Preprint
Article

Multi-Block Color-Binarized Statistical Images for Single Sample Face Recognition

Altmetrics

Downloads

215

Views

223

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

08 December 2020

Posted:

09 December 2020

You are already at the latest version

Alerts
Abstract
Single sample face recognition (SSFR) is a computer vision challenge. In this scenario, there is only one example from each individual on which to train the system, making it difficult to identify persons in unconstrained environments, particularly when dealing with changes in facial expression, posture, lighting, and occlusion. This paper suggests a different method based on a variant of the Binarized Statistical Image Features (BSIF) descriptor called Multi-Block Color-Binarized Statistical Image Features (MB-C-BSIF) to resolve the SSFR Problem. First, the MB-C-BSIF method decomposes a facial image into three channels (e.g., red, green, and blue), then it divides each channel into equal non-overlapping blocks to select the local facial characteristics that are consequently employed in the classification phase. Finally, the identity is determined by calculating the similarities among the characteristic vectors adopting a distance measurement of the k-nearest neighbors (K-NN) classifier. Extensive experiments on several subsets of the unconstrained Alex & Robert (AR) and Labeled Faces in the Wild (LFW) databases show that the MB-C-BSIF achieves superior results in unconstrained situations when compared to current state-of-the-art methods, especially when dealing with changes in facial expression, lighting, and occlusion. Furthermore, the suggested method employs algorithms with lower computational cost, making it ideal for real-time applications.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated