑊𝑚𝑖

𝑊𝑚𝑎
, 

𝑊

𝑊𝑚𝑖
 and 

𝑊

𝑊𝑚𝑎
 are all functions of 𝑊𝑚𝑎 alone. So we have: 

𝑊 =
𝑊𝑚𝑎(𝐸̅−𝐴𝑊𝑚𝑎)

(𝐸̅𝑚𝑎−𝐴𝑊𝑚𝑎)
  et 𝑊𝑚𝑖 =

𝐸̅𝑚𝑖𝑊𝑚𝑎

𝐸̅𝑚𝑎−𝐴𝑊𝑚𝑎
      78 

Having the distribution of 𝑊𝑚𝑎 in space and its variation with time, we automatically have the 

values and variations of 𝑊 and 𝑊𝑚𝑖  in any point of the medium.  

The following equations can be verified: 

𝑑𝑊𝑚𝑖

𝑑𝑊𝑚𝑎
=

𝐸̅𝑚𝑎

𝐸̅𝑚𝑖

𝐸̅𝑚𝑖²

(𝐸̅𝑚𝑎−𝐴𝑊𝑚𝑎)2 =
𝐸̅𝑚𝑎

𝐸̅𝑚𝑖
(

𝑊𝑚𝑖

𝑊𝑚𝑎
)

2

      79 

leading to: 

𝑑𝑊

𝑑𝑡
=

𝑑𝑊𝑚𝑎

𝑑𝑡
(1 +

𝐸̅𝑚𝑎

𝐸̅𝑚𝑖
(

𝑊𝑚𝑖

𝑊𝑚𝑎
)

2

) = 𝛼𝑡(𝑊𝑚𝑎 − 𝑊𝑚𝑎𝑓) (1 +
𝐸̅𝑚𝑎

𝐸̅𝑚𝑖
(

𝑊𝑚𝑖

𝑊𝑚𝑎
)

2

)    80 

and 

 
𝑑𝑊

𝑑𝑧
=

𝑑𝑊𝑚𝑎

𝑑𝑧
(1 +

𝐸̅𝑚𝑎

𝐸̅𝑚𝑖
(

𝑊𝑚𝑖

𝑊𝑚𝑎
)

2

) = −𝛼𝑧𝑊𝑚𝑎 (1 +
𝐸̅𝑚𝑎

𝐸̅𝑚𝑖
(

𝑊𝑚𝑖

𝑊𝑚𝑎
)

2

)     81 

The continuity equation (39) becomes: 

𝑑𝑊

𝑑𝑡
= −𝜌𝑤𝑉̅

𝑑𝑓𝑒𝑤

𝑑𝑧
= −𝑊𝑚𝑎

𝑑𝑓𝑤

𝑑𝑧
= −𝑊𝑚𝑎

𝑑𝑓𝑚𝑎

𝑑𝑧
(1 +

𝐸̅𝑚𝑎

𝐸̅𝑚𝑖
(

𝑊𝑚𝑖

𝑊𝑚𝑎
)

2

)     82 
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4. Results 

Linear relationships between Wz, Wt and Time 

 

Figure 4.  Representation on the same graph of the water retention characteristic curve ℎ(𝑊) , 

measured and modelled, and of the tensiometric reading ℎ1 and ℎ2 according to the total water 

content 𝑊𝑡 . Modelled curves of ℎ(𝑊) , ℎ1(𝑊𝑡)  and ℎ2(𝑊𝑡)  used the same pedostructural 

parameters characteristic of the sample: 𝑊𝑚𝑎𝑆𝑎𝑡 , 𝑊𝑚𝑖𝑆𝑎𝑡 , 𝐸̅𝑚𝑎  and 𝐸̅𝑚𝑖. 

The characteristic retention curve of the sample ℎ(𝑊) is shown in Figure 4, which also shows 

the two curves (ℎ1 and ℎ2) of the continuous reading of tensiometers T1 and T2 as a function of the 

total water content (𝑊𝑡) of the sample. The curves are homothetic: the total water content of the 

sample (𝑊𝑡 = (𝑀 − 𝑀𝑠)/𝑀𝑠) corresponds the values of the suction pressures ℎ1 and ℎ2 measured 

by the tensiometers and the local water contents 𝑊1  and 𝑊2  encountered at the level of the 

tensiometers and read on the retention curve ℎ(𝑊) characteristic of the sample. 

. 

The following relationships are observed: 

𝑊z1 = 𝑎1𝑊𝑡 + 𝑏1 and 𝑊z2 = 𝑎2𝑊𝑡 + 𝑏2     83 

where 𝑎𝑖 and 𝑏𝑖 are constants associated with the depth 𝑧𝑖. At a given depth, the local water 

content is in constant proportion to the overall water content of the sample. The same applies to the 

difference in water content between two depths: 

𝑊z2 − 𝑊z1 = 𝑊𝑡(𝑎2 − 𝑎1) − (𝑏2 − 𝑏1)      84 

Let’s find the relationship between 𝑎𝑖 and 𝑏𝑖. At water saturation 𝑊0 of the sample, 

𝑊𝑧𝑠𝑎𝑡 = 𝑎𝑖𝑊𝑡𝑠𝑎𝑡 + 𝑏𝑖 and 𝑊𝑡𝑠𝑎𝑡 = 𝑊𝑧𝑠𝑎𝑡 = 𝑊0     85 

thus, 

𝑏𝑖 = 𝑊0(1 − 𝑎𝑖)         86 

and 

𝑎𝑖 =
𝑊𝑧−𝑊0

𝑊𝑡−𝑊0
          87 

 For 𝑎𝑖 to be time independent, whatever z, it is necessary that: 
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𝑑𝑎𝑖

𝑑𝑡
= −

𝑑𝑊𝑡

𝑑𝑡

𝑊𝑧−𝑊0

(𝑊𝑡−𝑊0)2 +
𝑑𝑊𝑧

𝑑𝑡

𝑊𝑡−𝑊0

(𝑊𝑡−𝑊0)2 = 0       88 

𝑑𝑊𝑡

𝑑𝑡
(𝑊𝑧 − 𝑊0) =

𝑑𝑊𝑧

𝑑𝑡
(𝑊𝑡 − 𝑊0)        89 

or else 

𝑑 ln(𝑊𝑡−𝑊0)

𝑑𝑡
=

𝑑 ln(𝑊𝑧−𝑊0)

𝑑𝑡
         90 

The relation between the water content local, 𝑊𝑍, and total, 𝑊𝑡, is such that:  

𝑑𝑊𝑧

𝑑𝑡

𝑑𝑊𝑡

𝑑𝑡
⁄ =

(𝑊𝑧−𝑊0)

𝑊𝑡−𝑊0
= 𝑎𝑖          91 

𝑊𝑧 being defined as the ratio of the areas 𝑠𝑤 = 𝑠𝑚𝑎 + 𝑠𝑚𝑖  and 𝑠𝑠 at z :  𝑊𝑧 = (
𝑠𝑚𝑎+𝑠𝑚𝑖

𝑠𝑠
)

𝑧
 

 

Figure 5. Linear relationships between Wz, Wt and Time. The z-area ratio 𝑎𝑖 is given in the figure: 

2.29 for z=z1 and 1.82 for z=z2   

The 2 graphs in Figure 5 give the values of 𝑎𝑖  and of 
𝑑𝑊𝑧

𝑑𝑡
 at the two positions of the 

tensiometers 𝑧1  and 𝑧2 , which gives us, according to (91), 
𝑑𝑊𝑡

𝑑𝑡
=

𝑑𝑊𝑧 𝑑𝑡⁄

𝑎𝑖
=  -8.56 and -8.57 10-5 

minutes-1 respectively. 

Logarithmic relation between Wz and Wma-Wmaf 

We can see in Figure 6 that the relation between 𝑊𝑧 and 𝑊𝑚𝑎 is, for the two cases of z, a 

simple logarithmic function such as: 

𝑊𝑧

𝑊𝑐
= ln(𝑊𝑚𝑎𝑧

− 𝑊𝑚𝑎𝑓) + 𝐶           92 

 where C is a dimensionless constant and 1 𝑊𝑐⁄ = 𝛼𝑤 is a constant parameter of the exponential of 

𝑊𝑧.  

What is remarkable is that this logarithmic form of 𝑊𝑧 (92) exactly represents the equation (78) 

of 𝑊𝑧 function of 𝑊𝑚𝑎 𝑧
: 

𝑊𝑧

𝑊𝑐
= ln(𝑊𝑚𝑎𝑧

− 𝑊𝑚𝑎𝑓) + 𝐶 =
1

𝑊𝑐

𝑊𝑚𝑎(𝐸̅−𝐴𝑊𝑚𝑎)

(𝐸̅𝑚𝑎−𝐴𝑊𝑚𝑎)
        93 

By differentiating (117) with respect to time and using relation (71), we obtain: 

(𝑊𝑚𝑎−𝑊𝑚𝑎𝑓)

𝑊𝑐

𝑑𝑊𝑧

𝑑𝑡
=

𝑑𝑊𝑚𝑎

𝑑𝑡
= 𝛼𝑡(𝑊𝑚𝑎 − 𝑊𝑚𝑎𝑓)       94 

We therefore have, whatever z in the unsaturated zone :  

 
𝑑𝑊𝑧

𝑑𝑡
= 𝛼𝑡𝑊𝑐 = 𝑐𝑡𝑒         95 
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and according the relation (104) that exists between 
𝑑𝑊𝑧

𝑑𝑡
 and 

𝑑𝑊𝑚𝑎

𝑑𝑡
 : 

𝑊𝑐 = (𝑊𝑚𝑎 − 𝑊𝑚𝑎𝑓) (1 +
𝐸̅𝑚𝑎

𝐸̅𝑚𝑖
(

𝑊𝑚𝑖

𝑊𝑚𝑎
)

2

) = (𝑊𝑚𝑎 − 𝑊𝑚𝑎𝑓)𝑅𝑧      96 

Figure 6 : Relationship between 𝑊𝑡, 𝑊𝑧 and (𝑊𝑚𝑎𝑧 − 𝑊𝑚𝑎𝑓). Rivière Lézarde - Ponterre (halloysite 

soil)  60 - 65 cm. The constant 𝑊𝑐 read on the left figure is 0.04995 kg of water/kg of soil 

The fundamental relationships between flux,water potential and water content at macroscopic scale 

Central role of 𝑊𝑚𝑎 

Figure 7 shows the experimental result of the relationship between the macro water content 

gradients 
∆𝑊𝑚𝑎

∆𝑧
 and the pressure 

∆ℎ

∆𝑧
 of a thin soil layer and the average water content of this layer. 

We are in the case of a systemic discretization of the soil medium to apply transfer equations [9]. 

Figure 7 : Measurement result of functions F1 and F2 which are simple exponentials of 𝑊𝑚𝑎.The 

function F3 not shown is the ratio of the first two. 

The values of 𝑊𝑚𝑎1 and 𝑊𝑚𝑎2 are calculated from the data of tensiometers T1 and T2 using 

the characteristic soil retention curve. They are supposed to represent the average water contents in 

the 1 cm thick slices around tensiometers 1 and 2. The products 𝑊𝑚𝑎
∆ℎ

𝜌𝑤∆𝑧
 , 

∆ℎ

𝜌𝑤∆𝑧

∆𝑊𝑚𝑎

∆𝑧
 and 

∆ ln 𝑊𝑚𝑎

∆𝑧
 

named F1, F2 and F3 are presented as functions of 𝑊𝑚𝑎(1,2) , mean of 𝑊𝑚𝑎 between z1 and z2.  

We observe three simple exponentials of 𝑊𝑚𝑎, two of which are represented in Figure 7: 

𝐹1 ≡ 𝑊𝑚𝑎
∆𝐻

𝜌𝑤∆𝑧
= 𝑘1exp (𝛼1𝑊𝑚𝑎) ; 𝑘1= 3.123 and 𝛼1= -54.04     97 

𝐹2 ≡
∆𝑊𝑚𝑎

𝜌𝑤∆𝑧

∆𝐻

∆𝑧
= 𝑘2exp (𝛼2𝑊𝑚𝑎) ; 𝑘2= -14.629 and 𝛼2= -107.4      98 
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𝐹3 ≡
∆ ln 𝑊𝑚𝑎

