Preprint
Article

Enhancing Photocatalytic Activity of ZnO Nanoparticles in a Circulating Fluidized Bed with Plasma Jets

Altmetrics

Downloads

348

Views

179

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

08 December 2020

Posted:

09 December 2020

You are already at the latest version

Alerts
Abstract
In this work, zinc oxide (ZnO) nanoparticles were modified in a circulating fluidized bed through argon and hydrogen (Ar-H) alternative-current (AC) arc plasma, which shows the characteristics of non-equilibrium and equilibrium plasma at the same time. In addition, a circulating fluidized bed with two plasma jets was used for cyclic processing. The catalytic degradation performance on Rhodamine B (Rh B) by Ar-H plasma modified ZnO and pure ZnO was tested in aqueous media to identify the significant role of hydrogen atoms in Rh B degradation mechanism. Meanwhile, the effects of plasma treatment time on the morphology, size and photocatalytic performance of ZnO were also investigated. The results demonstrated that ZnO after 20 minutes-treatment by Ar-H plasma showed Rh B photocatalytic degradation rate is ten times greater than that of pure ZnO, and the reaction follows a first-kinetics for the Rh B degradation process. Furthermore, the photocatalyst cycle experiment curve exhibited that the modified ZnO still displays optimum photocatalytic activity after five cycles of experiment. The improvement of photocatalytic activity and luminescence performance attributes to the significant increase of the surface area, and the introduction of hydrogen atoms on the surface also could enhance the time of carrier existence where the hydrogen atoms act as shallow donors.
Keywords: 
Subject: Chemistry and Materials Science  -   Chemical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated