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A mathematical interpretation and validation
of the Streamline’s shape theory for inviscid-
incompressible flows & viscid-compressible flows
of the Newtonian fluids
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Abstract. This article objectively assesses, the hypothesis of the stream-
line’s shape theory and its formulated equation. The deduction of proof
uses algebra rather than first-order partial differential equations to ad-
dress the specific hypothesis of "Streamline’s shape theory" from the
fundamental perspective of applied mathematics and scientifically derives
mathematical relations of the axioms and corollaries in the field of fluid
dynamics. The algebraic methods employed provide progressively more
distinct and precise solutions compared to first-order partial differen-
tial equations. The foremost objective of this work is to evaluate if the
formulations of the streamline’s shape theory can have solutions for
inviscid-incompressible and viscid-compressible flows of Newtonian fluids
and to identify their nature. Secondly, to understand how the topology
of the body and the free-stream conditions affect these solutions with
due regards to the shape and size of the body interacting with the fluid
flow. Finally, to explore the possibility of this theory to develop a CFD
solver for streamline simulation to reduce the experimentation in the
analysis of flow-structure interactions of Newtonian fluids and also to
identify its scope of applications and limitations.

Mathematics Subject Classification (2010). 35Q35 ; 74F10 ; 76M99.

Keywords. Fluid-Structure interactions, Topological fluid dynamics, Gen-
eral fluid mechanics, Mathematical fluid dynamics, Applied mathematics.

1. Introduction

The existing theories concerning streamlines like Prandtl-Batchelor theorem
and free streamline theory were fundamental in the development of several
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models for the streamline simulation. Prandtl-Batchelor theorem is applica-
ble for flows with high Reynolds numbers for closed streamline conditions
and invalid within the boundary layer regime.[I] Freestream line theory, on
the other hand, uses classical Helmholtz free boundary theory and Laplace
transformations. Based on it, few promising mathematical models were de-
veloped in recent years for various complex cases in hydrodynamics and
aerodynamics, such as wake models, cavity flows, free-surface perturbations
caused by viscosity, and turbulence.[2, [3, [, 4, 5] [, [7, 8] Historically, many
theories use energy conservation,/ dissipation and mass conservation,/ dissi-
pation approaches. These approaches give an aggregate of fluid flow within
the considered boundary limits. However, they present a challenge to specify
local parameters within the fluid flow. Different types of solvers use different
methods and equations concerning various cases of the fluid flow and types
of fluids. Most of them employ differential equations and partial differential
equations to evaluate local parameters that have their shortcomings. In recent
years streamline simulation has acquired its prominence among researchers as
a promising approach compared to traditional methods.[9]Moreover,the relia-
bility of CFD results heavily depends on the computational methods, basic
equations, and processing capabilities of the computer, and thus experimental
data is always required.[10]

Though existing literature conveys that streamlines form as a result of
shear stress and dynamic pressure distributions over the surface of the body
in a flow.[I1] There efficiently is no mathematical model that can explain how
and why streamlines are forming concerning the nature of fluid, nature of the
flow, the shape, and the size of the body.[12, [13]

"Streamline’s shape theory" is a proposed mathematical model that
claims to explain the mechanism of streamlines of a Newtonian fluid in an
open circuit flow over a body. According to this theory,

Hypothesis: Laminar flow of a Newtonian fluid over a rigid body will
displace the fluid particles when the solid body has sufficient strength to
withstand the deformation and displacement. The dynamic pressure of the fluid
and the shear stress distribution over the body contributes to the streamline
formation.[14] 12]

Equation (1) shows the force that is resultant of flow over a rigid body,
which contributes to change in the trajectory of fluid particles forming stream-
lines.
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Here, equation (1) is the sum of dynamic pressure and shear stress at
a local point and the impact of surrounding points of the topology. The

ova. .
gA* is the shear
Yy

52 . .
%pAi va,” is dynamic pressure at a local area A; and p4,
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stress at A;. Similarly, the cosine multiples in the equation (1.1), are dynamic
pressure and shear stress at surrounding areas and 6, is the angle between
free-stream vector and the local force vector. 6, is the angle at which the
resultant force Fy, , acts on Flg,.

i—1

Remark 1.1. The aforementioned mathematical formula claims to predict
and explain the trajectory of fluid particles in a laminar flow of Newtonian
fluid and provides an ability to explain various phenomena in an open circuit
flow such as stalling, flow separation, down-wash, Coanda effect, effects of
shape and size of the body over which fluid flows. Though the theory is
argumentatively not disapproved but its reliability in terms of mathematical
precision in analyzing open circuit Newtonian flow over a body is yet to be
evaluated.