∆𝑧
= 𝑘3exp (𝛼3𝑊𝑚𝑎) ; 𝑘3= -4.721 and 𝛼3= -53.61        99 

To interpret these results, recall that the basic variables, suction pressure (h), chemical potential 

(𝜇𝑚𝑎), and molecular flux of the mobile phase (𝑓𝑚𝑎), are linked by the relation: 

𝑑ℎ

𝜌𝑤𝑑𝑧
=

𝑑𝜇𝑚𝑎

𝑑𝑧
=

𝑑𝜇𝑚𝑖

𝑑𝑧
=

𝑑𝑓𝑚𝑎

𝑑𝑡
            100 

and knowing that 

𝑑 ln 𝜇𝑚𝑎 = −𝑑 ln 𝑊𝑚𝑎 et 𝑊𝑚𝑎𝜇𝑚𝑎 = 𝐸̅𝑚𝑎       101 

we then have: 

𝑊𝑚𝑎
𝑑ℎ

𝜌𝑤𝑑𝑧
= 𝑊𝑚𝑎

𝑑𝜇𝑚𝑎

𝑑𝑧
= 𝑊𝑚𝑎

𝑑𝑓𝑚𝑎

𝑑𝑡
= 𝐸̅𝑚𝑎

𝑑 ln 𝜇𝑚𝑎

𝑑𝑧
= −𝐸̅𝑚𝑎

𝑑 ln 𝑊𝑚𝑎

𝑑𝑧
     102 

Assuming that the discretization is fine enough to maintain at the macroscopic scale the 

relationship observed at the molecular scale between extensive and intensive variables, we should 

observe, after (97): 

𝐹2 ≡
∆𝑊𝑚𝑎

∆𝑧

∆ℎ

𝜌𝑤∆𝑧
= −

𝑘1
2

𝐸̅𝑚𝑎
exp(2𝛼1𝑊𝑚𝑎)      103 

𝐹3 ≡
∆ ln 𝑊𝑚𝑎

∆𝑧
= −

𝑘1

𝐸̅𝑚𝑎
exp (𝛼1𝑊𝑚𝑎)       104 

We actually find that 𝛼1 can be taken as the average of 𝛼 given by the curves F1 and F2, that 

is 𝛼1 = 𝛼3 = −53.8  which is near the value of 𝛼2 = 2𝛼1 found (-107.4 instead of -107.6) . 

Likewise, knowing 𝐸̅𝑚𝑎 = 0.65 j/kg, the value of 𝑘1 can be evaluated as the average of 𝑘1 

and 𝑘1 = −𝑘3𝐸̅𝑚𝑎 : 3.09 joules/kg soil/dm 

Pedostructure water conductivity 𝑘𝑝𝑠 

Thus we have all the physical equations determining the space-time relationship of variation of 

the three variables describing the dynamics of the medium: the fluxes, water contents and chemical 

potentials of the two aqueous phases.  

Recall the equation of continuity (82) that takes account of the thermodynamic equilibrium. 

Using the relation 𝑓𝑚𝑎 =
𝑑𝑧

𝑑𝑡
 we can write: 

𝑓𝑚𝑎
𝑑𝑊

𝑑𝑧
=

𝑑𝑧

𝑑𝑡

𝑑𝑊

𝑑𝑧
=

𝑑𝑊

𝑑𝑡
        105 

so the equation of continuity can be written such as: 

𝑑𝑊

𝑑𝑡
=

𝑑𝑊𝑚𝑎

𝑑𝑡
(1 +

𝐸̅𝑚𝑖

𝐸̅𝑚𝑎
(

𝜇𝑚𝑎

𝜇𝑚𝑖
)

