It is a theoretical exportation for mass transpiration and thermal transpiration of Casson nanofluid over an extending cylindrical surface. The Stagnation point flow through porous matrix is influenced by magnetic field of form strength. Appropriate similarity functions are availed to yield the transmuted system of leading differential equations. Existence for the solution of momentum equation is proved for various values of Casson parameter β, magnetic parameter M, porosity parameter Kp and Raynolds number Re in two situations of mass transpiration (suction/injuction). Moreover, uniqueness results are discussed and for skin friction factor are established to attain accuracy for large injection values. Thermal and concentration profiles are delineated numerically by applying Runge-Kutta method and shooting technique.
Keywords:
Subject:
Computer Science and Mathematics - Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.