Preprint
Article

Reducing the Uncertainty of Radiata Pine Site Index Maps Using an Spatial Ensemble of Machine Learning Models

Altmetrics

Downloads

251

Views

309

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 December 2020

Posted:

11 December 2020

You are already at the latest version

Alerts
Abstract
Site Index has been widely used as an age normalised metric to account for variation in forest height at a range of spatial scales. Although previous research has used a range of modelling methods to describe regional variation in Site Index little research has examined gains that can be achieved through use of regression kriging or spatial ensemble methods. In this study an extensive set of environmental surfaces were used as covariates to predict Site Index measurements covering the environmental range of \textit{Pinus radiata} D. Don plantations in Chile. Using this dataset, the objectives of this research were to (i) compare predictive precision of a range of geostatistical, parametric and non-parametric models, (ii) determine if significant gains in precision can be attained through use of regression kriging, (iii) evaluate the precision of a spatial ensemble model that utilises predictions from the five most precise models, through using the model prediction with lowest error for a given pixel and (iv) produce a map of Site Index across the study area. The five most precise models were all geostatistical and included ordinary kriging and four regression kriging models that were based on partial least squares or random forests. A spatial ensemble model constructed from these five models was the most precise of those developed (RMSE = 1.851 m, RMSE% = 6.38%) and had relatively little bias. Climatic and edaphic variables were the strongest determinants of Site Index and in particular, variables related to soil water balance were well represented within the most precise predictive models. These results highlight the utility of predicting Site Index using a range of approaches, as these can be used to construct a spatial ensemble that may be more precise than predictions from the constituent models.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated