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Abstract: Rainfall runoff modeling has been a subject of interest for decades due to a need to
understand a catchment system for management, for example regarding extreme event occurrences
such as flooding. Tropical catchments are particularly prone to the hazards of extreme precipitation
and the internal drivers of change in the system, such as deforestation and land use change. A model
framework of dynamic TOPMODEL, DECIPHeR v1 - considering the flexibility, modularity and
portability - and Generalized Likelihood Uncertainty Estimation (GLUE) method are both used in
this study. They reveal model performance for the streamflow simulation in a tropical catchment,
i.e. the Kelantan River in Malaysia, that is prone to flooding and experiences high rates of land use
change. 32 years’ continuous simulation at a daily time scale simulation along with uncertainty
analysis resulted in a Nash Sutcliffe Efficiency (NSE) score of 0.42 from the highest ranked parameter
set, while 25.35% of the measurement falls within the uncertainty boundary based on a behavioral
threshold NSE 0.3. The performance and behavior of the model in the continuous simulation suggests
a limited ability of the model to represent the system, particularly along the low flow regime. In
contrast, the simulation of eight peak flow events achieves moderate to good fit, with the four peak
flow events simulation returning an NSE > 0.5. Nonetheless, the parameter scatterplot from both
the continuous simulation and analyses of peak flow events indicate unidentifiability of all model
parameters. This may be attributable to the catchment modelling scale. The results demand further
investigation regarding the heterogeneity of parameters and calibration at multiple scales.

Keywords: streamflow; dynamic TOPMODEL; DECIPHeR; GLUE analysis

1. Introduction

A work of hydrological modeling research is an interactive learning of data and the knowledge
— i.e. process understanding, theory, and a model structure [1]. Modeling has greatly improved by
increases in computing power and sophistication within the last 20 years, not only in reference to
the computing capability but also the availability of remote sensing data [2] that supplement field
measurement data. These developments result in an evolution of hydrological models into more
sophisticated forms, particularly in terms of model complexity and spatial scale such as in a physically
based distributed model [3,4]. However, the higher the complexity of a model structure may be, the
more data is required and the greater number of parameters need to be calibrated and validated [2]. For
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a large catchment with data scarcity issues [5,6], a model with less structural complexity, for example
that in the form of a distributed conceptual model, may be a better alternative.

A conceptual model is built based on a perception of a complex system that is described
into mathematical equations and coded for a computer simulation [7]. The physical process is
simplified into components of storage and transfer between them that are controlled by the water
balance equation [5,6]. Conceptual rainfall runoff models such as HBV, PDM, and TOPMODEL are
commonly used due to their simplicity and practicality yet at the same time having a sound scientific
basis [8,9]. Nevertheless, all models have their own limitations and, furthermore, they may not
produce comparable results. TOPMODEL, for example, was developed for a hillslope and found
to underperform in simulations of groundwater levels and the distribution of saturated areas [10].
Nevertheless, further improvements to the original model made by adding a groundwater term
as a local storage deficit based on a field survey produced good model performance [11]. Later, a
dynamic version of the model introduced the kinematic wave solution aiming to remove the rigid
assumption required for the original version that the water table is defined as a succession of steady
states, neglecting the groundwater temporal response [12]. TOPMODEL, intentionally introduced
as a concept [7], was made publicly available by the recent works of the Dynamic TOPMODEL
(DynaTOPMODEL) framework development in R [13] and Dynamic fluxEs and Connectlvity for
Predictions of Hydrology (DECIPHeR v1) coded in FORTRAN [14].

Both frameworks offer the advantages of accessibility, modularity, and portability [15]. These
allow the needed interactive learning previously mentioned for an individual catchment. This is
achieved by taking into account the issue of the uniqueness of a catchment [7], data availability, and
model structure adaptation to a certain application in practice [9]. Just released in 2018, DECIPHeR
version 1, which is used in this study;, is a flexible model framework available as an open source via
github. The distributed concept in the model is explained ranging from the Hydrological Response Unit
(HRU) definition being lumped-whereby a single HRU covers the entire catchment-to fully distributed
where an HRU is assigned for every grid cell [14]. DECIPHeR, which was on purpose developed
for a wide range of spatial and temporal scales [14], allows simulation on multiple catchments and
the experimentation of new concepts to capture the complexity and the heterogeneity in a catchment
system through additional model structure and related parameters [14]. A single structure is introduced
in the model with a built-in option of Monte Carlo sampling to generate the random parameter sets
distribution used for uncertainty analysis.

The Generalized Likelihood Uncertainty Estimation (GLUE) methodology of the uncertainty
analysis frameworks in hydrological modeling [16] can be used to analyse model parameter uncertainty
and understand model behaviour. There have been arguments that the method is subjective mainly
for the threshold assumption [16,17] and suggestions to value the method as a weighted sensitivity
analysis instead of a probabilistic method [18]. The threshold assumption is intended as a boundary of
acceptability, where values above the threshold are considered to be behavioral [19] and are further
used in the uncertainty analysis. The method where many sets of parameters provides acceptable
simulation results - a concept known as equifinality [19,20]- is common [21,22] for assessing the model’s
behavior toward the observed behavior of the system.

There have been few applications of the TOPMODEL based model such as DECIPHeR to a
tropical forested catchment. The original TOPMODEL was reportedly used in a variety of small
sizeed tropical catchments [23,24]. It has been also applied in Malaysian-Peninsular, Malaysian Borneo
and Thailand for short periods of observed data [25-27]. The model was mostly applied on small
catchments [13,28,29], some are due to field measurement and used in the model analysis [11,26,27,30].
The implementation on a large scale catchment has also been attempted [31] with modification of
block-wise [32], multiple catchment [14] and global scale applications [33].

The study area, Kelantan catchment (12,142 Km?) Malaysian Peninsular, is a large catchment with a
tendency to experience extreme flooding [34] and significant land use change. Recent flood events were
in 2014 and 2017 [35,36]. The highest water level recorded in the Kelantan catchment was in 2014, which
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highlights the important work of hydrological research [34]. A land use classification study for 20 years,
from 1994 to 2014, revealed a 13.7 % decrease in forest land, and a 6.2 % increase in 0il palm plantations
[37] in the catchment. These spurred many hydrological and modeling studies to be conducted in the
area [38,39]. Some modeling studies on the Kelantan catchment adopted semi-distributed approaches
like HEC-HMS in modeling runoff using the Soil Conservation Service Curve Number (SCS-CN)
method [39-41]. There have been studies that reported good model performance using the method
[37,39]. Other methods such as the Integrated Flood Analysis System (IFAS) [38] have also been applied.
However, the CN method, which imposes an empirical approach, has been developed based on humid
rain-fed agricultural areas and is noted to performing poorly for a forested catchment [42]. Other
model applications in the Kelantan catchment are either lumped conceptual models [43,44] where the
performance varied with poor validation (R2 < 0.5), or based on machine learning approaches [45],
where the performance is better (NSE > 0.9). Unlike in the lumped model where the processes were
not made explicit, the machine learning is able to “learn” the surface-subsurface complexity from the
data but is not spatially identified.

However, uncertainty analysis is a significant missing aspect of these existing works, which
treated models as robust prediction tools rather than a means of improving system understanding. It
is obvious that the entire process of modeling either the simplified or the complex assumption does
inherit uncertainty due to data or/and a model assumption [16]. The common practice in a model
calibration has been accepting a set of parameters based on performance measure values. On the
other hand, in the uncertainty approach, the confidence interval is built based on the numbers of
parameter sets considered to be behavioral toward the observed value of the system [19]. The range of
parameters, instead of exact values, offers a wider scope of understanding the system.

The objective of this paper is to test the DECIPHeR model framework in a typical tropical forested
catchment to assess the performance and the uncertainty of the model toward the system. The model is
applied for the continuous time period from 1985 to 2016; an analysis on shorter segmented peak flow
periods are also presented. The assumption of homogeneous parameters is used, neglecting the spatial
complexity of the system. The model simulation is analyzed in terms of the uncertainty intervals to
gain understanding on the differences between performances during different events and towards
identifying the model parameters responsible for the deviations from the observations.

