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Abstract This article has two objectives. Firstly, we will use the vector
variational-like inequalities problems to achieve local approximate (weakly)
efficient solutions of Vector Optimization Problem within the novel field of
the Hadamard manifolds. Previously, we will introduce the concepts of gen-
eralized approximate geodesic convex functions and illustrate them with ex-
amples. We will see the minimum requirements under which critical points,
solutions of Stampacchia and Minty weak variational-like inequalities and lo-
cal approximate weakly efficient solutions can be identified, extending previous
results from the literature for linear Euclidean spaces. Secondly, we will show
an economical application, using again solutions of the variational problems
to identify with Stackelberg equilibrium points on Hadamard manifolds and
under geodesic convexity assumptions.
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2 G. Ruiz-Garzón et al.

1 Introduction

The American statistician John W. Tukey said: ”It was better to have an
approximate answer to the right question than an exact answer to the approx-
imate question”. This article is about Pareto’s approximate solutions for the
vector optimization problem on Hadamard manifolds.

Sometimes, in practice, the best idea is not to get solutions to vector opti-
mization problems by solving them directly but through other problems that
are related to the first ones. The variational problems carry out this interme-
diate work that this article deals in a novel context such as the Hadamard
manifolds. Similarly, sometimes we also have to be satisfied with finding ap-
proximate solutions to the vector optimization problem instead of the exact
solutions. Those feasible points whose objective values are at a small ε dis-
tance from the optimal objective vector values are considered an approximate
Pareto solution. In some particular problems, the limit of approximate Pareto
solutions, when ε tends to zero, is a Pareto solution. Besides, many computer
algorithms that exactly search for efficient points after finite numbers of steps
only reach an approximate solution. Sometimes, obtaining exact solutions is
impossible or very expensive in computational time. Thus, the search for ap-
proximate efficient points is relevant. In 1979, Kutateladze [15] introduced the
concept of Pareto ε-optimal solution. More recently, in 2010, Gutiérrez et al.
[11] have studied the approximate solutions for the multiobjective optimization
problem profusely.

Concerning the variational problems, firstly, in 1980, Giannessi [8] intro-
duced the vector variational inequalities of Stampacchia type and secondly, in
1998, Giannessi [9] proposed Minty-type inequalities.

To achieve a solution to a vectorial optimization problem, we need ap-
propriate convexity function concepts. In 2000, Ngai et al. [21] studied the
concept of approximate convexity previously introduced in 1998 by Jofré et
al. [13]. In this article, we will extend these generalized convex concepts to
Hadamard manifolds. Besides, the design flight control architecture in aero-
planes uses generalized approximate geodesic functions and non-smooth opti-
mization problem [7].

The environment in which we are going to study them is that of Hadamard
manifolds. In non-linear spaces, such as the Hadamard manifolds, we extend
concepts such as convex sets where geodesic arcs connect two points instead of
linear segments. Mathematically, working with Hadamard manifolds has the
advantage that sets that are not convex in the usual sense are convex within
these manifolds. For example, the set

X =
{

(x1, x2) ∈ R2
+ : x2

1 + x2
2 ≤ 4 ≤ (x1 − 1)2 + x2

2

}
is not convex in the usual sense with X ⊂ R2, but X is a geodesic convex
on the Poincaré upper-plane model (H2, gH), as it is the image of a geodesic
segment. We can transform non-convex problems with Euclidean metrics into
convex problems with related metrics [5]. In this way, we can take advantage
of the excellent properties of convex sets.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 December 2020                   doi:10.20944/preprints202012.0124.v1

https://doi.org/10.20944/preprints202012.0124.v1


Vectorial variational inequalities and efficient approximate solutions 3

Within applications, a considerable number of optimization problems re-
lated to engineering [16], stereo vision processing [17], machine learning and
computer vision in fields such as cancer tissue image analysis use Hadamard
manifolds [6] [18]. The Hadamard manifolds are also used in the social sciences,
for example, in Economics, within Game Theory, specifically in the achieve-
ment of Nash equilibrium points where strategy sets and payoff functions are
geodesically convex, see [14].

In this article, we will look for Stackelberg’s equilibrium points on Hadamard
manifolds. Stackelberg games were introduced in 1934 (see [27]). The Stackel-
berg competition model is a game in which the leader player moves first, and
then the follower player moves sequentially. Unlike Stackelberg’s model, in the
Nash model, the two players are competing with each other in the same level.
In Novak et al. [22], the authors propose Stackelberg’s model to describe the
fight against terrorism.

State of the art is as follows.
Our paper has allowed us to extend another one from 2004, by Ruiz-Garzón

et al. [23], where we established the relationships between variational-like in-
equality vector and optimization problems in Euclidean spaces.

The initial idea for this article comes from two groups of publications.
The first is articles dealing with the relations between vector variational

inequality problems and non-smooth vector optimization problems using quasi
efficient points in n-dimensional Euclidean spaces but not on Hadamard man-
ifolds. Here would be the works of authors like Mishra and Upadhyay [19] in
2013 and Wang et al. [28] in 2017.

The other group of articles are the works in 2016 by Chen and Huang [3],
Chen and Fang [2] in 2016 and Jayswal, Ahmad and Kumari [12] in 2019. This
authors study the relations between vector optimization problems and vector
variational inequalities and give some existence theorems for weakly efficient
solutions on Hadamard manifolds but do not study the approximate solutions.

Hence, this paper comes to fill those two gaps by studying the relations
between approximate solutions of vector optimization problems via solutions
of variational-like inequalities problems on Riemannian manifolds.

More recently, in 2019, in Ruiz-Garzón et al. [25], we studied the con-
strained vector optimization problem as a particular case of the equilibrium
vector with constraints problem on Hadamard manifolds.

In 2013, Nagy [20] studied the existence of Stackelberg equilibria point
using appropriate variational inequalities in Euclidean spaces.

In 2019, Wang et al. [29] related the mixed variational inequality with the
Nash equilibrium problem on Riemannian manifolds. This same year, Ruiz-
Garzón et al. [26] have demonstrated the coincidence of Nash’s critical and
equilibrium points on Hadamard context with generalized convex payoff func-
tions. All this is what this article completes.

In 2020, Ansari, Islam and Yao [1] are making one of the latest efforts
to relate variational and optimization problems where they have tested some
existence results for non-smooth variational inequality problem and Minty non-
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4 G. Ruiz-Garzón et al.

smooth variational inequality problem using fixed point theorem on Hadamard
manifolds. So, the topic of this article is hot.

Contributions. This work aims to fix the generalized geodesic convex con-
ditions under which we can move from solutions of the variational-like inequal-
ities problems to the local approximate weakly efficient solutions of the vector
optimization problem or the Stackelberg equilibrium points because we have
assured the coincidence of solutions and on surfaces that do not have to be
linear like the Hadamard manifolds.

We have organized the contents of this paper as follows. Section 2 re-
member those elements typical of manifolds: geodesic curve, geodesic convex
set, subdifferential or Hadamard manifold. In section 3, we will define the
concepts of local approximate (weakly) efficient solution for Vector Optimiza-
tion Problem on Hadamard manifolds. We will formulate the Stampacchia
and Minty variational-like problems in their strong and weak form and intro-
duce different concepts of generalized approximate geodesic convex functions
and illustrate them with examples. In Section 4, we will relate approximate
efficient points of Vector Optimization Problem to solutions of Stampacchia
and Minty Variational-like Inequality Problems. We will characterize the ap-
proximate geodesic pseudoconvex and strictly pseudoconvex functions as the
minimum requirement for all vector critical point vectors to be approximate
weakly efficient and approximate efficient solutions, respectively. We will see
that under generalized approximate geodesic convex conditions, we can iden-
tify critical points, solutions of vector variational-like problems and local ap-
proximate weakly efficient points of non-smooth vector optimization problems.
In section 5, we will obtain the Stackelberg Equilibrium Problem via varia-
tional problems with geodesic convex loss functions. Finally, section 6 presents
the conclusions to this study. Let us face our goal.

2 Elements from manifolds

We begin by presenting the environment of Hadamard manifolds in which we
are going to move in this article. We recall some definitions and notions from
manifolds. Let M be a Riemannian manifold endowed with a Riemannian
metric gx on a tangent space TxM .

With the metric we can define:

(a) The corresponding norm is denoted by ‖.‖x.
(b) The length of a piecewise C1 curve γ : [a, b]→M is defined by

L(γ) =
∫ b

a

‖γ′(t)‖γ(t)dt.

(c) The distance d that induces the original topology on M , defined as

d(x, y) = inf
{
L(γ)| γ is a piecewise C1 curve joining x and y, ∀x, y ∈M

}
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Vectorial variational inequalities and efficient approximate solutions 5

This allows us to define the concept of minimal geodesic as any path γ
joining x and y in M such that L(γ) = d(x, y). If M is complete, then any
points in M can be joined by a minimal geodesic.

This work is dedicated to the Hadamard manifolds, a particular case of
Riemannian manifolds.

Definition 1 Recall that a simply connected complete Riemannian manifold
of nonpositive sectional curvature is called a Hadamard manifold.

For differentiable manifolds, it is possible to define the derivatives of the
curves on the manifold. The derivatives at a point x on the manifold lie in a
vector space TxM . We denote by TxM the n-dimensional tangent space of M
at x, and denote by TM =

⋃
x∈M TxM the tangent bundle of M .

Whereas M is not a linear space, TxM is. Therefore, many proofs are
based on transferring properties from the manifold to the tangent space and
vice versa through two functions, the Riemannian exponential function and
its inverse, exp and exp−1, respectively.

Let T̄M be an open neighborhood of M such that exp : T̄M → M is
defined as expx(v) = γv(1, x) for every v ∈ T̄M , where γv is the geodesic
starting at x with velocity v (i.e., γ(0) = x, γ′(0) = v) [4]. It is easy to see
that expx(tv) = γv(t, x).

The geodesic distance between x and y is d(x, y) = ‖ exp−1
x y‖. If M = Rp+

then exp−1
x y = y−x and we denote by Rp+ the nonnegative orthant of Rp, and

R+ := R1
+.

When M is a Hadamard manifold, then, expx is a diffeomorphism, and for
any two points x, y ∈ M , there exists a unique minimal geodesic γx,y(t) =
expx(texp−1

x y) for all t ∈ [0, 1] joining x to y.
At this moment, we are in a position to define a generalization of the convex

set concept to Hadamard environment:

Definition 2 A subset X of M is said to be a geodesic convex if, for any
two points x, y ∈ X, the geodesic γ of M has endpoints x and y belonging
to X; that is, if γ : [0, 1] → M such that γ(0) = x and γ(1) = y, then
γx,y(t) = expx(texp−1

x y) ∈ X.

We will also extend the concept of convex function:

Definition 3 Let M be a Hadamard manifold and let X ⊆M be a geodesic
convex set. A function θ : X → R is said to be convex if, for every x, y ∈ X,

θ(γx,y(t)) ≤ tθ(x) + (1− t)θ(y), ∀t ∈ [0, 1]

where γx,y(t) = expy(texp−1
y x) for every t ∈ [0, 1].

As we can see, we have replaced the segments with geodesic ones that join
two points. Let us now recall the following concepts of Lipschitz function in
the non-smooth case.
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Definition 4 A real-valued function θ defined on a Hadamard manifold M
is said to satisfy a Lipschitz condition of rank k on a given subset X of M if
|θ(x)− θ(y)| ≤ kd(x, y) for every x, y ∈ X.

A function θ is said to be Lipschitz near x ∈M if it satisfies the Lipschitz
condition of some rank on an open neighborhood of x.

A function θ is said to be locally Lipschitz on M if θ is Lipschitz near x
for every x ∈M .

Example 1 The space of positive-definite matrices Sn++ is an example of Hadamard
manifold and with the Riemannian metric 〈U, V 〉 = 〈X−1UX−1, V 〉 the func-
tion θ : Sn++ → R is Lipschitz on Sn++.

In this article, we use non-smooth functions. With Lipschitz functions,
generalized gradients or subdifferentials, replace the classical derivative.

