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B W N e

Abstract: Identifying dust aerosols from passive satellite images is of great interest for many
applications. In this study, we developed 5 different machine-learning (ML) and deep-learning
(DL) based algorithms, including Logistic Regression, K Nearest Neighbor, Random Forest (RF),
Feed Forward Neural Network (FFNN), and Convolutional Neural Network (CNN), to identify
dust aerosols in the daytime satellite images from the Visible Infrared Imaging Radiometer Suite
(VIIRS) under cloud-free conditions on a global scale. In order to train the ML and DL algorithms, we
collocated the state-of-the-art dust detection product from the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) with the VIIRS observations along the CALIOP track. The 16 VIIRS M-band
observations with the center wavelength ranging from deep blue to thermal infrared, together with
solar-viewing geometries and pixel time and locations, are used as the predictor variables. Four
different sets of training input data are constructed based on different combinations of VIIRS pixel
and predictor variables. The validation and comparison results based on the collocated CALIOP data
indicates that the FFNN method based on all available predictor variables is the best performing
one among all methods. It has an averaged dust detection accuracy of about 81 %, 89 % and 85 %
over land, ocean and whole globe, respectively, compared with collocated CALIOP. When applied to
off-track VIIRS pixels, the FFNN method retrieves geographical distributions of dust that are in good
agreement with on-track results as well as CALIOP statistics. For further evaluation, we compared
our results based on the ML and DL algorithms to NOAA’s Aerosol Detection Product (ADP) , which
is a product that classifies dust, smoke and ash using physical-based methods. The comparison
reveals both similarity and differences. Overall, this study demonstrates the great potential of ML
and DL methods for dust detection and proves that these methods can be trained on the CALIOP
track and then applied to the whole granule of VIIRS granule.

Keywords: CALIOP; VIIRS; Machine Learning; Deep Learning; Dust Detection

1. Introduction

Mineral dust aerosols (hereafter dust for short) usually originate from the desert regions and
can be transported to almost any part of the world [44,45]. They have an important role in Earth’s
climate system through their influences on the radiative energy budget of Earth, the microphysics
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and lifetime of clouds [3], and the terrestrial and marine ecosystems. Dust aerosols can also influence
the air quality further impact public health. Dust aerosols have been linked to respiratory illnesses,
such as asthma, meningitis, and others. Fungi, bacteria, and even some viruses can travel on aerosol
particles for miles, causing the spread of diseases and other ailments [1,2]. A reliable dust detection is
the first step to achieve a better understanding of dust climatic effects and to track dust event for air
quality purpose. Although there are many ground-based networks to monitor dust and other types
of aerosols. Satellite-based remote sensing is the only means to detect dust aerosols on a regional to
global scale.

Satellite-based dust detection algorithms were first developed for passive observations. Most of
these algorithms are so-called "physically-based". They rely on the physical intuitions of the developers
to identify the radiative signatures (e.g., reflectance, color, and brightness temperature) of dust aerosols
in a passive satellite image that are connected to the physical properties of dust (e.g., composition, size,
shape and temperature). For example, dust has significant absorption in the ultraviolet (UV). In the
visible region, dust is usually brighter than the dark ocean and also has a distinct color. In the infrared,
dust can reduce the brightness temperature of the scene and have a unique spectral signature [46].
These radiative signatures of dust have been used independently or in combination in the previous
studies to detect dust in passive satellite image [4-9]. Validation of these dust detection algorithms and
evaluation of their uncertainties exposed several common problems of these physical-based algorithms:
First, the development of these physical-based algorithms is often based on a handful of cases due
to the slow learning process of human. Second, the empirical thresholds that are commonly used
in these algorithm to distinguish dust from the environment are often too rigid to fit miscellaneous
situations. Third, at certain conditions, land surface, clouds and other types of aerosols may have
similar radiative signatures as dust, which could confound the detection algorithm. As a result of
these problems, physically-based dust detection from passive satellite observations often misses dust
layers that are either too thick or too thin, miss-identifies clouds as dust, and misses dust over the
desert regions. Last, but not least, many physically-based algorithms only utilize a small fraction of the
observations available from the passive senors because the rest of the observations are considered to
have little information content of dust. For example, Zhou et al. (2020) developed a physically-based
algorithm to detect dust from MODIS and they only used 14 out of 36 MODIS bands. Even though
these bands can provide sufficient information content for dust detection, it is hard to tell how much
information is discarded by ignoring the observations from other bands. [10-14].

The launch of the the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) in 2006 provided an unprecedented opportunity for satellite-based dust detection. The
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO satellite has two
channels at 532nm and 1064nm. As an active lidar, CALIOP can resolve the vertical distribution of
aerosol and cloud accurately, which is extremely difficult, if not impossible, for most passive senors
[15,16]. CALIOP also has polarization capability in its 532nm channel, which enables it to easily
identify the shapes (spherical vs. non-spherical) of cloud and aerosol particles. Spherical particles such
as cloud droplets and smoke aerosols usually have near-zero lidar depolarization ratio. In contrast,
non-spherical particles, such as ice particles in cirrus clouds and dust aerosols have significantly
larger lidar depolarization. Combining the depolarization ratio with other measurements, such as
backscattering and color ratio, CALIOP can provide reliable dust detection in situations that are
highly challenging for the aforementioned passive algorithm, such as detection of thin dust layer over
bright desert surface. On the other hand, CALIOP dust detection also suffers from several important
limitations. First of all, CALIOP has an extremely small spatial sampling rate in comparison with
passive sensors, making the detection of intermittent dust event difficult. Second, the signal-to-noise
ratio (SNR) of a single lidar pulse is usually low. As a result, the CALIOP algorithm has to average
multiple lidar pulses to enhance the SNR, which further reduces the sampling rate. Third, cirrus
clouds and sometimes other types of aerosols (e.g., debris in the smoke ) can also have non-zero lidar
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depolarization ratio which confounds the dust detection, this problem is common at polar regions as
the low level icy clouds can be mistaken as dust.

Despite its limitations, CALIOP-based dust detection is currently considered as the most reliable
algorithm. It provides a valuable reference for the validation, evaluation and improvement of dust
detection based on passive sensors. Not only can developers compare the statistical climatology of
dust from passive sensors with CALIOP result, but they can also collocate the passive observations
with CALIOP at the pixel level to make direct comparisons and thereby adjust their algorithms. In
fact, CALIPSO is part of the A-Train satellite constellation, which makes the pixel-level collocation
with other A-Train sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS)
and Atmospheric Infrared Sounder (AIRS) on Aqua satellite, rather straightforward. In a number of
previous studies, collocated CALIOP products have been used to evaluate the physically-based dust
detection and retrieval algorithms developed for MODIS and AIRS [11,17-19]. It should be noted that
the collocated CALIOP products are mainly used as the "ground-truth" for validation and evaluation
in these studies, but not directly used in the development of the algorithms.