2. Materials and Methods

2.1. Study Area

The Kelantan catchment is located in the northern part of Malaysia Peninsular, geographically
bounded between 4° 30’ N to 6° 15'N latitude and 101°E to 102° 45'E. The main tributaries are the
Nenggiri, Galas, Lebir and Kelantan Rivers, Figure 1. The mean annual precipitation of the peninsula
is around 2300 mm [46]. Considering the length of streamflow data availability, the catchment is
delineated given the output at Station Sg. Kelantan at Guillemard Bridge. The delineated area is
calculated using the Digital Terrain Analysis (DTA) in the DECIPHeR as 12,142 Km?. The population
of Kelantan based on 2015 data is 1.718 million [47] with approximately one third of the population
living in the downstream area of the catchment [34], which is the most flood-prone.
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Figure 1. Kelantan catchment in Malaysian Peninsular

2.2. Input Data

The main input data required by the model are: Digital Elevation Model (DEM), rainfall data,
discharge data and evapotranspiration data. The DEM used is the Shuttle Radar Topography Mission
(SRTM) 1 Arc-Second Global elevation data retrieved from https:/ /earthexplorer.usgs.gov provided
by the United State Geological Survey (USGS). The data set comes in tiles of 1 degree size, 30 meters
of spatial resolution and WGS84 Geographic (EPSG: 4326) [48]. The data set has been recognized by
the hydrologic modeling community for its near-global coverage and high-resolution [49]. It is also
reported that the quality of the SRTM data of the X-SAR band, after being validated with the reference
DEM data set of two sites in Southern Germany, is sufficient for the TOPMODEL application on a
medium scale catchment [49]. Hence, no further validation process was taken in this study.

The historical daily data of rainfall and discharge are acquired from The Department of Irrigation
and Drainage (DID) of Malaysia. Ten rainfall gauge stations within the catchment and the streamflow
station at the Guillemard Bridge of 32 years period from 01/01/1985 - 31/12/2016 are used for the
model driving data. The gauges’ spatial distribution is shown in Figure 1. The gauged rainfall
is converted to gridded rainfall after applying the Thiessen Polygon method for the gauges” areal
coverage. The polygon is aggregated into the grid size of the DEM, with every grid assigned to hold
the value of the related gauges. The gauges were selected considering the least missing data record.

Global Land Evaporation Amsterdam Model (GLEAM) datasets, which provide different
components of evapotranspiration separately based on satellite data [50,51], is also used in this
study. A global validation was already applied to the provided data set using a large database from
2325 in situ sensors and 91 Eddy-covariance towers which returns correlation between 0.78 and 0.81 for
evaporation fluxes [50]. The data retrieved is the potential evaporation in unit mm/day from GLEAM
v3 which is stored in 3D array, on a 0.25° x 0.25° latitude-longitude grid, and in a daily temporal
resolution. The grid is also converted into the projection of the DEM and aggregated into the similar
grid size. The data value is resampled into the new grid using bilinear interpolation.

2.3. The Concept and the Framework of the Rainfall Runoff Model

The original conceptual rainfall-runoff TOPMODEL has been known for the hydrological
similarity points theory based on the topographic index In(atan ), assuming the saturated zone
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as a result of the successive steady state of the upslope area [7,52]. The dynamic version has been
introduced by replacing the assumption of quasi steady state with the kinematic wave routing, while
keeping the exponential transmissivity assumption, controlled by parameter SZM and truncated by
parameter Sy,qy [12-14].

The model, which was introduced as a concept rather than a tool [53], has not been publicly
available until recently via the Dynamic TOPMODEL in R [13] and the DECIPHeR model framework
which is coded in FORTRAN [14]. The DECIPHeR framework used in this study offers more
advantages compared to the R version, which is applicable only for a single catchment. The framework
was developed with the flexibility allowing users to explore a wider system from a single catchment
up to multi-catchments at a continental scale to modify the model structure by embedding a different
conceptualization and to vary parameters recognizing a site specific issue by adding variability of
spatial data layers such as land cover. The model is run in two steps, the DTA and Rainfall-Runoff
Model (RR). Using DEM, gauges’ coordinates, rainfall data grid, and the potential evapotranspiration
data grid, the DTA is run to produce: (1) HRUs and the connectivity in the landscape, (2) river network
and the routing properties, and (3) the extent and the simulated output location.

The assumption of the model is that the lateral fluxes in the saturated zone of an each elemental
effective upslope contributing area a in the topographic index is numerically solved using the kinematic
solution [12]. The flow is proportionally distributed between HRU and a river reach using a matrix,
Equation 1, weighed by accumulated area and slope. Each HRU contains information of topographic
information, inputs, the model structure and the parameters set [14]. A wide range of parameters is
used for the Monte Carlo sampling, as introduced in the DECIPHeR and presented in Table 1.

w11 0 Wip
W=1: " (1)

Wp1 - Wan
where )7L w;; =1,

Table 1. The dynamic TOPMODEL parameters range

Parameter Description Lower limit Upper limit
SZM|[m] Form of exponential decline in conductivity 0.001 0.07
In(Tp) In[m?h—1) Effective lateral saturated transmissivity -7 5
Stmax|[m] Maximum root zone storage 0.005 0.15
SR;pit[m] Initial root zone deficit 0 0.01
Ty[mh™1] Unsaturated zone time delay 0.1 40
CHV[mh™1] Channel routing velocity 250 4000
Smax[m] Maximum effective deficit of subsurface saturated zone 0.2 3

RR is run based on the HRU and routing files from the DTA’s result, time series data of rainfall and
potential evapotranspiration. At the initialization stage, a mean area weighted discharge calculated
from the mean of the data is applied as the initial flow, which is assumed to only occur due to the
subsurface flow. The structure of the model defines into three stores, root zone, unsaturated zone and
saturated zone. Precipitation (P) and Evapotranspiration (ET) are directly added to and removed
from the root zone. The ET is calculated based on the potential evapotranspiration data (PET) and is
controlled by the St;,,x parameter, as shown in Equation 2.

ET = PET * (S,2/ S*max) (2)

where S,; is the maximum specific storage.
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The excess of rainfall from the root zone storage is either added into the unsaturated zone to the
full capacity or stored into saturation excess storage. The unsaturated flux is calculated using Equation
3, controlled by the time delay parameter Tj;.

qQuz = Suz/(sd * Td) (3)

where S, is the unsaturated zone storage and S; is the storage deficit.

The changes of storage deficit over time of each HRU, Equation 4, are defined by the input fluxes
from upslope HRU g;,,, recharge fluxes from unsaturated zone g,,,, and output fluxes from downslope
HRU g4t

ds
T: = fsat — qin — Juz 4)

The gs4t, given the exponential transmissivity profile SZM, can be written as Equation 5 [13].

dq_ 945 5)

dt —~  SZM dt
where g is fluxes per unit area. The equation is derived from the kinematic formulation iteratively
solved and applied proportionally using Equation 1 for the entire HRU and river reach. The flux value
is added to subsurface store constrained by the S, parameter before the excess is stored into the
excess storage. The headwaters produced at the river network are then routed to the outlet [14].

In this study, the default model structure of the framework is applied homogeneously for each
HRU. The model structure modification — excluded from the current study scope — is required for
adding the complexity of the system, along with additional parameters related to the modified concept.
However, a different parameter set can be assigned for an HRU based on a particular spatial layer
such as land use. In this case the output fluxes may better represent the heterogeneity of rainfall runoff
response of a catchment.

2.4. GLUE Analysis

GLUE method was introduced based on the concept of finding a global optimum acceptable
parameter sets of behavioral model in the model space known as the equifinality concept [7,20,54].
Simulations applied based on Monte Carlo sets of parameter samples, which are required in the
thousands, to produce the range of likelihood weighted prediction. The prediction quantiles at any
time step ¢ is represented by Equation 6

z

P(Qr < q) =) LIM(©)[(Qir < 9)] (6)
i=1
where M(©;) is the ith Monte Carlo sample, that the likelihood }_ L[M(®;)] = 1, while Qi,t is the
variable of interest, and N is the number of behavioral samples [7].
The most common performance measure used either in optimization or GLUE is the Nash-Sutcliffe
Efficiency (NSE), [19,22,55], Equation 7.

Zil\il [Qobs (l) B Qsim (i)}z
Zil\il [Qobs(i) - Qobs]2
where Qs is the observed discharge, and Qs;y, is the model simulated discharge. The efficiency which
determines the relative value of error variance to the observed data variance, may range from —oo to 1.
The values close to 1 indicate higher model accuracy. Aside from NSE as the relative indicator, RMSE
and R? are used as the absolute and the graphical indicator consecutively — the three types are ideally
to be included in a model evaluation — [56]. To get the average tendency of the simulated result toward

the observed, PBIAS is also calculated in the evaluation.

NSE=1-

@)

do0i:10.20944/preprints202012.0163.v1
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The uncertainty assessment in GLUE implicitly accounts all sources of uncertainty of the model
structure or data input [19], regardless of the opinion of the subjective definition on the cut-off threshold
[16]. This suggests that the method is not to be used for future interval predictions [17]. In this study,
the uncertainty boundary is weighted to the NSE threshold value 0.3 [8,57].

3. Results and Discussion

The DTA delineates 12,142 Km? catchment based on the given output station at Jam Guillemard
Bridge. It returns 2415 HRUs which is an area ranging from 0.0009 Km? to 56.50 Km?, classified based
on:

e  Topographic classifier: three slope classes, three area classes, and five elevation classes
e 10 Rainfall grid classes — gauges data gridded after Thiessen polygon applied
* 29 Potential evapotranspiration grid classes

The spatial variability applied for the computational efficiency are subjected to the catchment and
the input data grid scale. Adding more classes may return a higher number of HRUs, which is not
important for the current study purpose. The model is run for 5000 simulations to produce the Monte
Carlo sampling of the parameter sets.

3.1. Streamflow simulation and model performance

The 32 years of data simulated are presented in Figure 2 in terms of the Flow Duration Curve
(FDC). The simulated line is from the highest ranked parameter, which returns NSE = 0.42. The 90%
upper and lower boundary are weighted based on the rejection threshold NSE = 0.3. Low flows
up to the 48% percentile exceedence are underestimated by the simulation while flows higher than
35% percentile exceedence is overestimated even by the lower 90% boundary. Overall, 25% of the
measurement falls within the GLUE uncertainty boundary. The model FDC lines decline steeper than
the observed one, which indicates the model produces higher surface flow than subsurface flow -
the slope defines the characteristic- [58]. The model suggests that the flow is overestimating high
flow and underestimating low flow. It maintains water balance — of precipitation, evaporation and
discharge — in producing the surface runoff while the subsurface flow and storage are defined by
the parameters. The underestimating of the subsurface flow in this case is the result of applying
homogeneous parameters to the catchment. However, the variability of soil permeability represented
by Tp and SZM in terms of non-monotic exponential decline is difficult to define in the TOPMODEL
structure and in parameterisation [26].

The flatter FDC of the observed streamflow compared to the simulation suggests the stream
to be heavily dominated by subsurface flow which is not well captured by the model. This result
corroborates the poorer model performance in groundwater-dominated catchments in the application
across Great Britain [14]. Groundwater layers are observed to occur in the catchment affecting the
subsurface flow. Based on the simplified hydrogeological map of the Malaysia Peninsular [59,60],
sandstone and volcanic rock aquifers surrounded by igneous rock aquifers underlie the Kelantan
catchment. These groundwater layers, particularly from upstream areas, play a vital role in controlling
the low flow [61] derived from subsurface flow, which is addressed in the model as saturated fluxes
defined by the parameters SZM and the saturated transmissivity Tj constraint to S,y value. The
homogeneous parameter applied in the current work does not consider the spatial variability of
the groundwater layer. The ranged values assigned to the parameters do not represent the layer
variability but instead are for the uncertainty computation. This suggests that better representation of
groundwater recharge within the model is needed to improve the subsurface flow and supports the
previous argument for the improvement of the groundwater dynamics [14].
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Figure 2. Flow Duration Curve plot of the 32 years observed data, simulation result of the highest rank
parameter and the GLUE uncertainty boundary

The simulation result of the highest ranked parameter set is plotted for one peak of year 1986-1987,
presented in Figure 3. Graphically the simulated streamflow is able to locate the fluctuations of the
observed peaks. Along the 32-year simulation, 11 of the highest peak events are under estimated while
the rest are over estimated. In both cases, the model simulation over estimates low flow before the
peak but fall below the observed line after the peak recession. Since the stormflow strongly depends
on the antecedent moisture [62], the low flow overestimation before the peaks are suspected to be due
to the initial soil moisture value during dry period subjected to parameters Sryax, SRinit, Smax- The
deep recession after the peak is due to the transmissivity exponential function, where the parameter
Szm controls the fall of the line. Meanwhile, the under estimation after the peaks is due to the soil state
of the wet period.

The model performance evaluation returns NSE = 0.42, R? = 0.47, RMSE = 508.15 m3/s and
PBIAS =-8.8. The NSE and the R? below 0.5 are considered as not satisfactory for daily streamflow
simulation [63], [64]. The magnitude of the RMSE is also evidence of the poor model performance.
However, PBIAS being less than 10% is considered to be a good rating [64], whereas the negative
value indicates the model overestimation bias [64], [65]. In many modeling practices, these measures
could justify a model be rejected. However, since the model here is aimed as a tool to gain a better
understanding of the hydrological processes in the system, these patterns in the result help identify
the need for the most relevant data and for the model to be further investigated.

It is inevitable that the driving data contains errors to which the uncertainty analysis is applied
and parameter identification can only compensate to some level. The precipitation data from the
10 stations contain missing data of up to 15% while the streamflow observation data for the 32-year
period contains 7% missing data, which may be affecting the analysis. Analysis of the water balance in
the observation data set reveals that runoff constitutes 45% of the rainfall, whereas evapotranspiration
makes up 49%, leaving the remaining 6% to be in storage. This suggest underestimation of rainfall
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within the input, which may be contributing to the modelling accuracy. Furthermore the point rainfall
is interpolated over the catchment area which may introduce additional uncertainty. The simulated
fluxes indicate 50% runoff, 5% higher than that of the observed, leaving only 1% stored. Additionally,
there is also a possibility of error in the GLEAM product of evapotranspiration used. It has been
globally validated, but not locally corrected, for Peninsular Malaysia. Past work looking into bias and
correlation with the in situ measurements of the GLEAM products in temperate countries has shown a
bias of 10-30% in Switzerland [66] and correlation of 0.76 in The Netherlands [67].
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Figure 3. The observed and the simulation of the highest rank parameter set

The result of segmented simulation for wet periods having peaks over 6000 m3/s within the
32 years time length is tabulated in Table 2. The length of the simulation range varies based on
data quality considerations. The eight (8) peaks data are numbered based on the sequential year.
Similar rejection criteria of NSE 0.3 is applied. Of the eight peaks, only two are rejected as being
non-behavioral, that is, none of the measurements fall inside the GLUE uncertainty limits. Meanwhile
four peaks, presented in bold number, perform with a satisfying result, producing NSE > 0.6, R? >
0.7. However, the measurement to fall inside the uncertainty limit is still below 50%. Although it is
behavioral and the NSE being over the rejection criteria, the model still poorly captures the system
behavior. Lastly, for the remaining two peaks, though considered as behavioral, the performance
results are very poor being NSE 0.4 and 0.32, while R? 0.64 and 0.48, consecutively. The magnitude of
the RMSE also indicates the poor performance of the model. Meanwhile, the PBIAS returns a varied
result of positive and negative values that is underestimating and overestimating. Peak two and peak
four having the lowest and the highest rainfall-runoff ratios, 0.36 and 0,67 consecutively, are rejected
because the model is non behavioral. The other 6 peaks, with 4 peaks returning NSE > 0.5 and 2 peaks
returning NSE < 0.5, are accepted as behavioral.
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Table 2. The segemented simulation result of peaks over 32 years

Measurement to fall

Simulation Rainfall - Highest Numerical goodness of fit inside the GLUE
Peak range Runoff ratio recorded for the highest rank of uncertainty limits
(year-month) (Q/P) peak (m3/s) parameter set (%) y
NSE R* RMSE PBIAS
1 2014-06/2015-05 0.40 7613.5 0.68 0.74 44818  -21.0 14.52
2 2012-06/2013-03 0.36 6215.5 017 034 82643  -49.6 NA
3 2009-06/2010-05 0.50 7786.0 0.70 0.75 42343  -185 28.76
4 2007-06/2008-05 0.67 8028.4 025 0.62 638.94 6.4 NA
5 2001-06/2002-05 0.50 6111.8 040 0.64 39220 -14.1 13.97
6 1993-08/1994-03 0.57 8533.7 0.72 0.75 47800  -12.8 38.68
7 1988-07/1989-04 0.64 9775.1 032 048 772.83 30.5 17.10
8 1986-06/1987-05 0.45 6680.5 0.78 0.81 43426  -16.0 23.83

The six segmented behavioral model simulation plots are presented in Figure 4. Of special note
for Peak 1, Figure 4(a), it includes the year 2014 characterised by a big flood event reported [34], [68]
as the highest peak since year 1967 [69]. The recorded data, however, contains missing data at the
peak event, which captured the highest amount of only 7613.5 m3/s. A study of flood risk in the
Kelantan catchment between 1992 to 2014 showed that the maximum discharge at the Guillemard
station is 12900 m3/s [70]. That is, should the missing record of the peak value approximate 12900
mm? /s the simulation does indeed come close to representing the peak. Referring to the segmented
simulation presented in Figure 4, the model prediction returning NSE below 0.5 are for peak events 5
and 7, Figure 4(c) and 4(e), while the better simulations returning NSE above 0.5 are Peak 1, 3, 6, 8 as
presented in Figure 4(a), (b), (d) and (f). Simulation (c) fails to predict the magnitude of the two highest
peaks. The deviation before the peak is also high but the recession does fit the observed. Meanwhile,
simulation (e) overpredicts the first highest peak and fails to capture the second one completely. The
deviation before the peak is small but the recession is simulated more quickly than the observed. In
both events, the performance measures are similar but the indications of model underperformance are
different. Hence, the reason why the model is able to predict some peaks but not others could not be
inferred.
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Figure 4. The observed and the GLUE uncertainty boundary. (a) Peak 1, (b) Peak 3, (c) Peak 5, (d) Peak
6, (e) Peak 7, (f) Peak 8

