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Abstract: In response to the need to address the safety challenges in the use of artificial intelligence (AI), this research 

aimed to develop a framework for a safety controlling system (SCS) to address the AI black-box mystery in the 

healthcare industry. The main objective was to propose safety guidelines for implementing AI black-box models to 

reduce the risk of potential healthcare-related incidents and accidents. The system was developed by adopting the 

multi-attribute value model approach (MAVT), which comprises four symmetrical parts: extracting attributes, 

generating weights for the attributes, developing a rating scale, and finalizing the system. On the basis of the MAVT 

approach, three layers of attributes were created. The first level contained 6 key dimensions, the second level included 

14 attributes, and the third level comprised 78 attributes. The key first level dimensions of the SCS included safety 

policies, incentives for clinicians, clinician and patient training, communication and interaction, planning of actions, 

and control of such actions. The proposed system may provide a basis for detecting AI utilization risks, preventing 

incidents from occurring, and developing emergency plans for AI-related risks. This approach could also guide and 

control the implementation of AI systems in the healthcare industry.  
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1. Introduction 
Artificial intelligence (AI) has recently experienced substantial growth across different industries, 

including medicine and healthcare [1,2]. Applications of AI in healthcare can be divided into four 

symmetrical periods: the beginning (1956–1970), the first generation of AI algorithms in healthcare (1970–

2012), the second generation of AI algorithms in healthcare (2012–2016), and AI outperforming its human 

counterparts in some medical tasks (2016 to the present).  

The beginning. The field of AI began in 1956 as the science and engineering of making intelligent 

machines [3]. The first AI model, which had limited problem-solving ability, was developed in the mid-

1950s [4]. In 1959, the term “machine learning” was coined by Arthur Samuel, who defined it as the field 

of study that gives computers the ability to learn without being programmed [5]. In 1961, an AI model was 

trained with data from 1035 patients and used to diagnose congenital heart disease [6]. In 1966, a natural 

language processing program was developed to mimic human therapists [7].  

The first generation of AI algorithms in healthcare. In 1972, the performance of computer-aided 

diagnosis for acute abdominal pain was compared with that of human physicians. The system's overall 

diagnostic accuracy was higher than that of the physicians [8].  

Subsequently, rule-based approaches achieved many advances in diagnosing diseases [9]. These 

approaches heavily relied on developing robust decision rules and using expert knowledge in medical 

practice [9]. The period included other important milestones. For example, in 1991, a pioneering attempt to 

open the black-box was conducted by Dean Pomerleau [10]. In 2004, adversarial inputs were formally 

described as intentionally designed input data to force AI systems to make mistakes [11].  

The second generation of AI algorithms in healthcare. This period started with the development of 

a deep neural network-based system able to recognize a cat in pictures and videos [12]. Subsequently, deep 

learning attracted the attention of many researchers [12,13]. The second generation AI algorithms, in 

contrast to the rule-based approach, were able to analyze complex interactions in health data and discover 

hidden patterns [14].  

AI outperforming its human counterparts in some medical tasks. Since 2016, the application of AI in 

healthcare has achieved considerable success, and AI models have accomplished various medical subtasks 

at or above the performance levels of physicians [15]. A highly accurate neural network algorithm was 

developed in ophthalmology for detecting diabetic retinopathy after training with manually labeled retinal 

fundus photographs [16]. In radiology, a convolutional neural network trained with labeled frontal chest 

X-ray images outperformed radiologists in detecting pneumonia [15,17]. In cardiology, a deep learning 

algorithm diagnosed heart attack with a performance comparable to that of (human) cardiologists [18]. In 

pathology, one study trained AI algorithms with whole-slide pathology images to detect lymph node 

metastases of breast cancer and compared the results with those of pathologists [19]. In dermatology, a 

convolutional neural network was trained with clinical images and was found to classify skin lesions 

accurately [20].  

Despite these advancements, various challenges exist in applying AI in healthcare [1,2,21]. One of the 

main challenges is safety. Several reports have described unsafe and incorrect recommendations by AI 

algorithms [22]. The safety of AI models is mainly associated with model interpretability and explainability 

[1]. Interpretability is defined as the ability to understand how an AI model reaches its decisions [1]. 
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Regarding interpretability, AI models can be categorized into white-box models, such as decision trees, 

and black-box models, such as neural networks [23]. Compared with white-box models, black-box models 

have excellent performance with almost no interpretability [24].   

To address the AI black-box challenge, a considerable amount of research has focused on developing 

explainable AI to open the black-box [23]. As a primary method for addressing the AI black-box issue, the 

visualization approach was developed to explain the models' main features [25]. For example, De Fauw et 

al. [26] visualized sections of the patient optical coherence tomography scans used by an AI model to make 

medical decisions. However, visualization is challenging to explain, and users tend to misread the results 

and over-trust their judgement [27]. Other approaches for addressing the AI black-box issue have been 

developed, such as (1) analyzing one isolated layer at a time to learn the differences between layers in 

neural networks [28], (2) using a simplified version of the algorithm for debugging and detecting potential 

errors, and then training an accurate version of the algorithm [29], (3) training the black-box model to 

explain the level of safety by assigning a confidence level to the model's prediction [30]. However, these 

methods focus on diminishing the black-box rather than opening the black-box of AI [26]. To open the 

black-box, the logic behind AI models' decision-making processes must be identified, and specific model 

tasks must be able to be paused or modified as necessary [31].  

In contrast, some researchers are less concerned about opening the black-box of AI [28]. From this 

standpoint, understanding how an AI model makes decisions is less crucial than empirically verifying its 

accuracy [32]. According to this viewpoint, regulators and clinicians should accept the AI black-box 

models, because opaque systems are common in medicine [10]. For example, several efficient medications 

such as aspirin and penicillin were used before their mechanisms were discovered [33]. Because of the 

excellent performance and popularity of AI black-box models, and given the absence of effective methods 

to open the black-box, accepting AI black-box models could be considered an acceptable option. However, 

addressing the safety issues of AI black-box models is also essential [33–35].  

The present study focused on developing a tool to evaluate the safety practices of AI models 

implemented in healthcare. The main objective of this article was to build safety guidelines for 

implemented AI black-box models to reduce the risk of health-related incidents and accidents. For this 

purpose, a three-level multi-attribute value model (MAVT) approach was used to develop a safety 

controlling system (SCS) for AI systems implementation.  

2. Methodology  
The SCS for AI implementation was developed by using a three-level MAVT adapted from Teo and 

Ling [36]. This approach consisted of four parts: (1) extracting attributes at different levels; (2) generating 

weights for the attributes; (3) assigning a rating scale for the attributes; and (4) finalizing the system [36] 

(see Figure 1). Several techniques were used to accomplish these steps. A combination of a systematic 

literature review and expert interviews was used for extracting attributes; a questionnaire-based survey 

was used for generating weights; and questionnaire-based survey was used for developing a rating scale. 
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Figure 1. Components of the three-level multi-attribute value approach.  

 

2.1. List of attributes  
In the proposed SCS, the attributes were divided into three levels. The first level attributes, called key 

dimensions, were adopted from Fernández-Muñiz et al. [37]. These were extracted from applicable safety 

standards and guidelines. These key dimensions were the fundamental and well-known elements of any 

robust safety management system and included safety policies, incentives for clinicians, clinician and 

patient training, communication and interaction, the planning of actions, and the control of actions. 

The second and third level attributes were developed by using a systematic literature review and 

interviewing ten AI domain experts. As the lowest level, the third level attributes were measurable safety 

elements for implemented AI systems in healthcare. The third level attributes were extracted from the 

systematic literature review and were subsequently refined during expert interviews. The third level 

attributes were clustered according to their predominant topics. These topics were named as the second 

level attributes.  

 The main reasons for using a combination of systematic review and interviews was to identify the 

main topics of AI safety in the included literature and expand these topics through consultation with ten 

AI domain experts. In addition, we aimed to ensure that all main aspects (elements) of AI implementation 

safety were addressed. For this purpose, first, a systematic review was conducted, and the main elements 

of safety in different key dimensions were extracted. Second, the extracted information was categorized 

and discussed during interviews with AI domain experts to produce the third attributes, as illustrated in 

Figure 2.  

• Conducting 
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• Conducting 
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Figure 2. Approach for a combination of systematic review and interviews. 

 

2.1.1. Systematic review   

To identify the attributes, we followed the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines [38]. Two main features of the research question and search strategy 

were developed. The following research question guided the systematic review: 

SRQ: What are the primary safety attributes of implemented AI models in healthcare for each key 

dimension? 

A search strategy was developed by (1) defining keywords and identifying all relevant records, (2) 

filtering the identified articles, and (3) addressing the risk of bias among records[39]. Three sets of 

keywords were defined, and their combinations were used to identify relevant articles (Figure 3).  

 
Figure 3. Three sets of keywords and their combinations for identifying relevant articles. 
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The PubMed and Google Scholar databases were used to discover relevant articles published through 

the end of July 2020. The selection strategy is shown in Figure 4.  

 
Figure 4. Chart of the selection strategy following PRISMA guidelines [38]. 

 

2.1.2. Interviews  

A primary method for collecting qualitative data is interviews, which are widely used in conducting 

research [40]. Some researchers apply structured interviews to test a priori hypotheses by using 

standardized questions and analysis. In contrast, others apply qualitative interviewing methods to better 

understand the stated hypotheses [41]. In this article, both types of interviews were used. 

After completing the systematic literature review, we applied an interview approach to identify the 

SCS's key dimensions. The objective was to examine extracted information from the literature review, 

discuss unidentified aspects of safety systems, and determine measurable third level attributes. 

Consequently, we interviewed ten AI domain experts. We asked these ten specialists the following 

questions:  

• IRQ1. What are the attributes of safety policies for implemented AI models in healthcare? 

• IRQ2. What are the attributes of incentives for clinicians for implemented AI models in healthcare? 

• IRQ3. What are the attributes of clinician and patient training for implemented AI models in 

healthcare? 

• IRQ4. What are the attributes of communication and interaction for implemented AI models in 

healthcare? 

• IRQ5. What are the attributes of planning of actions for implemented AI models in healthcare? 

• IRQ6. What are the attributes of control of actions for implemented AI models in healthcare? 

 

The interviews were conducted during August 2020. Each interview lasted approximately 1 hour and 

was divided into two main parts. First, the key dimensions and results of the systematic literature review 
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were explained and discussed. Second, six research questions were asked, and the third level attributes 

were developed.  

Because we conducted information-gathering interviews where IRQ1-6 questions only concentrated 

on AI-based models rather than individuals or their opinion regarding themselves; therefore, our study is 

not considered human subjects research, and ethics approval was not required [41]. However, before 

participating in the interview, we transparently informed all individuals about our study's objective and 

aim. We emphasized that participation is voluntary.  Therefore, participants were free to leave the 

interview without any penalty or question. We ensured that individuals were not pregnant, consumed 

alcohol for 24 hours before the interview, or were under hormonal treatment. We sent a recruiting email 

accompanied by a list of questions (IRQ1-6) and an explanation of our research to all potential candidates. 

We did not collect any identifiable data. All emails, contact information, messages were deleted right after 

interviews.  Finally, we obtained informed consent verbally from all individuals. The socio-demographic 

information of interviewees is shown in Table 1. 

 

Table 1. The socio-demographics information of interviewees 

Characteristics 
Interviewees 

(number) 

Interviewees 

(percent) 

Age    

 30 to 34 2 20% 

 35 to 39 4 40% 

 40 to 44 4 40% 

Years of experience in AI   

 0 to 4 1 10% 

 5 to 9 4 40% 

 10 to 14 5 50% 

Gender   

 Male 10 100% 

 Female 0 0 

Race/Ethnicity category   

 Non-Hispanic Black 0 0 

 Non-Hispanic Asian 0 0 

 Non-Hispanic White 10 100% 

 Non-Hispanic Other 0 0 

 Hispanic  0 0 

Occupation    

 Postdoctoral researcher 2 20% 

 Data scientist 5 50% 

 Machine learning scientist 2 20% 

 Data engineer 1 10% 
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 After discovery of attributes on the basis of the systematic literature review and expert interviews, we 

organized the key dimensions and the second and the third level attributes into a hierarchy tree. In this 

knowledge structure, the higher-level attributes represented the overall view of safety in implemented AI 

models, and the lower-level attributes measured the elements of safety in AI models (Figure 5). Notably, 

the highest level had 6 attributes, the middle level had 14 attributes, and the lower level had 78 attributes.  

 

 
Figure 5. Attributes of the SCS in different layers.  

 

2.2. Weight of attributes 
Because the identified attributes differed in importance regarding AI system safety, differentiating 

essential attributes from desirable attributes was essential. Therefore, we assigned a weight to each 

attribute to understand its degree of importance. Weights are crucial for decision-making because they 

indicate the most critical safety elements in AI systems implementation. For assigning weights to attributes, 

we used a 4-point Likert scale. For this purpose, a questionnaire was designed containing the third level 

attributes. To evaluate the significance of the third level attributes, we asked ten AI experts who 

participated in developing the attributes to rate these attributes on a 4-point scale: not important = 1; neutral 

= 2; important = 3; and very important = 4. 

We assessed agreement among AI experts by calculating Kendall's W (Kendall's coefficient of 

concordance) [43,44]. This non-parametric statistic ranges in value between 0 and 1, such that 1 indicates 

more substantial agreement [45]. We assessed the concordance of opinions regarding six key dimensions 

of the SCS. There was strong agreement (Kendall's W scale bigger than 0.6) among AI experts in the key 
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dimensions of "planning of actions" and "control of actions.” In addition, the AI experts were moderately 

in agreement (Kendall's W scale between 0.3 to 0.6) regarding the remaining key dimensions. However, we 

decided to adopt the average experts' ratings as each third level attribute's weight. Next, the weights of all 

third-level attributes were recalculated such that the sum of all weights was 100. For this to be achieved, 

we added up rates of the scale for all third-level attributes; then, we divided the rate of each attribute by 

the sum of all attributes. In the final step, the weights of the second and the first level attributes were 

determined. For this purpose, we added up the weight of all third-level attributes corresponding to the first 

and second level attributes. According to the results, the key dimension of "communication and interaction" 

had the highest weight and was followed by "control of actions" and "safety policies.” The weights of the 

key dimensions and the second level attributes are shown in Figure 6 and Figure 7. 

 

 
Figure 6. Weights of the first and second level attributes.  

 

2.3. The rating system  
The next part of the MAVT approach was developing a rating system and assigning it to the third 

level attributes. To reduce the probability of having different results from different auditors and to improve 

the generalization of the SCS, we developed a rating system by allocating points to the third level attributes 

in a straightforward manner. Different types of rating systems were extracted from Teo and Ling [36] and 

used in the survey. Four possible rating options were as follows: 

1) 0/1, in which the rating options are "0" (no) or "1" (yes), 

2) 0–1, in which the rating options are a fraction between "0" and "1",  

3) 0/1/NA, in which the rating options are "0" or "1" or "not applicable", and 

4) 0–1/NA, in which the rating options are a fraction between "0" and "1" or "not applicable.” 