Definition 5 [10] Let θ : M → R be a locally Lipschitz function on a
Hadamard manifold M . We define the subdifferential of θ at x, denoted by
∂θ(x), as the subset of TxM with the support function given by θ0(x; .), i.e.,
for every v ∈ TxM ,

θ0(x, v) = sup {〈A, v〉 : A ∈ ∂θ(x)}

It can be proved that the generalized Jacobian is

∂θ(x) = conv
{

lim
i→∞

grad θ(xi) : {xi} ⊆ X, xi → x
}

where X is a dense subset of M on which θ is differentiable.
We briefly examine some particular cases:
Obviously, if θ is differentiable at x ∈ M , we define the gradient of θ as

the unique vector grad θ(x) ∈ TxM that satisfies

dθx(v) = 〈grad θ(x), v〉, ∀v ∈ TxM

And when θ is a locally Lipschitz convex function, we have θ0(x; v) =
θ′(x; v) for all x ∈ M . For a convex function θ : M → R, the directional
derivative of θ at the point x ∈M in the direction v ∈ TyM is defined by

θ′(x, v) = lim
t→0+

θ(expx(tv))− θ(x)
t

and the subdifferential of θ at x is

∂θ(x) = {A ∈ TxM | θ′(x; v) ≥ 〈A, v〉, ∀v ∈ TxM}

However, for the vector function f = (f1, . . . , fp) : M → Rp, the general-
ized Jacobian ∂f(x) is contained and, in general, is different from the Cartesian
product of Clarke subdifferentials of the components of f .

So far all the math tools to work on Hadamard manifolds.
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3 Definitions and formulations

In this section, we consider the unconstrained multiobjective programming
problem (VOP) defined as:

(VOP) min f(x)
s.t. x ∈ X ⊆M

where f = (f1, . . . fp) : X ⊆M → Rp, with fi : X ⊆M → R for all i : 1, . . . , p,
locally Lipschitz functions on the open set X ⊆ M , and M assumed to be a
Hadamard manifold.

In this formulation, the value of the variable is not necessarily a point in
Euclidean space but for example, a positive-definite matrix. For the Vectorial
Optimization Problem, we will define concepts close to efficiency.

The following concepts are an extension to Hadamard manifolds of others
defined by Mishra and Upadhyay [19] and Wang et al. [28] in linear spaces.

Definition 6 A feasible point x̄ is said to be:

(a) A local approximate efficient (AE) solution for VOP if there exists α ∈
int(Rp+) and a neighborhood B(x̄, δ) of x̄ such that does not exist another
feasible point x ∈ B(x̄, δ) ∩X such that

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ ∈ −Rp+ \ {0}

(b) A local approximate weakly efficient (AWE) solution for VOP if there
exists α ∈ int(Rp+) and a neighborhood B(x̄, δ) of x̄ such that does not
exist another feasible point x ∈ B(x̄, δ) ∩X such that

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ ∈ − int Rp+

Obviously, all efficient (resp. weakly efficient) point is approximate efficient
(resp. weakly efficient). The reverse may not be true.

Example 2 Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian
metric defined by g(x) = x−2. It is well known that M is a Hadamard manifold.

The geodesic curve γ : R → M with the initial condition γ(0) = x and
γ′(0) = w ∈ TxM is given by γ(t) = xe(w/x)t, implies that expx(tw) = xe(w/x)t

and it follows that exp−1
x y = x ln( yx ). The Riemannian distance is given by

d(x, y) = ‖ exp−1
x y‖ = | ln(xy )|.

Consider the VOP as follows:

min f(x) = (f1(x), f2(x)) = (ln(x+ 1), ln(x+ 2))
s.t. x ∈ X = {x|x = et, t ∈ [0, 1]} ⊂M

For x̄ = 1.5, there exists another feasible point x = 1.4 ∈ B(x̄, δ)∩X such
that

f(x)− f(x̄) = (ln(2.4), ln(3.4))− (ln(2.5), ln(3.5)) = (−0.04,−0.03) < (0, 0)

Hence, x̄ = 1.5 is not a weak efficient solution for VOP.
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Now, it is easy to see that for any α = (1, 1) > 0, there exists δ > 0 such
that, for all x ∈ B(x, δ), does not exist another feasible point x ∈ B(x̄, δ)∩X
such that

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ ∈ − int Rp+

Therefore, x̄ = 1.5 is a local approximate weakly efficient (AWE) solution
for VOP.

Variational problem solving is an intermediate step in solving optimization
problems since their solutions coincide under convexity assumptions. We can
study the vector optimization problem via the vector variational-like inequality
problems.

We define the Stampacchia and Minty version of these vector variational-
like problems on Hadamard manifold. We consider these problems as ”primal”
and ”dual” version problems due to solutions’ relations, in the same way, that
it happens for the mathematical programming problem. Generally, the Minty
type formulation is more accessible to resolve than the Stampacchia type.

Definition 7 [3]

(a) Stampacchia Vector Variational-Like Inequality Problem (SV): Find a point
x̄ ∈ X such that there exists no x ∈ X ⊂M such that

〈A, exp−1
x̄ x〉 ≤ 0, ∀A ∈ ∂f(x̄)

(b) Stampacchia Weak Vector Variational-Like Inequality Problem (SWV):
Find a point x̄ ∈ X such that there exists no x ∈ X such that

〈A, exp−1
x̄ x〉 < 0, ∀A ∈ ∂f(x̄)

(c) Minty Vector Variational-Like Inequality Problem (MV): Find a point x̄ ∈
X such that there exists no x ∈ X such that

〈C, exp−1
x x̄〉 ≥ 0, ∀C ∈ ∂f(x)

(d) Minty Weak Vector Variational-Like Inequality Problem (MWV): Find a
point x̄ ∈ X such that there exists no x ∈ X such that

〈C, exp−1
x x̄〉 > 0, ∀C ∈ ∂f(x)

Under conditions of generalized convexity it is possible to move from the
solution of a vector variational-like problem to another, for this we need the
following definitions of generalized convexity on Hadamard manifolds.

Inspired by the work of Ngai, Luc and Thera [21] where they introduced the
concept of approximate convex functions, we present generalized approximate
geodesic convex functions on Hadamard manifolds:

Definition 8 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M and f : X ⊆M → Rp is a locally Lipschitz function. The function
f is said to be:
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(a) approximate geodesic convex (AGCX) at x̄ ∈ X if for all α ∈ int(Rp+) there
exists δ > 0 such that ∀x ∈ B(x̄, δ) ∩X, ∀A ∈ ∂f(x̄) we have

f(x)− f(x̄)− 〈A, exp−1
x̄ x〉+ α‖ exp−1

x̄ x‖ ∈ Rp+
(b) approximate geodesic strictly convex (AGSCX) at x̄ if for all α ∈ int(Rp+)

there exists δ > 0 such that ∀x ∈ B(x̄, δ) ∩X, ∀A ∈ ∂f(x̄) we have

f(x)− f(x̄)− 〈A, exp−1
x̄ x〉+ α‖ exp−1

x̄ x‖ ∈ int Rp+.

(c) approximate geodesic pseudoconvex (AGPCX) at x̄ if for all α ∈ int(Rp+)
there exists δ > 0 such that ∀x ∈ B(x̄, δ) ∩X, ∀A ∈ ∂f(x̄) we have

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ ∈ − int Rp+ ⇒ 〈A, exp−1

x̄ x〉 ∈ − int Rp+.

(d) approximate geodesic strictly pseudoconvex (AGSPCX) at x̄ if for all α ∈
int(Rp+) there exists δ > 0 such that ∀x ∈ B(x̄, δ)∩X, ∀A ∈ ∂f(x̄) we have

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ ∈ −Rp+ \ {0} ⇒ 〈A, exp−1

x̄ x〉 ∈ − int Rp+.

The function f is said to be approximate geodesic convex (resp. strictly
convex, pseudoconvex, strictly pseudoconvex) on X if, for every x ∈ X, f is
approximate geodesic convex (resp. strictly convex, pseudoconvex, strictly
pseudoconvex) at x on X.

The following examples illustrate the above definitions and relations on
Hadamard manifolds.

Example 3 Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian
metric defined by g(x) = x−2, where X = {x|x = et, t ∈ [0, 1]} ⊂M .

Let f(x) = (f1, f2)(x) : X ⊂M = R++ → R2 be a function with

f1(x) = x and f2(x) =

−x+ 3
2 if x < 1.5

0 if 1.5 ≤ x ≤ 2
x− 2 if x > 2

The function f is approximate geodesic convex on M because its compo-
nents are linear functions.

Example 4 Let f(x) = (f1, f2)(x) : X ⊂ M = R++ → R2 be a function
defined as

f1(x) = x and f2(x) =

−x+ 1.5, if x < 1.5
0, if 1.5 ≤ x ≤ 2
2− x, if x > 2

where X = {x|x = et, t ∈ [0, 1]} ⊂M and we can calculate

∂f(x) =


(
x2,−x2

)
if x < 1.5 or x > 2(

x2, ax2
)

if x = 1.5 or x = 2 with − 1 ≤ a ≤ 0(
x2, 0

)
if 1.5 < x < 2.

The function f is approximate geodesic pseudoconvex on X because f(x)−
f(x̄) + ‖ exp−1

x̄ x‖ ∈ − int R2
+ implies that f should be nondecreasing, but f2

is nonincreasing and this previous condition is not satisfied.
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Example 5 Let f(x) = (f1, f2)(x) : X ⊂ M = R++ → R2 be a function
with f(x) = (|x − 1|,−|x − 1|), where X = {x|x = et, t ∈ [0, 1]} ⊂ M . The
function f is approximate geodesic strictly pseudoconvex because f(x)−f(x̄)+
α‖ exp−1

x̄ x‖ ∈ −Rp+ \ {0} is not satisfied for x ∈ X ⊂M .

We now have all the tools required to discuss approximate solutions of
vector optimization problems and vector variational-like inequalities problems.

4 Approximate solutions of vector optimization problems via
vector variational-like inequality problems

This section aims to see how to relate the solutions of these problems on
Hadamard manifolds.

We will set out by endeavouring to calculate the approximate efficient
points, starting with the solutions to the Stampacchia Vector Variational-Like
Inequality Problem.

Theorem 1 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , and f : X ⊆ M → Rp is a locally Lipschitz and approximate
geodesic convex (AGCX) function at x̄ ∈ X. If x̄ solves the Stampacchia Vec-
tor Variational-Like Inequality Problem (SV ), then x̄ is a local approximate
efficient (AE) point to the Vector Optimization Problem (V OP ).

Proof. Suppose that x̄ is not a local approximate efficient (AE) point to
V OP then there exists α ∈ int(Rp+) and a neighborhood B(x̄, δ) of x̄ such
that there exists another feasible point x ∈ B(x̄, δ) ∩X such that

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ ∈ −Rp+ \ {0}

Since f is AGCX function at x̄, we have ensured that if for all α ∈ int(Rp+)
there exists δ > 0 such that ∀x ∈ B(x̄, δ) ∩X, ∀A ∈ ∂f(x̄) we have

〈A, exp−1
x̄ x〉 ≤ 0

therefore x̄ is not a solution to SV . Contradiction. 2

The above result extends the Theorem 3.2 given by Wang et al. [28] and
Mishra and Upadhyay [19] in Euclidean spaces to Hadamard manifolds and
the Theorem 3.4 given in Jayswal et al. [12] to approximate solutions.

Thus is, under conditions of approximate geodesic convexity functions,
the solutions of the Stampacchia Vector Variational-Like Inequality Problem
are local approximate efficient points. To prove the sufficient condition, we
need to impose stronger assumptions on the approximate geodesic convexity
of functions:
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Theorem 2 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , and f : X ⊆ M → Rp is a locally Lipschitz and that −f is
approximate geodesic strictly convex (AGSCX) function. If x̄ is a local ap-
proximate weakly efficient point (AWE) then x̄ also solves the Stampacchia
Vector Variational-Like Inequality Problem (SV ).

Proof. Suppose that x̄ is a local AWE solution for V OP , but not the SV .
Then, ∃x ∈ X and A ∈ ∂f(x̄) such that 〈A, exp−1

x̄ x〉 ≤ 0.
By the approximate geodesic strictly convexity (AGSCX) of −f , we have

that for all α ∈ int(Rp+) there exists δ > 0 such that ∀x ∈ B(x̄, δ) ∩X, ∀A ∈
∂f(x̄) we have

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ < 〈A, exp−1

x̄ x〉 ≤ 0

x̄ being a local AWE point, what is a contradiction. 2

Corollary 1 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , and f : X ⊆ M → Rp is a locally Lipschitz and −f is approxi-
mate geodesic strictly convex (AGSCX) function. If x̄ is a local approximate
efficient (AE) point then x̄ solves the Stampacchia Vector Variational-Like
Inequality Problem (SV ).