3.2. Analysis of model parameters

In spite of general model poor performance, there are set of behavioral parameters that indicate
the equifinality of the model toward the system. The behavioral parameter distribution are plotted
using a scatterplot, presented in Figure 5 for the 32 year period simulated. It can be seen that the
scatterplots do not appear to have any pattern; instead, the efficiency appear random across the
parameter values. This supports the prior FDC discussion that the model paramaters do not represent
the system well because they are applied homogeneously throughout the catchment.
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Figure 5. Scatter plot of efficiency versus behavioral parameters values for 32 years’ simulation

As for the segmented simulations, all the behavioral peaks addressed show similar
non-identifiablity of the parameters. Only Peak 1’s plot is presented in Figure 6. Previous studies of
TOPMODEL and dynamic TOPMODEL application have suggested that the most sensitive parameters
are SZM, Ty, and Sryax [12], [13], [71], which is not the case here even though the set of parameters are
being behavioral given the acceptable model threshold of NSE 0.3. It is important to note, however,
that some of the segmented simulations do return a better performance of NSE, which indicates better
parameter sets. A higher number (i.e. 10,000 sets) is also represented in the scatterplot Figure 6(b),
which also shows that it does not affect the scatter pattern.

The non-identifiability of parameters is suspected due to the large scale of the catchment where
heterogeneity is inevitable. A semi-distributed HRU approach could represent a better spatial process
of the system compared to a lumped or a black box model. But actual improvement in process
understanding can only be achieved when the parameters can be identified at more local scales. In
the Kelantan catchment, more significant groundwater recharge could be expected in the upstream
forested areas. However, given that the model is calibrated at a single point, it generalizes all infiltration
processes across the entire catchment and is unable to accurately represent the spatial variability of the
hydrological processes. This requires a modification of the model structure and additional parameters
definition. Extensive field measurements may be required to support calibration of spatial varying
parameters, otherwise the parameter space becomes too large. The effort is more applicable to small
catchment study such as the TOPMODEL application in small Baru River Catchment in Malaysian
Borneo [27] and the field based local scale calibration of HEC-HMS in Aspio river Italy [72].
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Figure 6. Scatter plot of efficiency versus behavioral parameters values for Peakl (a) 5000 simulations,
(b) 10,000 simulations

4. Conclusions

In this work, the DECIPHeR framework was tested in a representative tropical forested catchment.
In general the model’s ability to simulate the system is reasonable but limited based on performance
measures alone. However, as an interactive framework for understanding the hydrological processes
and the modeling of the system, DECIPHeR enabled identification of further advances to be made.

Underperformance of the model to represent the system due to low flows can be observed from
both the continuous 32 years period and the segmented event simulations after the peak recession.
The FDC curve further confirms overall low flow estimation. The simulation before and after the
peaks suggests that soil controls on runoff may be responsible for the deviations from the observed
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streamflow. This is supported by the ability of the model to correctly capture the timings of large
and small peaks. The behavioral model parameters being insensitive and unidentifiable may indicate
the spatial heterogeneity of the parameters, which is yet to be addressed by the model framework;
instead a homogeneous parameter assumed to fit the entire catchment may only work for small
catchments. These are the considerations for further analysis of the model application introducing new
spatial layers for representing soil and landcover heterogeneity, modification in the model structure
to differentiate processes for different landcover and soils, and application of the model at smaller
sub-catchments.

The conclusions of this study are nevertheless subjected to several limitations of the study. Firstly,
the 32 year period (1985-2016) of simulations based on data availability only allows inspection of the
model during the particular time period. Secondly, there may be errors introduced due to interpolated
rainfall, as well as the use of the satellite-based PET from GLEAM, which is a global dataset without
local bias correction.
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