A questionnaire was designed containing the third level attributes. To assign the most relevant rating 

system to each attribute, we asked the ten AI experts to select the most relevant rating system. We assessed 

the agreement among AI experts by assigning numbers from 1 to 4 to each rating system and calculating 
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Kendall's W. There was strong agreement (Kendall's W scale bigger than 0.6) among the AI experts in all 

key dimensions except "control of actions" and "safety policies." The most relevant (popular) rating system 

was assigned to each attribute according to the collected data.  

 

2.4. Finalizing the model 
The score of each third level attribute was determined by multiplying the attribute's weight in the 

auditor's assessment by the attribute according to the assigned rating system. After scores were 

determined, the total score was calculated by adding all scores of third level attributes. In conclusion, the 

entire MAVT approach for developing the SCS in 19 steps is represented in Figure 7. 

 
Figure 7. The 19 steps of the MAVT approach. 

3. Results 
An SCS can be defined as a set of policies, practices, procedures, strategies, roles, functions, and 

resources associated with safety that interacts in an organized way to decrease the damage generated in a 

process [37,46]. Different SCSs have been developed for different industries and technologies, but there is 

a lack of studies aiming to understand the key dimensions and measurable indicators of the safety of black-

box AI models in healthcare. Although the developed safety models and guidelines for industries may not 

apply directly to AI models in healthcare, their methods and frameworks can be adapted to create a 

comprehensive safety system suitable for black-box AI models. 

This article developed a system to evaluate the safety performance of AI models implemented in 

healthcare. The proposed system was constructed by applying the three-level MAVT approach [36]. The 

first level attributes, adopted from Fernández-Muñiz et al. [37], were the main elements of safety standards 

and guidelines. The 14 attributes of the second level and the 78 elements of the third level were extracted 
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by using a systematic literature review, conducting interviews, and performing two small questionnaire-

based surveys. 

The key first level dimensions of the SCS are as follows: (1) safety policies; (2) incentives for clinicians; 

(3) clinician and patient training; (4) communication and interaction; (5) planning of actions, and (6) control 

of actions (Figure 8). 

 
Figure 8. The first and second level attributes of the SCS.  

 

The first key dimension.  

Safety policies can be divided into three attributes of legislation and codes of practice (including six 

attributes), liability (including nine attributes), and continual development (including five attributes). 

Developing AI models in healthcare faces several legal regimes, such as federal regulations, state tort law, 

the Common Rule, and the Federal Trade Commission Act. In malpractice claims, owing to the use of AI 

black-box models in clinical workflows, the current legal system is not suitable [47,48]. Therefore, the 

responsibilities of different parties, including AI developers, the source of training data, clinicians, and 

suppliers who provide the AI system platform, must be clearly defined [1]. In addition, clinical systems are 

being controlled by designed rules, and using black-box data-driven devices can introduce new risks [49]. 

For example, traditional medical devices are updated manually, whereas AI-based devices are updated by 

training with new data [49]. The differences between the data-driven and the traditional devices require 

clinical regulations to be updated to correctly implement AI-based devices in the clinical workflows [47]. 

The continual development of AI models is one of the main attributes of safety policies. AI-based 

devices are a new type of medical technology, and they may become outdated because of continually 

changing medical treatment patterns and improvements in medical instruments [50,51]. Therefore, this 

unique aspect of AI-based medical devices in medical regulation is important to consider [1]. The Food and 

Drug Administration (FDA) has defined and developed the Software as Medical Device (SaMD) category 
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and Digital Health Software Precertification (Pre-Cert) Program to address this issue [47,52]. Accordingly, 

the FDA's new policy centers on AI developers' organizational excellence rather than approving AI-based 

medical devices [53]. Organizational excellence is defined as an effort to develop different processes and 

standards intended to engage employees to deliver excellent products [53]. Consequently, developers are 

authorized to update AI models without to review by the FDA [54]. However, a testing process must 

crucially be developed so that the updated models' performance is not below that of the primary models 

[55].  