That imposes certain questions like: Does this equation always have
solutions? If so, what is the nature of the resultant solution? What is the
range of applicability for this formula?

2. Methodology

The article published under the title “Mechanics of streamlines in an open
circuit fluid flow and its impact on the flow”[12] is a mathematical conjecture
as it doesn’t have any mathematical proof or experimental data to validate it.

A brief mathematical inference for the stated formulation of “Stream-
line’s shape theory," is carried out in section 3. Then, the mathematical proof
employing inductive logic and the direct method of proof derives mathemati-
cal inferential arguments in the field of fluid mechanics. The section 4 titled
“mathematical validation" has both graphical method and analytical meth-
ods of algebraic calculations that proves the formulation of the considered
hypothesis of “Streamline’s Shape Theory."

3. Mathematical Interpretation

FA;71 cos(6) + %pA

<2 Ouy _ o
iVA;T tRaA gyt = Fay

FIGURE 1. Relationship between two successive points on
the topology of the body and the vectors due to dynamic
pressure and shear stress distribution
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The shear stress always acts tangential to the surface of the body
for a Newtonian fluid, and dynamic pressure acts normal to the surface of
the body.[I5] Equation (1) is a time-independent and sum of two parabolic
functions and two linear functions.

Here, dynamic pressure at A; and resultant dynamic pressure from
surrounding areas A;_i are the parabolic functions as they are in the form:

ax2:§172. The shear stress distribution is a linear function for a Newtonian

fluid within subsonic velocities. The u% is in the form of mz 4 0. As the
fluid stream passes over the topology of a body, the shear stress distribution
and the dynamic pressure distribution change the velocity and trajectory of
the fluid particles. Therefore, a free-stream fluid flow, a defined parabolic
function, when passes over a body develop shear stress on the topology of
that body, which is a linear function for the Newtonian fluids. The sum of
these two functions will have a resultant force vector, which effects succeeding
locus of points gradually.

Figure.l illustrates these vectors. The dynamic pressure due to free-
stream at %pAi_l_”Z)fli and the shear stress developed at A;_1 is pa,_, avg;”
and the resultant sum due to these two forces is Fla, ,. The force on the
succeeding area A; along the path 'c’ is a sum of Fjy, ,, the force due to
the dynamic pressure of free-stream, and the force due to the shear stress
distribution. Here, A;_; is the stagnation point. So, the formation of streamline
starts at the stagnation point and gradually changes along with the shape

and size of the body.

4. Mathematical Validation

The algebraic form of the equation (1) at any point on the surface of the body
with arbitrary shape is:[16]

va,

1 - 2
SPA VAT T A,

1 . VA,
> +gPa AT eos(0;) + pa, i cos(B;) + Pa, =0 (2

2
Here, P4, is the pressure at A; and % is the rate of shear deformation.

4.1. In-viscid & In-compressible flow

For an inviscid-incompressible flow, p and p are constants. Since equation (2)
is the sum of algebraic equations.Upon simplification,

1 N 1 . .
ivaiz + gvAi’ + qPa, + Evai_fcos(Gr) + gvAi_lcos(Gr) +71Pa, =0 (3)
aszrblerc az§+bw2+c

where, q+1 =11i.e. gPa,+7rPa, = P4, and y is the length of the boundary layer
formed. The% is the rate of shear deformation. The sum of a parabolic function
and linear function results in parabola shifting. Here, equation (3) is the sum of
two algebraic functions.[I7] Therefore, f(x1) + g(z2) is the resultant function.
Figure.2 and figure.3 graphically illustrates the algebraic sum of these two
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functions. Here,1pt? and 1 pt” cos(6,) are in the form of az? and for a > 0
the parabola will open upwards and will have a vertex at (0,0). The vertex
of the function pv? + Bv+qPya, is (=7, 57(3; — 1) + ¢Pa,) and the vertex
of $pv%,_ cos(6,) + Lva,_ycos(0y) +rPa, is (=5, L7 cosOr(5; — 1) +1rPa,).
The Y-intercept of the equation (3) is (0,Py,).

(a)Plot for the Velocity and Pressure at a local point of the flow for f(z;)

(0,6)

—+ Iug—z cos (6,)
i . 1p? cos (6,)
—o— 5% cos (0,) + 3p0” cos (6,) + qPa,
| 1 ‘ ‘ ‘ ]

-
v

FIGURE 2. Graphical representation of the algebraic sum of
dynamic pressure & shear stress of the f(z1) & g(x2)

As the negative sign indicates the only directional component of the
velocity vector, the minimum velocity required for a fluid particle to change its
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Plot for the Velocity and Pressure at a local point of the flow for f(xz1) + g(z2)

—o— M%Z cos (0,) + 5p02 cos (0,) + qPa,

L —— N%Z + %pl_}a +1rPa,

— 1pi? cos (0,) + “%Z cos (6,.) + M%Z + 1p7 4 Pa,
. [ . I

o)

FIGURE 3. Graphical representation of algebraic sum of the
flx1) & g(x2)

trajectory and deform at a surface is | — v/y|. Thus, the corollary of kinematic
viscosity is satisfied.

Corollary 4.1. For any change, in the fluid stream over a body. The minimum
velocity after the interaction of a body with the fluid stream must be 5 As
Kinematic Viscosity is the inherent viscosity of Newtonian fluids, that does
not change with a change in applied force.

Muller’s method is a root-finding numerical method developed by David
Muller that calculates roots.The standard formula where the co-efficient a,
will be in the denominator and that leads to in-determinant solutions for the
algebraic equation when a = 0. Muller’s formula can be deduced from the
standard quadratic formula by Vieta’s formulas, and it will give solutions
even when a = 0. The solution for f(z1) + g(x2) will have four roots. The
discriminants A; and A;_; of the functions f(x;) and g(z2) are given in the
equation (4) and equation (5). Likewise, equation (6) gives the roots of the
equation (3) by using Muller’s method.[I8] The increments and decrements
of the resultant algebraic function depends on the value of cosine value in
g(x2). As 0, changes from 0° to 360° the value of cos 8, varies between 1 to
-1. This indicates the effects of the shape of the body on the flow. Therefore,
the nature of the two roots for the considered algebraic expression depends
on the shape of the body.

i = (’y‘>2 ~2p(qPa,) (4)
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2
A= (;L cos (Gr)> —2p(rPa,_,)cos (6r) (5)
- 2qPA1
Uip = —
u :
~(4)+ VA
2r Py,
Vip—1 = T (6)

-(5)=vas

4.2. Viscid- Compressible flow

For a viscid compressible flow, p and p are not constants. Therefore, modifying
equation (3) and introducing v, kinematic viscosity.
1 rP A

9 v o, qPs, 1 4 v ;
—vy + —va, + + —v%. cos(0y) + —va, ,cos(0,) + =0 (7
2 A1 y pAl 2 A171 ( ) y 1 ( ) pAi71 ( )

aw%+bw1+c az§+bz2+c

Since pu/y = v and v is an inherent characteristic of the fluid which doesn’t
change with applied force.

Equation (7) is in the form ofaz1? + bxq + ¢1 + ax2? + bxe + ¢z ie f(z1)
and g(x2) . Similar to the method mentioned in the section 4.1, There will be a
parabola shifting and change in the vertex of the algebraic expression. The ver-

Pa, . —v P ;
quA: is (7,*1.5(1//y)2+quAi) and the vertex

tex of the function %”124,3 +EvA, +

- Pa, . ,_ rPa;_
of $v3  cos(f,) + Yva;  cos(0,) + pTA%ll is (7”,—1.5(1//34)2 cos b, + ﬁ)
Similar to the method mentioned in section 4.1, the discriminants and roots
of equation (7) are agiven in equations (8),(9) and (10). Graphical represen-

tations in figure (2) and figure (3) are also valid for a viscid-compressible

flow.
2
A; = (U> — 2& (8)