The recent advances of artificial intelligence have inspired several attempts to develop dust
detection algorithm for passive sensors, in particular MODIS, using machine-learning (ML) or
Deep-Learning (DL) methods [20-23]. These ML and DL based algorithms have demonstrated excellent
skills. For example, Boroughani et al. (2020) used three ML methods, Weights of Evidence (WOE),
Frequency Ratio (FR), and REF, to train a model to detect dust sources from MODIS satellite image
and reported over 80 % accuracy rate for all three methods. Although these emerging studies are
very encouraging, they also have some limitations. These studies either focused only on certain
geographical regions (e.g., only Iran and Asian regions in [20]) or investigated only a few number of
cases (e.g., only 31 dust events are studied in [23]). In addition, their training dataset is often based on
"physically-based methods from passive sensors. For example, Shi et al. (2020) developed a SVM-based
algorithm to detect dust storm from MODIS satellite image and they used the UV aerosol-index from
the OMI (Ozone Monitoring Instrument) on board of Aura satellite, also part of the A-Train, to assess
the detection results [22]. As mentioned above, the physically-based methods for passive senors often
suffer from a variety of problems, which could in turn influence the ML-based methods if they are
used as the training and/or testing dataset.

This study is motivated by the importance and wide application of satellite-based dust detection,
and inspired by the limited success of the above emerging studies. Our main objective is to develop
global dust detection algorithms based on ML and DL methods to detect dust pixels in cloud-free
conditions from the daytime satellite images by the Visible Infrared Imaging Radiometer Suite (VIIRS)
on board of the Suomi-NPP satellite mission. We use the collocated VIIRS and CALIOP dust detection
product as training and testing dataset. Similar to MODIS, VIIRS is a passive sensor with 22 imaging
and radiometric bands covering wavelengths from 0.41 to 12.5 microns. Note that Suomi-NPP is not
part of the A-Train. So the VIIRS-CALIOP collocation is more challenging than the MODIS-CALIOP
collocation. Nevertheless, VIIRS is chosen in this study for two important reasons. First of all, MODIS
sensors have operated for almost 20 years and are coming to the end of their life cycle. In contrast,
VIIRS flies not only on the Suomi-NPP mission but also the follow-up Joint Polar Satellite System (JPSS)
missions that are designed to serve the U.S. for many years to come. Secondly, although CALIOP
and MODIS can be easily collocated, the MODIS pixels along the CALIOP ground-track all have a
similar near-nadir viewing angle as a result of their almost identical satellite orbits. Because dust
reflection in the visible and the transmittance in the infrared are both dependent on the viewing angle,
the limitation in the viewing angle sampling can lead to biases in the training data and thereby the
ML-based algorithm, especially when the trained algorithm is applied to the pixels off the collocated
CALIOP track (hereafter referred to as the "off-track pixels"). In contrast, because CALIOP and
Suomi-NPP are in different satellite orbits, the collocated pixels can sample a much larger range of
viewing angle from -60 to 60 [34] . As shown later, our ML-based detection algorithm show similar
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skills both along and off the CALIOP track which is probably benefited from the unbiased viewing
angle sampling in the collocated VIIRS-CALIOP data.

Another objective of this study is to test and compare different ML and DL methods for dust
detection. More specifically, we will show results from 5 different ML and DL based methods
including logistic regression (LR), K-nearest neighbors (KNN), random forest (RF), deep feed forward
neural network (FFNN), and convolutional neural network (CNN). The experience gained from this
comparison will provide valuable guidance for the future development of ML and DL based satellite
remote sensing algorithms.

In comparison with the previous studies, this research is novel and important in several regards.
1) The ML-based methods can help avoid many aforementioned problems facing the physically based
algorithms. For example, ML-based methods have been shown in many studies to be much more
flexible than the threshold-based methods, which helps dust detection in miscellaneous environments
encountered when the algorithm is applied on a global scale. Moreover, in our study instead of using
a subset of VIIRS bands, which is a common practice in physically-based methods, we use all the
16 moderate resolution bands. 2) In comparison with the aforementioned ML-based dust detection
studies, we use the collocated CALIOP products as the training and validation data sets which arguably
provide the most reliable dust detection. Moreover, we aim to develop a general detection algorithm
that can be applied on a global scale, which is more challenging and at the same time more useful
than regional algorithms. 3) Because similar VIIRS instruments will fly on several JPSS missions, our
algorithms can be easily adopted by these missions to generate a global dust detection data record that
could potentially last for several decades.

2. Data Description

2.1. CALIOP and VIIRS products and collocation

For this study, we use one year (i.e., 2014) of global collocated daytime VIIRS and CALIOP
data product developed by NASA'’s Science Investigator-led Processing Systems (SIPS) located at the
Space Science and Engineering Center (SSEC) at the University of Wisconsin-Madison. The SIPS are
responsible for processing, reprocessing, production and general assessments of joint NASA/NOAA
Suomi NPP VIIRS Atmosphere Products. The collocated data contains merged aerosol/cloud layer
retrievals from CALIOP version 3 (V3) operational products and the level-1b radiance observations
from the 16 moderate-resolution bands of VIIRS along with the viewing/illumination geometries (see
Table 1). A similar CALIOP-VIIRS collocated dataset has been successfully used in a previous study to
develop a machine-learning-based cloud detection and thermodynamic-phase classification algorithm
[34].

The theoretical basis of CALIOP feature detection and aerosol classification algorithms and the
implementations of the operational products have been described in a series of papers[16,39-42]. Here,
we only provide a very brief overview of the algorithms and products that are most relevant to this
study. In the operational CALIOP retrieval workflow, the algorithm first identifies "features" (e.g.,
aerosol and cloud layers) in the lidar profile, which is also known as vertical feature masking (VEM) [16,
42]. The top and bottom altitudes of the identified feature layers are estimated and the layer-integrated
properties (e.g., layer-integrated attenuated backscatter and depolarization ratio) derived. Then,
each feature layer is first classified into cloud or aerosol using a cloud-aerosol discrimination (CAD)
algorithm [39,40]. An identified aerosol layer is further classified into several sub-types, e.g., dust,
smoke and marine aerosols [41], followed by quantitative aerosol optical depth retrievals. In the V3
operational algorithm, an aerosol layer is classified as "pure dust" when the estimated particulate
depolarization ratio is larger than the predefined threshold (e.g., larger than 0.20) [41]. As its name
suggests, this sub-type consists primarily mineral dust aerosols. When dust aerosols are transported
from the source region, they can be mixed with local pollution, e.g., smoke and pollution. The V3
CALIOP operational product designates a special sub-types of aerosol, namely polluted dust, to
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distinguish dust mixtures from pure dust. In this study, we include both pure dust and dust mixtures
(i.e., polluted dust) in our training dataset to train the machine-leaning based detection algorithm.
Although the highest possible spatial resolution of CALIOP retrieval is 333 m, most aerosol retrievals
are done at 5 km or coarser resolution based on horizontally averaged lidar signals. As aforementioned,
the spatial averaging is to beat down the noises and enhance the signal to noise ratio. In this study, we
use the standard 5 km aerosol layer products.

The VIIRS on the Suomi-NPP is a whiskbroom radiometer by design. It has 22 channels ranging
from 0.41 um to 12.01 um . Five of these channels are high-resolution (375 m at nadir) image bands that
are primarily used for imaging. The rest sixteen channels serve as moderate-resolution bands (750m at
nadir) or M-bands, which are primarily used for quantitative operational retrievals, including aerosol,
cloud, ocean color and surface temperature for example. It should be noted here that the spatial
resolution of VIIRS M-bands is highest at the center of the scan (i.e., nadir viewing) and gradually
decreases with viewing zenith angle down to roughly 1.625 km at scan edge (i.e., most oblique viewing).
As a result of the average location of CALIOP tracks within VIIRS scan (see examples in Section 5), the
average spatial resolution of VIIRS M-bands in our collocation data is roughly 1 km.

In this study, we use the collocated daytime CALIOP and VIIRS product developed by NASA'’s
SIPS which merges the 5 km CALIOP aerosol and cloud layer products with the collocated standard
VIIRS level-1b geolocated radiance product. The collocation algorithm accounts for not only the
temporal-spatial differences between the two instruments and but also the parallax effects caused by
the differences in viewing geometry. The details of the collocated algorithm are described in Holz et al.
(2008). As illustrated in Figure 1, to homogenize the spatial resolution, we first collocate the VIIRS 1
km M-band pixels with the CALIOP 5 km aerosol retrievals, and assign all the collocated VIIRS pixels
within a CALIOP pixel as the same as the CALIOP aerosol classification. We would like to point out
here that the original collocation product from SIPS includes only VIIRS pixels that are exactly on the
track of the CALIOP (i.e., green colored pixels in Figure 1, here after referred to as on-track pixels).
As explained in Section 3, in this study we would like to explore whether the image context would
help improve dust detection. Motivated by this consideration, we added to the collocation data four
more VIIRS pixels that are adjacent to the on-track pixels across the CALIOP track (i.e., yellow-colored
pixels in Figure 1, here after referred to as adjacent pixels). Although both instruments can operate
in both daytime and nighttime, in this study we focus only on daytime because VIIRS loses all the
solar-reflective bands as a passive sensor in the nighttime, which seriously limits its capability for dust
detection.

do0i:10.20944/preprints202012.0177.v1
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Figure 1. Illustration of on-track, off-track, and adjacent VIIRS pixels as well as CALIOP track.

2.2. Training and testing data

Tables 1 and 2 show the target and predictor variables used for the training of ML and DL
methods in this study. As aforementioned, our objective is to detect dust in cloud-free conditions. So
the first step is to separate the collocated pixels into two groups: cloudy (where CALIOP detects one
more cloud layers) and cloud-free (where CALIOP detects no cloud). We exclude all cloudy pixels
in our study (both training and testing). On the one hand, the exclusion of cloudy pixels makes the
training process less challenging. On the other hand, however, it leads to a couple of limitations. First,
because our dust detection algorithm is only applicable to cloud-free conditions, the accuracy of dust
detection is partially dependent on the accuracy of cloud mask. The cloud mask errors, for example
misidentification of dust as cloud (or vice versa), can in turn affect our dust detection result. Second, it
is known from previous studies that dust aerosols can often be found above and/or below clouds [43].
These coexistent conditions of dust and cloud are excluded from the training for simplicity. When
applied to real observations, a reliable cloud mask algorithm is expected to label most of such pixels as
cloudy.

After the cloud screening, we then separate all the cloud-free pixels into two groups, "dust” or
"non-dust", as the predictor for the training (see Table 2). A cloud-free collocated pixel is considered
to be dust when one or more dust or dust mixture layers are detected by CALIOP in the whole
atmospheric column. In contrast, a cloud-free collocated pixel is considered to be non-dust when
no dust or dust mixture layer is detected. It should be noted that in some cases a dust layer may be
located above or below another type of aerosol (i.e., separate and not mixed). Such pixels would be
labeled as dust in our study regardless whether the dust layer is the dominant type of aerosols in the
column in terms of aerosol optical depth. In other words, our classification of dust vs. non-dust is
designed to maximally preserve the dust detection by CALIOP. Finally, it should be noted that in some
relatively rare cases, CALIOP does not detect any aerosol layer in the column. Such pixels are also
labeled as non-dust.

The target variables for the training are summarized in Table 2. A total of 23 predictor variables
from VIIRS will be used to perform the binary classification (i.e., dust vs. non-dust) on target variables
from CALIOP. The predictor variables include the radiance observations from all the 16 VIIRS M-bands,
4 variables about the solar and viewing geometries, and 3 variables about the time (date) and location
(i.e., latitude and longitude) of the pixel. As mentioned in the Introduction, many previous studies
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Table 1. Target variables used in the study based on CALIOP algorithm. Note that all cloudy-pixels are

excluded from the study
Target Variables
No aerosol detected,
Non-Dust Other types of Aerosols
Pure Dust,
Dust Dust mixtures,

Dust above or below other types of aerosols

often use only a subset of available radiance observations from the passive senors for physics-based
dust detection [19]. In contrast, we use all the 16 M-bands in this study to maximally preserve and
utilize all the information from VIIRS M-bands, which is an advantage of the ML and DL methods
in comparison with the physics-based methods. The geometric variables are included in the training
because the reflection of sunlight by dust aerosols are dependent on solar and viewing geometries.
In addition, the transmittance and emission of a dust layer in the thermal infrared region are also
dependent on viewing geometry. The time and geo-location of the pixel are also included because dust
events are known to be dependent on season and geo-location.

For comparison purpose, 4 input data structures are constructed for the training based on different
combinations of pixel and predictor variable selections. In terms of VIIRS pixel section, the "0-D" input
data structure includes predictor variables from only a single on-track VIIRS pixel (i.e., green pixels
in Figure 1) to predict the corresponding dust or non-dust classification from CALIOP. To utilize the
potential context information provided by the adjacent pixels (i.e., yellow pixels in Figure 1), the "2-D"
input data structure includes predictor variables from 5 VIIRS pixels (one on-track and 2 adjacent
pixels) to predict the corresponding dust or non-dust classification from CALIOP corresponding to
the center on-track pixel. In terms of predictor variable selection, all 23 predictor variables in Table
2 are used in the baseline input data structure (referred to as "allVar"). As explained later in Section
3.6, we also select a subset of 9 predictor variables based on the feature importance analysis of the RF
method, which include 5 M-bands and 4 solar-viewing angles (marked in bold in Table 2, and referred
to as "selectVar"). Based on the different combination of "0-D" vs. "2-D" and "allVar" vs. "selectVar", 4
sets of input data structures are constructured to train all 5 ML and DL methods. The results will be
evaluated in Section 4.

Table 2. Predictor variables used in the study based on VIIRS measurement. Variables marked in bold
represent the top 9 features selected by RF.

Predictor Variables

Radiances from VIIRS M-bands (16)
MO1 (0.412 um), M02 (0.445 pm), M03 (0.488 pumm), M04 (0.555 pm),
MO5 (0.672 um), M06 (0.746 pm), MO7 (0.865 pum), MO8 (1.240 um),
M09 (1.378 pm), M10 (1.61 un), M11 (2.25 pm), M12 (3.7 pm),
M13 (4.05 pm), M14 (8.55 um), M15 (10.763 pum), M16 (12.01 pim)
Solar Azimuth Angle (SAA),
Solar Zenith Angle (SZA),
Viewing Azimuth Angle (VAA),
Viewing Zenith Angle (VZA)
Day of Year (1-365),
Observation Information (3) Latitude,

Longitude

(band center in pm)

Geometric Variables (4)

To train and test the ML and DL based dust detection models, the collocated data is split to
training and testing data with a 10-day interval. That is, data is designated to be testing data for every
10 days, and otherwise, training data. As such, the training and testing data accounts for about 89%
and 11% of the total data, respectively (i.e., all cloud-free pixels). Furthermore, because the optical
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characteristics are very different between land and the ocean, separate models are developed and
trained for land and ocean.

3506 (a) Training Dataset (88.55%) (b) Testing Dataset (11.45%)
.0€0

mw non-Dust 4.0e5 -1 ™8 non-Dust
3.0e6 { ™= Dust m Dust

3.5e5 A

2.5e6 1 3.0e5

2.0¢6 2.5€5

2.0e5 A
1.5e6

1.5e5 4

1.0e6 A
1.0e5 4

0.5e6 - 0.565 A

Land Ocean Land+Ocean Land Ocean Land+Ocean

(c) Training Dust Distributio (d) Testing Dust Distribution

-

- T e

0 20 40 60 80 100 0 20 40 60 80 100
Dust Fraction (%) Dust Fraction (%)
Figure 2. (a, b) Distribution of clear sky and dust over land and ocean, for both training and testing
data. (c, d) Distribution of dust for training and testing data. Spatial distribution is averaged with 5 x 5
latitude, longitude grid.

Statistics of training and testing data are depicted in Figure 2a and b. In the training data, dust
pixels account for about 57 % and 15 % of all cloud-free pixels over land and ocean, respectively, which
is expected because dust aerosols all originate in land and are only transported over to the ocean.
Evidently, the ratios of dust to cloud-free pixels in the testing data (Figure 2b) are nearly identical
to those in the testing data. Figure 2c and d show the global dust frequencies derived based on the
training and testing data, respectively. The dust frequency is defined as the ratio of dusty pixels to
the total cloud-free pixels within a 5x5 latitude-longitude grid. Over land, high dust frequencies are
observed in those well-known dust laden regions, such as Sahara, central Asian and Australia. A
relatively high dust frequency is also observed in the tropical north Atlantic region in the training data
(Figure 2c) which is expected because this is the outflow region of Sahara dust. On the other hand, some
elevated dust frequency (>40 %) is also observed over the Southern Ocean and the Antarctica continent.
Although the dust from the Patagonian and Australian deserts can be transported to Southern Ocean,
these transported dust events are likely to be intermittent and relatively rare in comparison with the
dust events in the tropical north Atlantic. Therefore, the high dust frequency in these regions are likely
to be the retrieval artifacts of CALIOP. The dust frequency map derived based on the testing data in
Figure 2d is in overall good agreement with that based on the training data in Figure 2c although it is
nosier due to small sampling rate.

Overall, two points are evident from Figure 2: First, the statistics and geographical distributions of
the training and testing data are almost identical which means there are no sampling bias generated by
our method of splitting the data. Second, even though the CALIOP operational retrieval is considered
as the state-of-the-art method to detect dust, it still faces some challenges. Inevitably, our algorithms
which are trained based on CALIOP retrievals, will also face these challenges as explained in Section 4.
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2.3. Physics-Based Model (PHYS) from NOAA for off-track comparison

It must be noted that, although our ML and DL methods are trained and tested using collocated
data on the CALIOP track, our ultimate goal is to apply the dust detection algorithm to the whole
swath of VIIRS to achieve the best possible spatial sampling. One challenge facing us is how to evaluate
the VIIRS dust detection results off the track of CALIOP when both the training and testing data, as
described in the last section, are on track. To overcome this challenge, we introduce a physics-based
VIIRS aerosol detection product (ADP) developed by a NOAA team [35,37]. It will be referred to as the
PHYS model for short. This product identifies dust based on the dust spectral signatures, especially its
strong absorption at ultraviolet (UV) and blue channels and its thermal signals. The product flags out
smoke and dust over global cloud free and snow/ice free surfaces at 0.75 km spatial resolution at nadir
view. Absorbing aerosol index (AAI) and Dust Smoke Discrimination Index (DSDI) are generated
using the VIIRS M1 (0.415 pm), M2 (0.445 um), and M11 (2.25 ym) bands following

AAI =100 * [log1o(Rp /Ryz) — 10g10(Riyp /Ry )] @
DSDI = 10 = [log10(Rpm / Ra)] 2)

where R is the observed top of atmosphere (TOA) reflectance and R’ is the reflectance from Rayleigh
scattering. Using empirical thresholds, predefined thresholds that are suitable over general conditions
are used to identify dust for each VIIRS pixel. The estimated accuracy for dust detection based on
this physics-based ADP is 80% over land and over ocean. In addition, the detection limit of VIIRS
ADP product is set as for only smoke/dust events with AOD>0.2, by considering inability to separate
aerosol type for AOD<0.2 and threshold development is based on events with AOD>0.2 [35,37]. It
should be noted that the comparison of our ML and DL based methods and the this PHYS model
can be only considered as an evaluation rather than a validation because all the detection methods
are designed based on different motivations for different purposes and they all have some inherent
advantages and limitations.

In summary, we will train our ML and DL based VIIRS dust detection methods based on the
collocated on-track CALIOP data. Then we will validate the methods using the on-track testing data.
Finally, we will apply our methods to the whole VIIRS swath (i.e., off-track) and compare the results
with NOAA’s PHYS model both on and off the CALIOP track.