Proof. Because every local AE point is a local AWE point and by the
previous theorem 2, it would be proved. 2

Let us now see what the relationship is between the local approximate
efficient solutions of V OP and the solutions of Minty Vector Variational-Like
Inequality Problem (MV ):

Theorem 3 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , and f : X ⊆M → Rp is a locally Lipschitz and f is approximate
geodesic convex (AGCX) function on X. If x̄ is a local approximate efficient
(AE) for the Vector Optimization Problem (V OP ) then x̄ solves the Minty
Vector Variational-Like Inequality Problem (MV ).

Proof. By contradiction ad absurdum. Suppose that x̄ does not solve MV
then there exists x ∈ X satisfying

〈C, exp−1
x x̄〉 ≥ 0, ∀C ∈ ∂f(x)

Noticing that f is AGCX, for all α ∈ int(Rp+) there exists δ > 0 such that
∀x̄ ∈ B(x, δ) ∩X, ∀C ∈ ∂f(x) such that

f(x̄)− f(x)− 〈C, exp−1
x x̄〉+ α‖ exp−1

x x̄‖ ∈ Rp+.

If follows that
f(x̄)− f(x) + α‖ exp−1

x x̄‖ ≥ 0

which leads to a contradiction, since x̄ is an AE solution. 2
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Then, in an environment of generalized approximate geodesic convexity we
have to:

SV⇔ AE⇒ MV

Thus is, the generalized approximate geodesic convexity allows us to relate
solutions of SV and MV problems and local approximate efficient solutions of
the vector optimization problem on Hadamard manifolds as an extension of
what happened in Euclidean spaces, see Ruiz-Garzón et al. [23].

We will go one step further, and we will look for when we can identify
solutions to Stampacchia Weak Vector Variational-Like Inequality Problem
(SWV ) with the local approximate weakly efficient (AWE) points for VOP.

Theorem 4 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , and f : X ⊆M → Rp is a locally Lipschitz function.

If x̄ is local approximate weakly efficient (AWE) for the Vector Optimiza-
tion Problem (V OP ) then x̄ solves the Stampacchia Weak Vector Variational-
Like Inequality Problem (SWV ).

If f is a approximate geodesic pseudoconvex (AGPCX) function and x̄
solves the SWV problem then x̄ is a local AWE point for V OP .

Proof.
Firstly, we will prove the necessary condition. Let x̄ be the local AWE

solution of V OP , since X is an geodesic convex set, there exists α ∈ int(Rp+)
and a neighborhood B(x̄, δ) of x̄ such that there does not exist another feasible
point x ∈ B(x̄, δ) ∩X such that

f(expx̄(texp−1
x̄ x))− f(x̄) < −αt‖ exp−1

x̄ x‖ ∈ −Rp+, 0 < t < 1

Dividing the above inequality by t and taking the limit as t tends to 0, we
get to does not exist x ∈ M such that 〈A, exp−1

x̄ x〉 < 0, ∀A ∈ ∂f(x̄) then x̄
solve SWV .

Secondly, we will prove the reciprocal condition by reductio ad absurdum.
If x̄ is not a local AWE point then there exists α ∈ int(Rp+) and a neighborhood
B(x̄, δ) of x̄ such that there exists another feasible point x ∈ B(x̄, δ)∩X such
that

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ ∈ − int Rp+

By AGPCX of f we have ensured that for all α ∈ int(Rp+) there exists
δ > 0 such that ∀x ∈ B(x̄, δ) ∩X, ∀A ∈ ∂f(x̄) we have

〈A, exp−1
x̄ x〉 ∈ − int Rp+.

Contradiction, with x̄ is a solution of the SWV. 2

Remark that Wang et al. [28] only proves the second part of the above
theorem and not for Hadamard manifolds. Theorem 4.3 given in Ruiz-Garzón
et al. [23] in n-dimensional Euclidean space is a particular case of the result
proven here.

Every approximate efficient point is approximate weakly efficient, but when
the reverse condition occurs. The following theorem proves it:
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Theorem 5 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , f : X ⊆M → Rp is a locally Lipschitz and approximate geodesic
strictly convex (AGSCX) function on X. If x̄ is a local approximate weakly
efficient (AWE) for Vector Optimization Problem then x̄ is a local approxi-
mate efficient (AE) for Vector Optimization Problem (V OP ).

Proof. Suppose that x̄ is a local AWE point for VOP, but not a local AE
point. Then, there exists α ∈ int(Rp+) and a neighborhood B(x̄, δ) of x̄ such
that there exists another feasible point x ∈ B(x̄, δ) ∩X such that

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ ∈ −Rp+ \ {0}

By the AGSCX of f we have that for all α ∈ int(Rp+) there exists δ > 0
such that ∀x ∈ B(x̄, δ) ∩X, ∀A ∈ ∂f(x̄) we have

f(x)− f(x̄)− 〈A, exp−1
x̄ x〉+ α‖ exp−1

x̄ x‖ > 0

which is to say, ∃x ∈ X, such that 〈A, exp−1
x̄ x〉 < 0, ∀A ∈ ∂f(x̄), therefore,

x̄ does not solve the SWV problem.
The contradiction arises from, on the other hand, the earlier theorem 4,

we have that if x̄ is a local AWE for VOP then x̄ solves also the SWV. 2

We know that we look for among the critical points to find solutions to
optimization problems. In Ruiz-Garzón et al. [24] the following definition is
given:

Definition 9 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , and f : X ⊆ M → Rp is a locally Lipschitz function. A feasible
point x̄ ∈ X is said to be a vector critical point (VCP) if there exist some
x ∈ X ⊆M and λ ∈ Rp+ \ {0} such that

λT 〈A, exp−1
x̄ x〉 = 0 for someA ∈ ∂f(x̄)

In the following theorem, we show that the key to the relationship be-
tween vectorial critical points (V CP ) and local AWE solutions for VOP is the
approximate geodesic pseudoconvexity (AGPCX):

Theorem 6 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , and f : X ⊆ M → Rp is a locally Lipschitz function. Every
(V CP ) is a local approximate weakly efficient solution (AWE) for V OP if
and only if the function f is approximate geodesic pseudoconvex (AGPCX)
on X.

Proof Firstly, we prove that if very VCP is a local approximate weakly efficient
solution AWE for VOP then the function f is AGPCX at x̄.