 

The second key dimension.  

Because of false confidence, clinicians often accept the results and recommendations of AI models 

regardless of their accuracy [29]. To address this issue and to motivate clinicians to constantly check the 

results of AI systems, clinicians' incentives can be considered according to two attributes: developing safety 

incentive programs and adopting resolutions according to clinicians' recommendations. Safety incentive 

programs comprise three aspects, such as: "Are there any incentives offered to clinicians to put defined 

procedures of implemented AI systems into practice?” The attribute of adopting resolutions comprises 

three aspects, such as: "Is there any meeting with clinicians to adopt their recommendations concerning AI-

based medical device operation?” 

 

The third key dimension.  

Clinicians and patients should be educated on the risks, benefits, and limitations of AI models [33]. 

Different actions that should be taken may include engaging clinicians in developing data-driven systems, 

providing training events in health organizations before and after AI model implementation, using 

different teaching methods to educate clinicians, asking for feedback from learners, and developing 

personalized education [56]. Clinician and patient training can be divided into (1) general training, 

including five attributes, such as "Are clinicians given sufficient training concerning AI system operation 

when they enter a health institution, change their positions or use new AI-based devices?" and (2) specific 

training for certain patients and clinicians facing high-risk events, including two attributes, such as "Are 

specific patients or clinicians trained who are facing high-risk events?” 

   

The fourth key dimension.  

Communication and interaction can be divided into two main attributes of human-human 

interactions: interaction between parties (such as healthcare institutions and AI developers, including five 

attributes), and human-AI interaction (including 18 attributes mainly adopted from Amershi et al.) [57]. 

The safe implementation of AI-based devices in healthcare depends on comprehensive and effective 

interaction among healthcare institutions, clinicians, and AI developers. This interaction is necessary, 

because AI models cannot be trained and tested for all disease states and patient demographics during 

clinical trials. This interaction includes five attributes, such as "Is there any information system developed 

between a health institution and an AI developer during the lifetime of AI-based medical devices?" [58–

60]. The attribute of human-AI interaction is associated with designing safety guidelines for interaction 

between humans and AI. A total of 18 attributes are considered for human-AI interaction, such as: "Is there 

any established description of what the AI-based medical device can do?" [57]. 
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The fifth key dimension.  

Because implemented AI models are required to perform tasks in dynamic and complex healthcare 

environments, and because these models cannot be fully evaluated during clinical trials, a safety plan must 

be created to identify all risks and adverse events, and plan a course of action to remove risks and plan 

emergency actions. The planning of actions is divided into two main aspects: (1) risk assessment and 

preventive plans, including eight attributes, such as: "Are all risks and adverse events identified concerning 

implemented AI systems?” and (2) emergency plan for occurred risks, including four attributes, such as: 

"Do the health institution and the AI developer have an emergency plan for remaining risks and adverse 

events of AI operation?”  

 

The sixth key dimension.  

The control of actions aims to monitor all risks and adverse events and all procedures and planning. 

The control of actions is divided into two main aspects: 1) checking the AI system's effectiveness internally 

and externally, and 2) comparing incident rates with benchmarks. Checking the AI system's effectiveness 

internally and externally involves eight attributes, such as "Is effective post-market surveillance developed 

to monitor AI-based medical devices?” Post-market surveillance has two main parts. The first is practical 

cooperation among clinicians, health organizations, and AI developers to gather clinical and safety-related 

data (explained the communication and interaction attribute). The second is monitoring and analyzing 

different safety signals, longitudinal data, risks and adverse events, and thresholds for AI-based device 

recall [61]. The comparison of incidence rates with benchmarks includes two attributes. All attributes are 

shown in Table 2.  

 

Table 2. Summary of system attributes. 