Yy PA;
v 2 rPy
Ai_q = < cos (F)r)> —2——"%cos (0,) (9)
Yy PA; 1

v = _2aPai/pa;
~(5) v
o 2TPAi/pAi—1
Vir—1 =
_ (z) + A
Yy

The streamline shape theory satisfies corollary 4.1 for viscid-compressible
flows. However, a significant difference exists in the resolved roots of equations
(6) and (10). The roots of equation (10), v;,&v;y—1 have pressure to density
ratios in their numerators. Since the speed of sound of a fluid cyy, is the

(10)
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square root of the ratio of change in pressure and change in density as stated

in equation (11).
dP
Cflu = d7p

- 2 qPAi

= Vi =
_ (5) + VA, PA
2 ’/’PAY

~ e —_
~ vy =

TGy VA )

As one of the roots obtain value closer to the speed of sound, the fluid
flow doesn’t form streamlines along the surface of the body. Equation (11)
shows the limitation of streamline’s shape theory. Speed of sound cy;,, also
equals to \/yrT. The effect of temperature on the viscosity and simultaneously
on the formation of streamlines are in-evident in the streamline’s shape theory.
Therefore, this theory is only applicable to subsonic flows. Thus, streamline’s
shape theory satisfies the second corollary.

Corollary 4.2. At higher velocities, shock waves are formed rather than stream-
lines causing an abrupt change in the pressure as the body travels with velocity
closer to the speed of sound.

5. Results and Discussion

The streamlines adopt the shape of the surface topology within the subsonic
regime. These statements justly apply to only Newtonian fluids in a laminar
flow. For fluid particles to alter their typical trajectory, the minimum velocity
at a local point precisely is |v/y|. Here, the value of v doesn’t change with
the change in the applied force at the local point, and y represent the length
of the boundary layer from the surface. As the velocity reaches closer to the
speed of sound the fluid stream behaves like a wave. Thus, the hypothesis
can’t govern the phenomena of shock-wave formation.

The fluid stream interacts with a structured body at A;_1, at tg when
the impact of the surrounding area’s interaction is non-existent. Equation
(5) and equation (8) shows that one of the A;_; is dependant on the value
of 6,. This mathematically confirms that when a solid body interacts with
a fluid stream. The leading edge where the fluid particles bombard on the
surface A;_1 at to, the fluid particles parallel in motion to the bombarded
fluid particles haven’t reached A;, which contributes to non-existent of 6,.
However, A;_; have already interacted with the surface of the body forming 6,
the resultant force vectors of f(x1) + g(x2) will have the impact from A;_; at
t1. Thus fluid particles tend to travel along the surface of the body.Equations
(8),(9) and (10) shows that viscid-compressible flow will have similar effects
like inviscid-incompressible flows of a Newtonian fluid, regarding the impact
of 6, or the profile of the body. In other words, the shear stress influences
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cause the free stream to flow around the walls of the body by contributing to
the streamline formation.

Here, ty is the time at which fluid particles reach the leading edge of
the body at A;_1. t1 is the time at which fluid particles reach the subsequent
point on the surface of the body A;.

From figure 2, it is noticeable that the resultant function of the shear
stress and dynamic pressure is a parabolic function with the change in the
axis of symmetry. Here, the quadratic term’s coefficient is £, and p (density)
is always positive for a fluid. As it is well-known if £ is greater than unity
the parabola will be narrow, and the parabola shall open wider if the value is
less than 1. As all viscous fluids will have positive viscosity the co-efficient of
the linear term will also be positive. Thus, the axis of symmetry shifts to the
left. Thus for non-Newtonian fluids or fluids with zero viscosity (super-fluids)
can’t be governed by the “Streamline’s shape theory".