3. ML and DL Model Development

As explained in the Introduction, one objective of this study is to test and compare different ML
and DL methods for dust detection. More specifically, 5 different ML and DL based methods are
developed and their performances on dust detection are compared. These methods include logistic
regression (LR), K-nearest neighbors (KNN), random forest (RF), deep feed forward neural network
(FFNN), and convolutional neural network (CNN). Because they are commonly used methods, we
only provide a brief introduction of each method here.

3.1. Logistic regression (LR)

Logistic regression (LR) is a classification model that uses a logistic function, which converts the
multivariate predictor variables into the output between 0 (clear sky) and 1 (dust). The main advantage
of using LR is that the model is relatively easy to interpret in a physical sense due to its simple nature
[25]. LR has been utilized in satellite image classification, such as forest classification [26] and tree
defoliation [27] with successive performance. In this study, LR with L2 regularization is applied.

3.2. K-nearest neighbors (KNN)

As a non-parametric method, K-nearest neighbors (KNN) methods classifies the input features
into two or more classes by assigning the input features to the class that is most common among its
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K nearest neighbors. Main advantage of using KNN is that since it considers the K nearest testing
data, the classes does not have to be linearly separable. However, KNN could be very sensitive to
imbalanced data and outliers. KNN has been used to estimate aboveground carbon from satellite
imagery [28]. In this study, KNN with 10 nearest neighbors, with Euclidean distance weights are
selected as hyper-parameters.

3.3. Random forests (RF)

Random forests (RF) are an ensemble learning technique that performs classification or regression
by building a structure of multiple decision trees. Performance of RF is considered to be comparable
with the best supervised learning algorithms. There are multiple advantages of using RFE. 1) Since RF
works with the subsets of the data, it could cope better with high dimensional data, known as the
"curse of dimensionality". 2) RF can provide a reliable feature importance estimate, which could be
used to reduce the dimension of the predictor variable [29]. RF with 100 max depths and 500 estimators
is selected using the gridsearch algorithm.

3.4. Feedforward neural networks (FENN)

Recently, artificial neural networks (ANN) have been widely used in remote sensing data. The
fundamental structure of ANN consists of input layer, hidden layer(s), and output layer. There are
variations of this structure for different objectives, such as recurrent neural networks, long short term
memory network, generative adversarial network, etc. The biggest advantage of using ANN is that
is is able to learn on non-linear and complex relationships. Furthermore, ANN does not require any
restrictions on the input variables, such as multicollinearity, and distribution of predictor variables [30].
Here we implement one of the most basic structure of ANN, a feedforward neural networks (FFNN).
FENN is a type of ANN with the connection between the nodes does not form a cycle or a loop, and
only structured with input layer, hidden layer, and output layer. In this study, FFNN with 3 hidden
layer is used. Batch size is set to be 256, with 2000 epochs.

3.5. Convolutional neural networks (CNN)

Convolutional neural networks (CNN) is another variation of ANN, most applied to visual
imagery analysis [31]. Main advantage of using CNN is that CNN is able to capture the spatial
dependencies in an image by applying filters. Furthermore, CNN extracts and reduce images without
removing critical features. CNN has four different types of layers, input layer, convolution layer,
pooling layer, and fully connected layer, respectively. In the input layer, CNN takes an input variable
as an image, with shape of image width x image height x channels. In this study, this corresponds to
surrounding data width (5) x surrounding data height (5) x predictor variables (23). Convolution
layer extracts the high-importance features from the image with a spatial filer, which is decided to be a
3 x 3 x 1 filter in this study. Pooling layer extracts the dominant features from the convolved data.
In this study, max pooling is used to return the maximum value from the image covered by the filter.
Finally, the model goes through a fully connected layer to make a decision. CNN has been applied
to various problems in satellite imagery such as determining land type classification [32] and cloud
classification [33]. CNN with one convolution layer with 2 x 2 kernel size and ReLu activation function
is used. After the convolution layer, we used two dense layer with ReLu activation function, and one
dense layer with sigmoid function for classification. Batch size is set to be 512, with 2000 epochs.

3.6. Input data selection

As mentioned in section 2.2, both 0-D and 2-D input data structures are tested for each of the
model, except for the CNN because it takes only 2D image as an input. In addition to pixel selection,
we will also test the impact of predictor variable selection. As aforementioned, the feature importance
analysis of the RF method provides us an useful estimate of the usefulness of each predictor variables
in Table 2 for dust detection. Using this analysis, we are able to rank the feature importance of all 23
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predictor variables and selected 9 variables (highlighted in bold in Table 2) with feature importance
higher than the mean value. These selected variables include 4 M-bands (M09, M10, M11, M12 and
M16) and 2 solar-viewing angles (SZA and SAA), as well as two geolocation information (Lat and
Lon). The selected M-bands are in either the shortwave infrared (i.e., M09 to M12) or thermal infrared
(i.e. M16). These bands have also been used, either separately or in combinations, in the previous
physics-based dust detection algorithms. However, it is interesting and somewhat surprising to see
that not a single visible bands (e.g., M05) are selected even though visible bands are frequently used in
the literature for dust detection [14,19]. The selection of 2 solar-viewing angles is, on the other hand,
not surprising because all the selected M-bands are solar-reflective bands. Also, as occurence of dust
event are very dependent on the region, selection of two geolocation information of Lat and Lon is not
unexpected.

Based on different combinations of pixel selection and predictor variable selection, we prepared 4
sets of input data structures, OD-allvar (23 predictor variables), 0D-selectvar (9 predictor variables),
2D-allvar (5 x 5 x 23 predictor variables), and 2D-selectvar (5 x 5 x 9 predictor variables) for each of
the cases. A comparison between the 0-D and 2-D results would help us understand to what extent the
pixels adjacent to the CALIOP track provides additional information for dust detection on the CALIOP
track. A comparison between "allVar" and "selectVar" results will help us understand if the same level
of accuracy can be achieved by using a reduced number of predictor variables.

4. Model Evaluation

4.1. On-track Validation and Comprison of ML and DL Based Models

5 models (LR, KNN, RE, FFNN, and CNN) are trained with the training data based on the
aforementioned 4 different sets of input data structures (OD-allvar, 0D-seectlvar, 2D-allvar, and
2D-selectvar). The training results are tested on the testing data (i.e., collocated CALIOP data).
The overall accuracies of each model-variable combination after being aggregated over land, ocean or
the whole globe are compared in Figure 3.

A comparison between Figure 3a and b clearly reveals that all models perform better over the
ocean compared to land. This is expected as the land surfaces make complicated lower boundary
conditions compared to ocean. Reflections by ocean surface are generally very small and thus the
proportion of satellite received radiance that is from the atmospheric particles are larger. Another
reason is the radiative characteristics of the dust can be similar to those from semi-arid land surfaces,
which makes it difficult to distinguish dust as the surface signals dominates the atmospheric signals.
For both 0D and 2D case, allVar case tended to outperform or showed similar performance with
selectVar in FFNN. This shows the advantage of using ANN, that it can handle the large predictor
variables itself without feature selection. This is similar with RF and CNN as well. FFNN outperformed
CNN for about 1.7% accuracy. This shows that utilizing spatial characteristics of 5 x 5 window did not
contribute to the model, compared to simply flattening the 5 x 5 window. Generally, CNN is best used
for the image data, which usually consists hundreds or thousands of pixels. In that context,in future
studies a bigger window size could be used to improve the performance of CNN, since 5 X 5 window
might be too small for CNN to perform efficiently.

For each method, the best performing feature cases are selected and compared for a statistical
significance of performance. With a t-test, FENN outperformed other methods in 95% confidence level.
CNN and RF did not show significant performance difference between them in 95% confidence level,
but however, both outperformed KNN and LR. KNN also significantly outperformed LR.

As seen in the figure, the best model-predictor data combination is FEFNN using the 2D-allvar,
with overall accuracy of 84.99%. So hereafter we only analyze results from FFNN with 2D-allvar
predictor variable.
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Figure 3. Accuracy of 5 different ML and DL based models with different structure of predictor
variables. Accuracy is calculated as total number of correct predictions (both clear sky and dust)
divided by total number of test dataset. Accuracy plotted on top of each bar represents the highest
accuracy among the different structures of predictor variables, for each of the methods.

Figure 4 shows the global map of dust fraction derived from CALIOP (Figure 4a) and the
collocated on-track VIIRS observations using the FFNN method (Figure 4b). As expected, FENN is
fairly good at resembling the spatial pattern of dust in CALIOP. CALIOP and FENN present 30% to 50%
dust occurring fraction at central Asia, North America, Australia, South America, and at tip of South
Africa, which are the regions that are known as dust emission sources. However, CALIOP reports
almost 100% dust fraction in the Antarctic and adjacent Southern Ocean. As explained in Section 2,
this is mostly misidentification due to retrieval artifacts. Inevitably, the FENN method inherited this
flaw from CALIOP and also reports high dust fraction in these regions. Nevertheless, it is evident from
the figure that, FFNN is able to closely reproduce the dust fraction map from CALIOP, with up to 15%
difference in dust distribution (Figure 4c), depending on the location. When averaged over the globe,
as shown in Figure 4d, the FFNN-based VIIRS dust detection is able to reproduce the seasonality of
dust observed by CALIOP, attesting the usefulness of the detection for scientific studies.
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(a) CALIOP Dust Distribution (Collocated) (b) FFNN Dust Distribution (Collocated)
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Figure 4. (a, b) Spatial dust distribution for all test days. (a) CALIOP and (b) FENN shows the dust
distribution over CALIOP and VIIRS collocated track. Dust distribution is plotted with 5 x 5 lat-lon
grid. (c) Spatial difference between FFNN and CALIOP dust fraction. (d) Monthly time series of
CALIOP and FENN dust fraction over the entire globe to show the seasonality.

4.2. On-track Comparison of FENN with CALIOP and PHYS Model

To further understand the differences between CALIOP, FFNN, and PHYS, we compared the
dust detection from these three products on a pixel-to-pixel basis for the entire testing dataset on the
CALIOP track. For CALIOP and FFNN comparison, we used CALIOP cloud mask to screen out cloudy
pixels. Over land, CALIOP reports an average dust fraction of 57%, which is much higher compared
to only 16% over ocean. As explained in Section 2, this is mainly because dust aerosols originate in
land and are only transported over to the ocean. It is also partly because a dust conservative screening
method is used here. In other words, the definition of "dusty" in this study requires only one layer of
dust to be detected by CALIOP through the entire atmospheric column. In some cases, the dust layer
may be too thin for passive sensors like VIIRS to detect due to the sensor sensitivity.. Finally, it is also
possible that CALIOP could misidentifies cirrus clouds as dust if the clouds are too low in altitudes.
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Figure 5. Comparison of CALIOP product, FENN prediction, and PHYS prediction. Stacked bar graph
for FENN and PHYS shows the conditional prediction results, based on CALIOP product. Numbers
inside CALIOP bar graph represent the ratio of clear sky and dust, while the numbers inside FFNN and
PHYS bar graph represent the conditional proportion of prediction, also based on CALIOP product.
Acc. in the lower left of each panels represent the accuracy of each methods, and Acc. Rev. represent
the accuracy with clouds removed. For the better comparison, only the pixels within 70°S to 70°N are
used to plot the result.

Nevertheless, using CALIOP as standards, FFNN shows higher accuracy of prediction dust over
both land and ocean. Overland FENN true positive rate is 83% and false positive rate is 21%. The
false positive rate is much lower than the true positive rate, which means that FFNN has the ability
separate surface signals with dust signals. It also could be that over arid and semi-arid area, where it
is the hardest to detect dust, there are high frequency of airborne dust occurs. Over ocean FENN has
lower true positive rate of 33% with a very small false positive rate of 2%. The lower true positive rate
indicates that FFNN has trouble separating dust from other aerosol types, which is also included in the
clear sky categories. The very low false positive rate is partially due to that over ocean the occurrence
of aerosol features might be much smaller than over land.

When compared the PHYS model results with the CALIOP classification, there are larger amount
of cloud identified by PHYS when CALIOP products identifies as dusty or clear sky (about one
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thrid over dusty conditions and about half when it is clear for both overland and ocean). The cloud
prediction of PHYS are not generated in the ADP algorithm, but an upper stream cloud mask product
[38]. Before ADP algorithm is attempted, pixels are first filtered to ensure the observing conditions
are suitable for retrieve. Conditions such as clouds, cloud shadows, snow /ice coverage, or extreme
viewing/illuminating geometries, will be removed before retrieval. PHYS model only predicts clear
sky, dust, smoke, and ash for the remainder of the pixels. One of the known issues of passive satellite
aerosol retrieving algorithm is that optically thick aerosol plumes can be mistaken as clouds due to
their similar spectral signals [36]. Another possibility that causes the disagreement in cloudiness
between the two methods is the spatial resolution. Although this issue is mysterious, it is beyond the
scope of this study. Also note that Figure 5 only shows the results between 70°S and 70°N. So another
possibility that causes the disagreement, which is CALIOP falsely labeling low altitude ice clouds near
polar region as dust, is excluded from Figure 5. But however, this problem exist in both active and
passive sensors and can be seen (and discussed) in Figure 5.