Let x̄ be a local AWE for VOP then there exists α ∈ int(Rp+) and a
neighborhood B(x̄, δ) of x̄ such that

f(x)− f(x̄) < −α‖ exp−1
x̄ x‖ (1)
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has no solution x ∈ B(x̄, δ) ∩X.
On the other hand, if x̄ is a vector critical point for some x ∈ X ⊆ M ,

λ ∈ Rp+ \ {0}, and A ∈ ∂f(x̄) we have

λT 〈A, exp−1
x̄ x〉 = 0

By Gordan’s Alternative Theorem there exists a vector A ∈ ∂f(x̄) such
that the following system

λT 〈A, exp−1
x̄ x〉 < 0 (2)

has no solution.
Therefore, the systems (1) and (2) are equivalent, hence, for all α ∈ int(Rp+)

there exists δ > 0 such that ∀x ∈ B(x̄, δ) ∩X, ∀A ∈ ∂f(x̄) we have

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ ∈ − int Rp+ ⇒ 〈A, exp−1

x̄ x〉 ∈ − int Rp+.

Thus is, f is AGPCX at x̄.
We prove the sufficient condition. We assume by hypothesis that f is AG-

PCX and that x̄ is a VCP. Thus,

λT 〈A, exp−1
x̄ x〉 = 0 (3)

for some x ∈ X ⊆M , λ ∈ Rp+ \ {0}, and A ∈ ∂f(x̄) and we need to prove that
x̄ is a local AWE point. By reductio ad absurdum, suppose that x̄ is not a
local weakly approximate efficient solution AWE for VOP. Then, there exists
another feasible point x ∈ B(x̄, δ) ∩X such that

f(x)− f(x̄) + α‖ exp−1
x̄ x‖ ∈ − int Rp+

Using the fact that f is AGPCX at x̄ on X, we have 〈A, exp−1
x̄ x〉 ∈

− int Rp+, and so
λT 〈A, exp−1

x̄ x〉 < 0

which contradicts (3).
ut

Therefore, we have extended the theorem 4.2 given by Wang et al. [28], the
theorem 3.5 given by Mishra and Upadhyay [19] and the theorem 4.5 given
by Ruiz-Garzón et al. [23] for Euclidean spaces to Hadamard manifolds with
local approximate weakly efficient (AWE) points and approximate geodesic
pseudoconvex (AGPCX) functions.

For local approximate efficient solutions, the approximate geodesic strictly
approximate pseudoconvexity (AGSPCX) replaces the role of approximate
geodesic pseudoconvexity (AGPCX). Thus, in the same way, we can prove
the following corollary.

Corollary 2 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , and f : X ⊆ M → Rp is a locally Lipschitz function. Every
VCP is a local approximate efficient solution (AE) for VOP if and only if the
function f is approximate geodesic strictly pseudoconvex (AGSPCX) on X.
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We must emphasize that Theorem 6 and Corollary 2 show that approx-
imate geodesic pseudoconvexity (resp. approximate geodesic strictly pseudo-
convexity) is a minimal requirement for the property that every VCP is a local
weakly approximate efficient (resp. approximate efficient) solution of problem
VOP on a Hadamard manifold in the non-smooth case.

In summary, we have that

[VCP⇔ AWE]⇔ AGPCX]

[VCP⇔ AE]⇔ AGSPCX]

The following theorem tries to check what the relationships are between
Stampacchia and Minty weak type problems.

Theorem 7 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , f : X ⊆M → Rp is a locally Lipschitz and approximate geodesic
convex (AGCX) function. If x̄ is a local approximate weakly efficient (AWE)
point then x̄ solves Minty Weak Vector Variational-Like Inequality Problem
(MWV ).

Proof. By reductio ad absurdum. Suppose that x̄ is not a solution for
(MWV), then there exists x ∈ X such that

〈C, exp−1
x x̄〉 > 0, ∀C ∈ ∂f(x) (4)

Since f is AGCX on X, for all α ∈ int(Rp+) there exists δ > 0 such that
∀x ∈ B(x̄, δ) ∩X, ∀C ∈ ∂f(x) we have

f(x̄)− f(x)− 〈C, exp−1
x x̄〉+ α‖ exp−1

x x̄‖ ∈ Rp+. (5)

From (4) and (5), there exists another feasible point x ∈ B(x̄, δ) ∩X such
that

f(x̄)− f(x) + α‖ exp−1
x x̄‖ > 0

which gives us a contradiction that x̄ is a AWE point for VOP. 2

We also know that:

Theorem 8 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , f : X ⊆ M → Rp is a locally Lipschitz. The point if x̄ solves
Minty Weak Vector Variational-Like Inequality Problem (MWV ) then x̄ solves
the Stampacchia Weak Vector Variational-Like Inequality Problem (SWV ).

Proof. This condition is the theorem 3.4 proved in Chen and Huang [3]. 2

Therefore, the relationship between SWV and MWV problems on Hadamard
manifolds is maintained. This relationship is at the base of the theorems of
existence for local approximate weak efficient solutions for VOP, for which it
is sufficient to prove that SWV problem has a solution.

Moreover, we obtain as a final result:
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Corollary 3 Let M be a Hadamard manifold, X is an open geodesic convex
subset of M , f : X ⊆M → Rp is a locally Lipschitz and approximate geodesic
convex (AGCX). The point x̄ is a local approximate weakly efficient (AWE)
if and only if is a Vector Critical Point (VCP) if and only if x̄ solves a Stam-
pacchia Weak Vector Variational-Like Inequality Problem (WSV) if and only
if x̄ solves a Minty Weak Vector Variational-Like Inequality Problem (WMV).

Proof. It is the result of applying the theorems 4, 6, 7 and 8 and that
AGCX implies AGPCX. 2

To sum up:

VCP⇔ SWV⇔ AWE⇔ MWV

The above theorem is an extension to local approximative weak efficient
(AWE) points of the relationships obtained by Chen and Huang [3] in Theorem
3.8 for weakly efficient points.

Under approximate geodesic pseudoconvex conditions, we can identify Vec-
tor Critical Points, approximate weakly efficient points of VOP and solutions of
Weak Stamppacchia Variational-like inequalities problems just as we did with
finite-dimensional Euclidean spaces. Let us look at an illustrative example.

Example 6 Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian
metric defined by g(x) = x−2. It is well known that exp−1

x y = x ln( yx ) and the
Riemannian distance is given by d(x, y) = ‖ exp−1

x y‖ = | ln(xy )|.
Consider:

(VOP) min f(x) = (f1, f2)(x)
subject to x ∈ X = {x|x = et, t ∈ [0, 1]} ⊂M

where let f be a function defined as

f1(x) = ln(x) and f2(x) =
{

0, if x < 2
x− 2, if x > 2

and we can calculate

∂f1(x) = gradf1(x) = g(x)−1 ∂f1

∂x
= x2 1

x
= x

similarly, we get

∂f2(x) =

0 if x < 2
ax2 if x = 2 with a ∈ [0, 1]
x2, if x > 2

Obviously, the functions f1 and f2 are locally Lispchitz on X. Now, for the
function f1 at x̄ = 1 and α = 1, we have

f1(x)− f1(x̄)− 〈A, exp−1
x̄ x〉+ α‖ exp−1

x̄ x‖ =
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= ln(x)− 0− ln(x) + | ln(
1
x

)| ≥ 0, ∀x ∈ X

Similarly, one can check for function f2 at x̄ = 1 and α = 1, we get

f2(x)− f2(x̄)− 〈B, exp−1
x̄ x〉+ α‖ exp−1

x̄ x‖ =

= f2(x)− 0− 0 + | ln(
1
x

)| ≥ 0, ∀x ∈ X

Therefore the functions f1 and f2 are AGCX and therefore AGPCX at
x̄ = 1 with constant α = 1 on X.

The point x̄ = 1 ∈ X is a vector critical point (VCP) since there exist
some x ∈ X ⊆M and λ = (0, 1) ∈ Rp+ \ {0} such that

λT 〈A, exp−1
x̄ x〉 = (0, 1)T (ln(x), 0) = 0, for someA ∈ ∂f(x̄)

Further, x̄ = 1 is a solution for WSV problem

〈A, exp−1
x̄ x〉 = (ln(x), 0) 6< (0, 0), ∀x ∈ X and t ∈ [0, 1]

and x̄ = 1 is a solution for WMV problem because

〈C, exp−1
x x̄〉 6> 0, ∀C ∈ ∂f(x)

Also, for x̄ = 1, we get

(f1(x)− f1(x̄), f2(x)− f2(x̄)) = (ln(x)− 0, f2(x)− 0) 6< (0, 0), ∀x ∈ X.

Therefore, x̄ = 1 is a weak efficient solution for VOP and therefore x̄ = 1
is a local approximate weakly efficient (AWE) solution, the corollary 3 being
verified.

5 Application: Stackelberg Equilibrium Problem via variational
problems on Hadamard manifolds

In the same way that we can use the vector variational-like problems to reach
the local approximate weakly efficient solutions of VOP, we will see that under
geodesic convex functions we can reach the Stackelberg equilibrium points
through variational problems on Hadamard manifolds.

The Stackelberg Equilibrium Problem (SEP) on Riemannian manifolds
context is defined as

(SEP) min f1(x1, x2)
x1 ∈ K1

s.t x2 ∈ RSE = arg minf2(x1, x2)
x2 ∈ K2

with f1, f2 : K1 ×K2 → R are the payoffs/loss functions for the players, and
K1,K2 ⊂M are their strategy sets on a Hadamard manifold.

The first step is to solve
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RSE(x1) = arg minf2(x1, x2)
x2 ∈ K2

for every fixed x1 ∈ K1. Thus is, we must determine the optimal or best
response set of the follower in SEP as a reaction function, i.e. the Stackelberg
equilibrium Response set as

RSE = {x2 ∈ K2 : f2(x1, y)− f2(x1, x2) ≥ 0, ∀y ∈ K2}

for every fixed x1 ∈ K1.
The next step, for the leader player, insert the reaction function of the

follower into its optimization problem, where r is a reaction function selection
of the set-valued map RSE and minimize

SSE(x1) = arg minf1(x1, r(x1))
x1 ∈ K1

i.e., more precisely, the Stackelberg Equilibrium Leader set is

SSE = {x1 ∈ K1 : f1(x, r(x))− f1(x1, r(x1)) ≥ 0, ∀x ∈ K1}

An easier way to obtain those Stackelberg equilibrium points is via the
solutions of variational problems.

Related to these sets we introduce two variational problems to obtain our
Stackelberg equilibrium points. We define a slightly larger set than the Stack-
elberg equilibrium response RSE(x1) set by means of variational inequalities.

(a) The so-called Stackelberg Variational Response set defined by

RSV (x1) =
{
x2 ∈ K2 : 〈 ∂f2

∂x2
(x1, x2), exp−1

x2
y〉 ≥ 0, ∀y ∈ K2

}
To check the solutions of Stackelberg variational response RSV (x1) set it
is easier than the elements of RSE(x1), thus, we can locate the elements of
the Stackelberg equilibrium response set among these points.

(b) We introduce the Stackelberg Variational Leader set

SSV =
{
x1 ∈ K1 : 〈 ∂f1

∂x1
(x1, r(x1)), exp−1

x1
y〉 ≥ 0, ∀y ∈ K1

}
The set SSV contains the best strategies of the first player.
Let us see under what conditions sets RSE(x1) and RSV (x1) coincide:

Theorem 9 Let f2 : K1×K2 → R be a locally Lipschitz funcion and Ki ⊂M
geodesic convex sets, i = 1, 2. Then, we have the following assertions:

(a) RSE(x1) ⊆ RSV (x1) for every x1 ∈ K1.
(b) If f2(x1, ·) is geodesic convex on K2 for some x1 ∈ K1 ⇒ RSE(x1) =

RSV (x1).