2

) = −𝑊𝑚𝑎
𝑑𝑓𝑤

𝑑𝑧
= 𝑓𝑚𝑎

𝑑𝑊

𝑑𝑧
= −𝜌𝑤𝑉̅

𝑑𝑓𝑒𝑤

𝑑𝑧
     106 

Furthermore, experience has shown that 

𝑑𝑊

𝑑𝑡
= 𝛼𝑡𝑊𝑐 = 𝑐𝑡𝑒         107 

𝑊𝑚𝑎 being an exponential of time and space, we deduce from the fact that𝑊𝑚𝑎
𝑑𝑓𝑤

𝑑𝑧
= −

𝑑𝑊

𝑑𝑡
=

𝑐𝑡𝑒 (equations (105) and (106) that 
𝑑𝑓𝑤

𝑑𝑧
 and therefore also 𝑓𝑤 are simple exponentials with the 

same coefficients as 𝑊𝑚𝑎. Thus, as the soil water conductivity by definition is written: 

𝑘𝑝𝑠 =
𝑓𝑒𝑤

𝑑ℎ/𝑑𝑧
=

𝑓𝑤

𝑑ℎ/𝑑𝑧

𝑓𝑒𝑤

𝑓𝑤
=

𝑓𝑤

𝑑ℎ/𝑑𝑧
𝜃𝑚𝑎,           107 

by multiplying (107) up and down by 𝛼𝑧𝑊𝑚𝑎 (= −
𝑑𝑊𝑚𝑎

𝑑𝑧
) (47) we get: 

𝑘𝑝𝑠 =
𝛼𝑧𝑊𝑚𝑎𝑓𝑤

𝛼𝑧𝑊𝑚𝑎𝑑ℎ/𝑑𝑧
𝜃𝑚𝑎 =

𝑊𝑚𝑎(𝑑𝑓𝑤 𝑑𝑧⁄ )

(𝑊𝑚𝑎 𝑑𝑧⁄ )(𝑑ℎ/𝑑𝑧)
𝜃𝑚𝑎 =

−𝑑𝑊 𝑑𝑡⁄

𝐹2
𝜃𝑚𝑎  

𝑘𝑝𝑠 =
−𝛼𝑡𝑊𝑐

𝑘2
𝜃𝑚𝑎exp (−𝛼2𝑊𝑚𝑎)         108 
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The constants: 𝛼𝑡 , 𝑊𝑐 , 𝑘2 = −
𝑘1

2

𝐸̅𝑚𝑎
 and 𝛼2 = 2𝛼1, are all determined by measurement as we 

showed above. 

   

5. Discussion 

The systemic modeling of the hydrostructural soil water properties by the model Kamel [9, 12] 

successfully accounted yet for the levels of internal organization of the “soil factory”. It precisely 

identified the pedostructure as assembly of primary peds containing two thermodynamically 

distinct aqueous phases, intra-aggregate (macro) phase and inter-aggregate (micro) phase. However, 

this modeling still ignored the lower levels of organization (molecular and atomic) of fluid phases of 

the pedostructure. It therefore retained a semi-empirical character because, as our recent study [11] 

showed, it is at these two levels of organization that the thermodynamic concepts of temperature, 

entropy and chemical potential are clearly defined. And these all these concepts intervene in 

hydro-thermodynamic equilibria as we know them at higher scales (soil suction gradient, soil water 

retention curve, hydric conductivity …). 

By understanding the internal organization of the aqueous phases and their roles in the 

evaporation process, we were able to relate the variables at each level to each the others in a 

comprehensive and orderly manner. The present study focused on the notions of flux: molecular 

flux (fma), water flux (fw, fma and fmi,) and Eulerian flux (few). Only fma, is molecular and so, equal to the 

speed of molecules the phase (the same for all molecules of the phase). Application of Newton's 

second law makes it possible to identify the gradient of the chemical potential of the inter-aggregates 

aqueous phase (macro) to the time derivative of its molecular flux, leading to the relation: 
𝑑𝜇𝑚𝑎

𝑑𝑧
=

𝑑𝑓𝑚𝑎

𝑑𝑡
. This important relationship could not be obtained without the acknowledgement of these 

molecular and atomic organization levels. 

Above this molecular level we find the nested levels of organization that we have dealt with 

exhaustively in hydrostructural pedology [1-2]. This study has defined and highlighted the meeting 

place of both worlds by studying the molecular descriptive variables (intensive and extensive) 

attached to the z-depth where each description variable can be considered punctual and continuous. 