However, even considering the difference of cloud product, PHYS still under-performs FFNN.
Especially over land, PHYS significantly underpredicts dust. Excluding clouds, PHYS shows the true
positive rate of 38% and 33% and the false positive rate of 27% and 53% for over land and ocean
respectively. The low true positive rate could be due to the different definitions applied between active
sensor and passive sensor in terms of defining dust. For CALIOP, we consider an atmospheric column
dusty if there is any dust observed in that vertical profile. FFNN follows the same definition since it is
trained based on CALIOP data. This definition captures much more very low dust loading compared
with what PHYS can do. The high false positive rate for PHYS, especially over ocean, indicates there
are misclassification of other type of aerosols into dust by PHYS. Note again our study excludes
any cloudy scene including thin cirrus identified by CALIOP. Under this circumstance, CALIOP has
reliable ability to separate dust from other aerosols under clear sky. Overall, FENN can reproduce
the CALIOP’s dust classification with a better accuracy than PHYS when following the CALIOP dust
definition which includes conditions with very low dust loading.

5. Evaluation of FFNN-based VIIRS Dust Detection off CALIOP Track

5.1. Entire VIIRS Granule Run for Day 075 and 224

The previous analyses are all based on the CALIOP "truth" data, which is on its narrow track.
To understand the ability of FFNN dust detection off the CALIOP track, we selected two days from
the test days (day 075, which is March 16 and day 224, which is August 12). The same cloud mask
that applied to ADP product is used for masking the off-track VIIRS granule before feed into FFNN to
preserve clear-sky assumption. Figure 6 shows the dust distribution of CALIOP (collocated on track),
FFNN (collocated on track), and FENN (off-track) for days 075 and 224.
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Figure 6. Predicted dust distribution for day (a) 075 (March 16, 2014) and (b) 224 (August 12, 2014).
CALIOP and FFENN-onTrack shows the CALIOP product and FFNN prediction over the CALIOP and
VIIRS collocated track, while FFNN-offTrack shows the FENN prediction over the entire VIIRS granule
for each day.

As seen in the figure, on-track and off-track FFNN dust detection accuracies are mostly with
10 % difference, which is comparable to the difference between FFNN and CALIOP on the CALIOP
track (see Figure 4c). This is very encouraging because it indicates that the although FFNN method is
trained on the CALIOP track it can be applicable for off-track pixels and maintains a similar accuracy.
Difference in dust proportion is about 8% for both days. Since the coverage of collocated track and
entire granule are different, we cannot expect the dust distribution to be the same for on-track and
off-track. However, we also cannot expect the distribution to be very different because collocated
track is a subset of the entire VIIRS granule, and it is fairly well distributed over the globe. In that
context, 8% difference in the dust distribution is reasonable to assume that the result of FFNN model is
consistent in both on and off-track.

Figures 7 and 8 show the dust occurrence frequency distribution of CALIOP product, on-track
FFNN, off-track FFNN, and PHYS for day 075 (Figure 7) and day 224 (Figure 8). For day 075 (Figure
7), CALIOP and on-track FFNN shows similar pattern of dust distribution, except for Antarctica,
where FFNN overestimates dust frequency. Off-track FFNN also shows similar distribution with
CALIOP in terms of both spatial distribution and occurrence of dust. Off-track FFNN also expands
the small dust frequency over ocean between south Africa and South America shown in on-track
CALIOP map. The visual inspection of RGB images of this region shows that transported dust exist
and FFNN captures this feature. In on-track FENN, there is couple elevated dust frequency pixels
shown over ocean west of Australia. These features are not shown in on-track CALIOP map and is
much reduced in off-track FFNN results. This indicates the model may captures the feature better
with more spatial coherence data. PHYS shows dust occurrence at similar geolocations with much
smaller magnitude, which is consistent with our previous analyses. It is encouraging that neither of
the off-track results from FFNN and PHYS shows any dust occurring over North and South America
as CALIOP map indicates there is no dust activities over these regions. Day 224 (Figure 8) shows a
similar attribute as day 075 that both on- and off-track FFNN reproduce what CALIOP observes well
at most of the region with one exception over North America, where CALIOP shows small amount
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of dust occurrence over eastern North America, but off-track FFNN flags a lot more over this region.
Another interesting observation is that both on-track maps show isolated high dust frequency in the
middle of the Atalantic, where off-track FFNN shows the transport of dust plume from North Africa to
this region. Due to over southern hemisphere August is the summer season, there is less low level ice
clouds exist over Antarctica, there is much less "dust" identified or modeled for CALIOP and FENN.
PHYS again captured smaller amount of the significant dust activities that identified by CALIOP. It
barely shows the North Africa dust event with very small magnitude, but yet we can still see there is
trace of dust plume from North Africa to mid-Atlantic ocean. The PHYS also does not pick the dust
occurrence over South America, which is again visually identified using RGB images. It is worth to
mention that over Asia March is active dust season and August is relative calmer. We can see the
magnitude differences over Asia between off-track FFNN results from these two days.

(a) CALIOP (Day 075) (b) Collocated FFNN (Day 075)
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Figure 7. Dust distribution of day 075 for (a) on-track CALIOP product, (b) on-track FENN prediction,
(c) off-track FENN, and (d) off-track PHYS.
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Figure 8. Same as Figure 7, but for day 224.
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5.2. Off-track Case Studies

For the selected 2 days, subsets of granules are selected for both off-track FFNN and PHYS
to compare with images from Wisconsin’s VIIRS quicklook, including RGB, AOD, and Angstrom
Exponent parameter (https://sips.ssec.wisc.edu/#/). Angstrom Exponent is a retrieved parameter to
show the size of the retrieved aerosol. It shows how much coarse particle is within the aerosol plume
that can best match the the observed radiance. The larger the value is, the smaller the particle size is.
Generally, we consider Angstrom Exponent less than 0.4 to be dust. Becuase of the lacking of ground
truth (CALIOP) for the off-track data, we use the RGB iamges, the magnitude of AOD, which shows
the amount of aerosol loading, along with Angstréom Exponent, which indicates dust or not to compare
with off-track FFNN and PHYS results. Among few cases, we select three different cases that shows
the characteristics of FFNN and PHYS.

Figure 9 shows a case over the Arabian peninsular on day 224 where FFNN and PHYS agrees
very well with each other in terms dust detection. The large value of AOD in Figure 9e suggests this
case to be a high dust loading case. Figure 9e also shows the CALIOP track and it’s dust product that
is residing in this target region (see solid green and black line on panel e). As it can be seen on Figure,
FENN agrees very well with CALIOP product on the CALIOP track, and predicts high dust loading
event in this region. PHYS also captures the similar pattern of dust, although the overall magnitude of
dust loading is less significant compared to FFNN.


https://doi.org/10.20944/preprints202012.0177.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 December 2020 d0i:10.20944/preprints202012.0177.v1

19 of 27
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Figure 9. A case study over Arabian peninsular on day 224, at 10:24. Panels a-d depicts image from
Wisconsin’s VIIRS quicklook, where (a) represents The true color, (b) Clear Sky confidence, (c) Aerosol
Optical Thickness, and (d) Angstrom Exponent. () FENN result on the same geolocation. Results are
plotted in 0.1 x 0.1 latitude and longitude grid, and the percentage of dust within the grid are shown
as colors. Green and black solid line represent the on-track CALIOP product within this region, where
green line represent the pixels that CALIOP classified as dust, and black line represent the pixels that
CALIOP classified as non-dust. (f) Same as (e), but for PHYS product.
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Figure 10 shows a case in Southern Australia on day 075, where the FFNN detect significant
dust loading (Figure 10e) and PHYS detects almost none (Figure 10f). As seen from Figure 10c, the
aerosol optical thickness in this case is quite small, mostly around 0.1. This thin layer of dust is not
captured in PHYS, but it is captured both by CALIOP, albeit on its track only, and by FFNN both
on-track and off-track. This is also expected form Figure 7 and 8, where CALIOP and FFNN predicted
high frequency of dust over Australia, which is not seen in PHYS. Since CALIOP also captures dust in
this regions as shown in Figure 10e, the difference is probably due to the different definitions of dust
event applied to CALIOP and PHYS, where CALIOP is more sensitive to small amount of dust layers.
However, it is debatable if this should be considered as dust event, given the small amount of dust
loading.
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Figure 10. Same as Figure 9, but for Australia on day 075, at 04:54.

Finally, Figure 11 shows a case in Sahara region on day 075, where the FFNN detects substantially
more dust than the PHYS model. As seen from Figure 11b and c, the AOD in this case is quite high and
the Angstrom exponent is small, indicating this to be a high dust loading case. Same as the previous
two cases, the FFNN agrees very well with the CALIOP on the CALIOP track (Figure 11e). It also
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detects large areas of dust in this granule, for example over the eastern part of the granule where the
AOD is high and Angstrom exponent is small. In comparison, the PHYS method does not label the
aerosols in this region as dust. There could be multiple reasons for this differences such as the strong
surface signal is overpowering the atmospheric dust signal. An important one could be that all 16
M-bands of VIIRS are used in the FFNN method whereas only 3 M-bands are used in the PHYS model.
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Figure 11. Same as Figure 9, but for Sahara region on day 075, at 13:36.

6. Summary and Outlook

In this study, several ML and DL based algorithms, namely, LR, KNN, RF, FFNN, and CNN,
are tested for detecting the occurrence of dust aerosols from daytime VIIRS satellite images. These
algorithms are trained based on one year (2014) of collocated state-of-the-art CALIOP dust detection
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product. Based on different combinations of pixel and predictor variable selections, 4 sets of input data
are constructed for the training (i.e., 0D-AllVar, 0D-SelectVar, 2D-AllVar, 2D-SelectVar). A validation
based on the testing data shows that the FFNN trained with the 2D-allVar input data is the best
performing model, with a 84.99% overall accuracy on the CALIOP track. The FFNN model was
then tested for the entire VIIRS granule, which covers more region than CALIOP-VIIRS collocated
track spatially. Off-track FENN dust distribution agrees reasonably well with collocated track FENN
dust distribution, which indicates that there were no systematic bias between on and off track model
application. Also, off-track dust distribution showed similar distribution with on-track CALIOP
predictions, which warrants that the FENN can be used to reproduce CALIOP results outside the
CALIOP track. Comparisons are also made between the FFNN method with a physically-based dust
detection algorithm both on and off CALIOP track. The FFNN method agrees better with the CALIOP
than the PHYS model on the CALIOP track, which is expected because FFNN is trained based on
CALIOP observations. When applied to the whole VIIRS granules, the FENN detect significantly more
dust than the PHYS model. Case studies suggest that the difference may be contributed by a number
of different factors, such as the different definition of the dust event and the use of different number of
VIIRS observations in the two algorithms.

As far as we know, this is the first attempt to use ML and DL based algorithm trained with the
collocated CALIOP products for global dust detection from satellite images. The results suggest that
even though the ML and DL algorithms are only trained on the narrow track of CALIOP, they can
be applied to the whole VIIRS granule and retrieve statistically similar dust frequency. This is very
encouraging and meaningful for a couple of reasons. First of all, this study, along with many recent
ones (e.g., [34]), demonstrates the great potentials of ML and DL methods for satellite based aerosol
and cloud retrievals. Second, our study also demonstrates that even through the active sensors like
CALIOP have an extremely small spatial sampling rate, their observations and retrievals provide
unique information on aerosol that are highly useful for training the ML and DL methods. However, a
close collocation between the active and passive sensors are needed, which is an important factor to be
considered in the planning of next-generation NASA satellite missions.

Despite the encouraging results, our study has several important limitations. First, the abnormal
high frequency of dust in Antarctic and some remote ocean regions indicate that our ML and DL
methods inherited some misidentification problems from the CALIOP retrieval. The problems of
the operational CALIOP aerosol retrievals are beyond the scope this study. In future research, this
issue could be alleviated by using additional constraints, such as the AOD value, for dust detection
when constructing the training data. Second, because we excluded cloudy pixels from this study, our
algorithms can only detect dust in cloud-free conditions and require a reliable cloud masking algorithm
to screen out the cloudy pixels first. Theoretically, it is possible to train ML and DL algorithms to
identify both cloud and dust at the same time if there can be enough high-quality training data. But
this would be much more challenging and will be explored in future research. Third, our algorithms
can be used only during daytime. In future research, the ML and DL algorithms can be trained only
using the thermal infrared bands of VIIRS and as such they will be able to detect dust during both
daytime and nighttime. Finally, the off-track results need to be further evaluated in future research
based on more reliable independent dust detection products, for example, collocated ground-based
AeroNET and/or lidar observations.

In this study, we have achieved our main objective, i.e., exploring the feasibility of using the
ML and DL methods trained on the CALIOP track for off-track dust detection. The results are very
encouraging and also inspiring. Many questions are raised during this study that warrant further
investigations in the future. Here are a few examples. The RF method ranked 3 shortwave infrared
bands and one thermal radiation bands as the most important bands in terms of information content
for dust detection. What is the underlying physics for this ranking? The very similar results based on
the 0-D and 2-D input data structures seem to suggest that the adjacent pixels provide little additional
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information for dust detection. Is this due to the nature of dust plume (i.e., a lack of spatial structure)
or a result of inadequate spatial window (i.e., larger or smaller than 5 x 5 pixels for 2-D)?
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