Proof.
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(a) Given x2 ∈ RSE(x1) then f2(x1, y) ≥ f2(x1, x2), ∀y ∈ K2. By definition,
one has that

〈 ∂f2

∂x2
(x1, x2), v〉 = lim

t→0+

f2(x1, expx2(tv))− f2(x1, x2)
t

, ∀v ∈ Tx2M

By the geodesic convexity of K2, then expx2
(t exp−1

x2
y) ∈ K2 for every

t ∈ [0, 1] whenever y ∈ K2. If v = exp−1
x2
y ∈ Tx2M in the above expression,

we conclude that
〈 ∂f2

∂x2
(x1, x2), exp−1

x2
y〉 ≥ 0

which implies that x2 ∈ RSV (x1) for every x1 ∈ K1.
(b) We proof the reciprocal condition. By the geodesic convexity of f2(x1, ·)

function, we have that

f2(x1, y)− f2(x1, x2) ≥ 〈 ∂f2

∂x2
(x1, x2), exp−1

x2
y〉, y ∈ K2

Since x2 ∈ RSV (x1), one has that

〈 ∂f2

∂x2
(x1, x2), exp−1

x2
y〉 ≥ 0, y ∈ K2

Then f2(x1, y)− f2(x1, x2) ≥ 0 for all y ∈ K2, therefore x2 ∈ RSE(x1).

2

Hence, in geodesic convex context, thus is, Ki, ı = 1, 2 are geodesic convex
sets and f2(x1, ·) geodesic convex functions, we have that:

RSE(x1) = RSV (x1)

We have proven that the relationship between variational point and equi-
librium points is obtained for geodesic convex payoff functions, extending the
results obtained for convex payoff functions given by Nagy [20]. Let us illus-
trate this property with an example.

Example 7 Let M = R++ = {x ∈ R : x > 0} be endowed with the Riemannian
metric defined by g(x) = x−2.

Let K1 = K2 = [1, 2] be are convex sets and therefore geodesic convex sets
and consider a two-player game with payoff functions defined as:

f1(x1, y) = x2 − 3x1 + |x1 − 1.5|x2

f2(x1, x2) =
x2

2

2
− x1x2

We can calculate:

∂f1(x1, x2)
∂x1

=
{

2x1 − 3 + x2, if x1 > 1.5
2x1 − 3− x2, if x1 < 1.5
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∂f2(x1, x2)
∂x2

= x2 − x1

The f2(x1, ·) is geodesic convex on K2 for every x1 ∈ K1, then for previous
Theorem 9, the Stackelberg Variational Response is

RSV (x1) =
{
x2 ∈ K2 : 〈 ∂f2

∂x2
(x1, x2), exp−1

x2
y〉 ≥ 0, ∀y ∈ K2

}
=

= {x2 ∈ K2 : x2 = x1, x1 ∈ K1} = RSE(x1)

and in this case, the Stackelberg Variational Leader set and Stackelberg Equi-
librium Response are

SSV =
{
x1 ∈ K1 : 〈 ∂f1

∂x1
(x1, r(x1)), exp−1

x1
y〉 ≥ 0, ∀y ∈ K1

}
SSV = {(1, 1)} = SSE(x1)

In our case, this solution is the point (x̄, ȳ) = (1, 1), which is both a Nash
Equilibrium point.

6 Conclusions

This paper, for the first time, we have introduced concepts such as local ap-
proximate weakly solutions or generalized approximate geodesic convex func-
tions, to demonstrate that we can achieve local approximate weakly solutions
by using Stampacchia and Minty type solutions on Hadamard manifolds. We
can also obtain Stackelberg equilibrium points via solutions to variational pro-
blems in the case of geodesic convex payoff functions, improving on previous
results in the literature. The results presented in this paper lead to the follow-
ing conclusions:

– We have extended the approximate and weakly approximate solutions given
by Mishra and Upadhyay [19] and Wang et al. [28] in linear spaces to
Hadamard manifolds.

– Inspired by the work of Ngai, Luc and Thera [21], we have introduced the
concepts of generalized approximate geodesic convex functions on Hadamard
manifolds, and we have illustrated them with examples.

– We have proved that, under conditions of approximate geodesic convexity
functions, the solutions of the Stampacchia Vector Variational-Like In-
equality Problem are local approximate efficient points (AE).

– We have shown the relationships between the local approximate efficient
solutions for V OP and the solutions of Minty Vector Variational-Like In-
equality Problem (MV ).

– We have been able to identify solutions to Stampacchia Weak Vector
Variational-Like Inequality Problem (SW ) with the local approximate weakly
efficient (AWE) points for VOP.
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– We have gone one step further, and we have proved that approximate
geodesic pseudoconvexity (resp. approximate geodesic strictly pseudocon-
vexity) is a minimal requirement for the property that every VCP is a local
weakly approximate efficient (resp. approximate efficient) solution for VOP
on a Hadamard manifold in the non-smooth case.

– Under approximate geodesic pseudoconvex conditions, we have identified
Vector Critical Points, approximate weakly efficient points for VOP and
solutions of Weak Stamppacchia and Minty Variational-like inequalities
problems just as we proved with finite-dimensional Euclidean spaces.

– We have introduced two variational problems to obtain Stackelberg equi-
librium points, and we have proved under what conditions the points of
these sets coincide.

In our opinion, in the future, algorithms should be designed to obtain ap-
proximate efficient solutions from a non-smooth vector optimization problem
and look for more economical applications of the theoretical results achieved
here.
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5. V. Colao, G. López, G. Marino and V. Mart́ın-Márquez, Equilibrium problems
in Hadamard manifolds, J. Math. Anal. Appl. 38 (8) (2012), 61–77. DOI:
10.1016/j.jmaa.2011.11.001.

6. P.T. Fletcher, S. Venkatasubramanian and S. Joshi, The geometric median on Rie-
mannian manifolds with application to robust atlas estimation, Neuroimage 45 (2009),
5143–5152. DOI: 10.1016/j.neuroimage.2008.10.052.

7. M. Gabarrou, D. Alazard and D. Noll, Design of a flight control architecture using
a non-convex bundle method, Math. Control Signals Syst, 25 (2013), 257–290. DOI:
10.1007/s00498-012-0093-z.

8. F. Giannessi, Theorems of alternative quadratic programs and complementarity pro-
blems. In: Cottle R.W., Giannessi F. Lions J.L., editors. Variational inequalities and
complementarity problems. Theory and Applications. New York, Wiley, (1980), 151–
186.

9. F. Giannessi, On Minty variational principle. New trends in mathematical programmig.
Boston. Kluwer Academic Publishers (1998), 93–99.

10. P. Grohs and S. Hosseini, ε-subgradient algorithms for locally lipschitz functions on
Riemannian manifolds, Adv. Comput. Math., 42 (2016), 333-360. DOI: 10.1007/s10444-
015-9426-z.
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