The link between molecular thermodynamics and macroscopic thermodynamics was made by 

setting that 𝑓𝑚𝑎 =
𝑑𝑧

𝑑𝑡
: on the one hand  

𝑑𝑓𝑚𝑎

𝑑𝑡
=

𝑑𝜇𝑚𝑎

𝑑𝑧
  is compatible with  

𝑑𝑧

𝑑𝑡
 𝑑𝑓𝑚𝑎 =

1

2
𝑑f𝑚𝑎

2 = 𝑑𝜇𝑣𝑚𝑎 

that is 𝑓𝑚𝑎 = √2𝜇𝑣𝑚𝑎 = 𝜗𝑚𝑎 , the speed of molecules of phase macro,  and on the other, 𝑓𝑚𝑎 =
𝑑𝑊𝑚𝑎 𝑑𝑡⁄

𝑑𝑊𝑚𝑎 𝑑𝑧⁄
=

𝑑𝑊𝑚𝑖 𝑑𝑡⁄

𝑑𝑊𝑚𝑖 𝑑𝑧⁄
=

𝑑𝑊 𝑑𝑡⁄

𝑑𝑊 𝑑𝑧⁄
. 𝑓𝑚𝑎

𝑑𝑊

𝑑𝑧
=

𝑑𝑊

𝑑𝑡
= 𝑊𝑚𝑎

𝑑𝑓𝑤

𝑑𝑧
 

Finally, the equation of water conductivity (108) which is given here theoretically from a 

combination of hydro-thermodynamic variables is of the same form as that found semi-empirically 

and published recently in [13]. This result solves one of the many points of soil science questioned 

[14] and which was not yet fully resolved by hydrostructural pedology, in particular the physical 

equation of the water conductivity of unsaturated soils and its measurement [15]. The resolution of 

this last point confirms the validity of the "systemic approach” such it was redefined by the authors 

[1-3] to face the “black-box” modelling in soil hydrodynamics and in hydro-thermodynamics as we 

just saw it, and to be at the basis of the soil water science that is named hydrostructural pedology. It 

also justifies the new methods of characterization of the water functions of the soil [16, 17]   
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Appendix A 

The Richards equation, an Eulerian point of view 

The Richards equation is the combination of two physical equations of different conceptual 

origins: 

a) conservation law of the matter which is expressed mathematically by the Euler equation 

𝑑𝜃𝑤

𝑑𝑡
= −

𝑑𝑓𝑒𝑤

𝑑𝑧
,          A1 

where 𝜃𝑤 is the volume water content of the soil and where 𝑓𝑒𝑤 is the Eulerian flow, understood as 

the volume flow velocity on z (upward positive); 

b) Darcy's law extended to unsaturated porous media, the classical expression of which is 

𝑓𝑒𝑤 = 𝑘∆𝐻/∆𝑧          A2 

 where 
∆𝐻

∆𝑧
=

∆ℎ

∆𝑧
− 𝜌𝑤𝑔

∆𝑧

∆𝑧
  is the pressure gradient of the soil water with respect to z, sum of the 

water retention pressure gradients and the pressure gravity.  

This relationship is called "Darcy's law extended to unsaturated soils" and its application to the 

Euler equation constitutes the Richards equation used in all soil-water models of water dynamics in 

soil:  

𝑑𝜃𝑤

𝑑𝑡
= −

𝜕

𝜕𝑧
𝐾 (

𝑑𝐻

𝑑𝑧
)         A3 

The question that arises when one goes from the verified Darcy law for saturated soils to the 

extension of the law for unsaturated soils concerns the surface area of the flux at depth z. We 

generally take 𝑠𝑡 the total surface of the sample but would it not be 𝑠𝑤 , the surface occupied by the 

water molecules which decreases with the water content, or else only 𝑠𝑚𝑎, the surface corresponding 

to the inter-aggregate of water, which should be considered? The systems approach helps answer 

this question as we will see below. In fact the variable 𝜃𝑤, which is the ratio of the volume of water 

to the volume of soil 𝜃𝑤 = 𝑉𝑤 𝑉𝑡⁄ , is a non-systemic variable defined according to the notion of REV 

(Representative Elementary Volume), which implies that the variable 𝑓𝑒𝑤 cannot be defined by 

equation (8): we do not know what it is spatially represents. The notions of surfaces occupied by 

water molecules and solids at the depth z of the cylinder and of common thickness of the soil layer 

do not appear in the concept of REV.  