In figure 3, which is the sum of two algebraic expressions f(x1) + g(x2)
the change in vertex. Figure 2 (a) is the graphical representation of the
resultant function due to the flow-structure interaction at the stagnation
point, where there is no effect on the fluid interactions of the surrounding
area. Figure 2 (b) is the graphical representation of the resultant function due
to the flow-structure interaction in due consideration of the effect of the fluid
interactions of the surrounding area alone. Thus, it indicates how the shape
of the body, the density, and viscosity of the fluid affects the flow-structure
interactions by contributing to the decrement in the velocity of the flow at a
particular point on the topology of the body. The change in vertex is due to a
change in pressure, and these functions mentioned and illustrated in figure 2
causes a change in pressure. Thus, the vertex change is observable in figure 3.
The narrowing of the parabola indicates a higher coefficient of the quadratic
term, an indication of the compressibility effect. However, this model doesn’t
consider the effects of electromagnetic fields, thermal boundary layers, among
many other aspects.

The Corollary 4.1 states that this model is mathematically appropriate
for all inviscid-incompressible flows. In practice M<0.3 (Mach number) is
mostly considered as an inviscid-incompressible flow. But beyond M>0.3 will
be assumed as a viscous flow. The Corollary 4.2 indicates the mathematical
limitation of this model which is observed in experimental results of existing
literature. Tran-sonic flows defy the laws of low speed fluid dynamics. At
higher velocities close to the speed of sound fluids exhibit wave characteristics
unlike low speed flows.[13, 11]

From section 4, it is evident that this theory distinguishes from other
mathematical models in a few particular aspects.

1. Most of the earlier theories and their mathematical models based on
experimental data emphasized on Buckingham-II theorem. This approach
enabled the researchers by reducing the number of parameters to monitor
during experimentation and made the process more convenient. However,
this caused ignorance of a few parameters in the empirical equations
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when formulated. The shape of the body is one such parameter, which
is often represented as correction in terms of coefficients.

2. The introduction of angle 8, makes it possible to calculate the change
in the flow along with the topology of the surface. If the direction of
flow, shape of the body, and size of the body are known, then it will be
possible to calculate the force at the stagnation point. Then from the
stagnation point to the force vectors at succeeding locus of points are
possible to be calculated at each corresponding time and space intervals.

3. In this formulation, the shape and size are inclusive in the fundamental
equation. Trigonometric relations and finite element methods, coupled
with this model, could make it a more reliable CFD solver.

4. Although this model doesn’t consider Buckingham-II theorem, it is not
resistant to Pi parameters. Once velocity is calculated at each point the
surface of the body, through the historical data of M and Re (Reynolds
number) various phenomena like flow transition, flow separation, the
formation of shock-waves can be predictable on the topology of the body.

6. Conclusion

Hence, the stated hypothesis of the principal argument is satisfactorily proven,
and the streamlines occur as a resultant of the shear stress and dynamic
pressure distribution over the body.

The formation of streamlines and their mechanisms are the fundamental
aspects that don’t have a mathematical model in fluid dynamics. Although,
many experts among various disciplines opine that this may not be of signifi-
cant importance. But to develop more sophisticated CFD applications and
methods of analysis, this is very critical.

The foremost advantage of Streamline’s shape theory is that it is a
lucid mathematical formulation and solutions always exist. Streamline’s shape
theory can evaluate various phenomena such as the Coanda effect, flow
transition, flow separation, stalling, etc. Although other mathematical models
can serve the same purpose, one needs different solvers and has to iterative
simulations to compute various parameters.

Further course of possible research involves the evaluation of this theory
utilizing experimentation methods and development of CFD solver based on
the streamline’s shape theory. A study is necessary to perceive the behavior of
the non-Newtonian fluids concerning the topology of the body in flow-structure
interactions and the formation of streamlines.
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Abbreviations
CFD Computational Fluid Dynamics
M Mach number
Re Reynolds number
y length of boundary layer
Nomenclature
A Discriminant of the quadratic equation
Ou/dy  Rate of shear deformation
I Dynamic viscosity of the fluid
v Kinematic viscosity of the fluid
p Density of the fluid
0, Angle of resultant force on A; from preceding area
Ai1
F Resultant force due to the fluid motion
v Velocity of the fluid
Cflu Speed of sound of the fluid
dp Change in the density
dP Change in the pressure
P Pressure at a local point
Ou/dy  rate of shear deformation
Subscript
A; Local parameters such as p,u,ﬁ and ¥ at the point
(A;) .
A4 Local parameters such as p,u,F' and v at the

preceding point (A;)
iréir —1 Roots of the quadratic equations
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