The so-called Richards equation (A3) is therefore empirical and cannot be related to 

fundamental physics. To write it correctly, we must first understand the exact physical meaning of 

the flux variables above, 𝑓𝑤 et 𝑓𝑒𝑤, but also that of the thermodynamic variables which describe the 

energy equilibria which are established at the molecular scale between the molecules of each fluid 

phase as well as at the global scale between the thermodynamic phases of the pedostructure. Indeed, 

these thermodynamic variables, like chemical potential, temperature and entropy, take on their full 

physical significance at the molecular scale as we have shown in [11]. We have to take this level of 

molecular scale into account to describe the process of migration of water molecules in the soil (its 

pedostructure) submitted to a potential gradient at thermodynamic equilibrium. 

Euler's equation for conservation of the mass 

As mentioned above, the Richards equation comes from the introduction of Darcy's law 

"extended to unsaturated media" into the Euler continuity equation. We need to study the terms, 

including the meaning of flow, to relate it exactly to the speed of molecules and the thermodynamic 

variables that were defined at the molecular level in the first part. 
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Euler's equation for the conservation of the mass of water moving in the soil is written: 

𝜕𝜌

𝜕𝑡
+ ∇(𝜌𝑤𝑣) = 0         A4 

where 𝜌 is the volume concentration of water in the soil (mass of water in the volume V of soil: 𝜌 =
𝑀𝑤

𝑉
), t is time and 𝑣 the Eulerian velocity of the fluid (water) with density 𝜌𝑤 assumed constant. The 

Eulerian speed can be identified, except for the sign, with a flow that we will call Eulerian flux and 

write: 𝑓𝑒𝑤 (𝜌𝑤 =
𝑀𝑤

𝑉𝑤
, 𝑣 = 𝑓𝑒𝑤 = ±

𝑑𝑙𝑤

𝑑𝑡
).  

Let us rewrite this equation (A4) using the systemic variables (𝑊 and 𝑉̅ = 𝑉 𝑚𝑠⁄ )  rather than 

the non-systemic variables (𝜌 and 𝜃 = 𝑉𝑤 𝑉⁄ ) in order to discern the internal process variables 

involved in the migration of water in the sample subjected to evaporation. Let us first recall the 

existing relationships between these types of variables, 𝑚𝑤 and 𝑚𝑠 being the mass of water and 

solids contained in the volume 𝑉 of soil (pedostructure): 

𝜌 =
𝑚𝑤

𝑉
= 𝜌𝑤

𝑉𝑤

𝑉
= 𝜌𝑤𝜃 =

𝑚𝑤 𝑚𝑠⁄

𝑉 𝑚𝑠⁄
=

𝑊

𝑉
=

𝜌𝑤𝑉𝑤

𝑉
      A5 

𝑑𝜌

𝑑𝑡
=

𝑑(𝑊 V̅⁄ )

𝑑𝑡
=

𝜌𝑤𝑑𝜃

𝑑𝑡
         A6 

since 𝜌𝑤 = 𝑐𝑡𝑒 at constant temperature and pressure. 

The second term is written such as:  

∇(𝜌𝑤𝑣) = 𝜌𝑤∇𝑣 = 𝜌𝑤 (
𝑑𝑓𝑒𝑤

𝑑𝑧
+

𝑑𝑓𝑒𝑤

𝑑𝑦
+

𝑑𝑓𝑒𝑤

𝑑𝑥
)      A7 

where 𝑓𝑒𝑤 = 𝑣  is the Eulerian flow which has the dimensions of a velocity, in LT-1. 

Thus, the Euler equation that is known in hydrology is: 
𝑑𝜃

𝑑𝑡
= −

𝑑𝑓𝑒𝑤

𝑑𝑧
 

 

Appendix B 

Equations of 𝑊, 𝑓𝑤 and their derivatives according to 𝑊𝑚𝑎 and  𝑓𝑚𝑎  

Consider now the products 𝑓𝑤𝑊 and 𝑓𝑒𝑤𝜌𝑤𝑉̅; we have, according to the definition of the 

derivatives of fluxes (39-41) : 

𝑑𝑓𝑤

𝑑𝑧
= −

1

𝑊𝑚𝑎

𝑑𝑊

𝑑𝑡
       B1 

and  

𝑑𝑓𝑒𝑤

𝑑𝑧
= −

1

𝜌𝑤𝑉

𝑑𝑊

𝑑𝑡
       B2 

We then obtain the general equation, similar to the Euler equation written with the systemic 

variables: 

𝑑𝑊

𝑑𝑡
= −𝜌𝑤𝑉̅

𝑑𝑓𝑒𝑤

𝑑𝑧
= −𝑊𝑚𝑎

𝑑𝑓𝑤

𝑑𝑧
       B3 

 

 Moreover, using the relation 𝑓𝑚𝑎 =
𝑑𝑧

𝑑𝑡
 we can write: 

𝑓𝑚𝑎
𝑑𝑊

𝑑𝑧
=

𝑑𝑧

𝑑𝑡

𝑑𝑊

𝑑𝑧
=

𝑑𝑊

𝑑𝑡
      B4 

so we have 

−𝑊𝑚𝑎
𝑑𝑓𝑤

𝑑𝑧
= 𝑓𝑚𝑎

𝑑𝑊

𝑑𝑧
=

𝑑𝑊

𝑑𝑡
       B5 

that we can compare to 

−𝑊𝑚𝑎
𝑑𝑓𝑚𝑎

𝑑𝑧
= 𝑓𝑚𝑎

𝑑𝑊𝑚𝑎

𝑑𝑧
=

𝑑𝑊𝑚𝑎

𝑑𝑡
       B6 

By subtracting the two equations term by term, we obtain: 
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−𝑊𝑚𝑎 (
𝑑𝑓𝑤

𝑑𝑧
−

𝑑𝑓𝑚𝑎

𝑑𝑧
) = 𝑓𝑚𝑎 (

𝑑𝑊

𝑑𝑧
−

𝑑𝑊𝑚𝑎

𝑑𝑧
) =

𝑑𝑊

𝑑𝑡
−

𝑑𝑊𝑚𝑎

𝑑𝑡
      B7 

equivalent to:  

−𝑊𝑚𝑎 (
𝑑𝑓𝑤

𝑑𝑧
−

𝑑𝑓𝑚𝑎

𝑑𝑧
) = 𝑓𝑚𝑎 (

𝑑𝑊𝑚𝑖

𝑑𝑧
) =

𝑑𝑊𝑚𝑖

𝑑𝑡
       B8 

Defining 𝑓𝑚𝑖 = 𝑓𝑤 − 𝑓𝑚𝑎 as the virtual speed of molecules of the micro phase at z, we have the 

following fundamental relationships: 

−𝑊𝑚𝑎
𝑑𝑓𝑚𝑖

𝑑𝑧
= 𝑓𝑚𝑎

𝑑𝑊𝑚𝑖

𝑑𝑧
=

𝑑𝑊𝑚𝑖

𝑑𝑡
        B9 

We find here the central role of 𝑓𝑚𝑎and 𝑊𝑚𝑎  : 

𝑓𝑚𝑎 =
𝑑𝑊𝑚𝑖 𝑑𝑡⁄

𝑑𝑊𝑚𝑖 𝑑𝑧⁄
=

𝑑𝑊𝑚𝑎 𝑑𝑡⁄

𝑑𝑊𝑚𝑎 𝑑𝑧⁄
=

𝑑𝑊 𝑑𝑡⁄

𝑑𝑊 𝑑𝑧⁄
       B10 

and 

𝑊𝑚𝑎 = −
𝑑𝑊𝑚𝑖 𝑑𝑡⁄

𝑑𝑓𝑚𝑖 𝑑𝑧⁄
= −

𝑑𝑊𝑚𝑎 𝑑𝑡⁄

𝑑𝑓𝑚𝑎 𝑑𝑧⁄
= −

𝑑𝑊 𝑑𝑡⁄

𝑑𝑓𝑤 𝑑𝑧⁄
       B11 
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