Attributes Weight Rating system 

SCS 100.00   

  Safety policies 23.50   

    Legislation and codes of practice 11.25   

      

Is there a commitment to current legal regimes, such as federal regulations, state tort law, 

the Common Rule, Federal Trade Commission Act, legislation associated with data 

privacy, and legislation associated with the explainability of AI?  

3.00 0–1  

      
Is a written declaration available reflecting the safety objectives of the AI-based medical 

device? 
2.00 0/1   

      Are clinicians informed about the safety objectives of the AI-based medical device? 2.00 0/1    

      
Is a written declaration available reflecting the safety concerns of the directors of health 

institution? 
1.50 0/1    

   
Does the health institution coordinate the AI-based medical device policies with other 

existence policies? 
1.50 0/1  

      
Is there a positive atmosphere to ensure that individuals from all parties, such as the 

health institution and the AI developer, participate in and contribute to safety objectives? 
1.25  0–1 

    Liability 7.00   

      Are the responsibilities of the AI developer established in writing? 1.00 0/1  

      Are the responsibilities of clinicians established in writing? 0.75 0/1  

      Are the responsibilities of the source of training data established in writing? 0.75 0/1  

      
Are the responsibilities of the source of suppliers who provide the system platform 

established in writing? 
0.75 

0/1  

      Are the responsibilities of the AI algorithm (at the higher level) established in writing? 0.25 0/1/NA  
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Attributes Weight Rating system 

      
Is there a positive atmosphere to ensure that individuals from all parties, such as the 

health institution and the AI developer, know their responsibilities?  
0.75  0–1  

      Is there an appropriate balance for the responsibilities of different parties?  0.75  0–1  

      Is there any procedure for resolving conflicts between parties? 1.00 0/1   

      Are resolving conflicts established in writing? 1.00 0/1   

    Continuous development  5.25   

      
Is there a commitment to FDA regulations regarding Software as Medical Device 

(SaMD)?  
0.75 0/1    

      Is there involvement in the Digital Health Software Precertification (Pre-Cert) Program?  0.75 0/1/NA  

      Is an organizational excellence framework established in writing?  0.75 0/1    

      Is there a commitment to organizational excellence?  1.50  0/1   

      Is there a testing policy for updated AI-based devices? 1.50  0/1   

  Incentives for clinicians 5.25   

    Safety incentive programs  2.25   

      
Are there any incentives offered to clinicians to put defined procedures of implemented 

AI systems into practice? 
0.75 

0/1   

      
Are incentives frequently offered to clinicians to suggest improvements in the 

performance and safety of implemented AI systems? 
1.00 

0/1   

      
 Are there disincentive programs for clinicians who fail to put defined procedures of 

implemented AI systems into practice? 
0.50 

0/1   

    Adopting resolutions  3.00   

      
Are there any meetings with clinicians to adopt their recommendations concerning AI-

based medical device operation? 
1.50 

0/1   

      Is adoption of resolutions coordinated with other parties, such as the AI developer? 0.50 0/1   

      
Do any modifications or changes in AI-based medical device operations involve direct 

consultation with clinicians who are affected?  
1.00 

0/1   

  Clinician and patient training 5.25   

    General training  3.75   

      
Are clinicians given sufficient training concerning AI system operation when they enter 

a health institution, change their positions or use new AI-based devices? 
1.75 0/1    

      Is there a need for follow-up training?  0.50 0/1/NA   

      Are general training actions continual and integrated with the established training plan? 0.50 0/1/NA   

      Are the health institution's characteristics considered in developing training plans? 0.50 0/1/NA   

      
Is the training plan coordinated with all parties, such as the AI developer and health 

institution? 
0.50 0–1/NA  

    Specific training  1.50   

      Are specific patients or clinicians trained who are facing high-risk events?  0.75 0/1/NA    

      
Are specific training actions continual and integrated with the established specific 

training plan? 
0.75 0/1/NA    

  Communication and interaction 27.00   

    Human-human interactions 9.00   

      
Is any information system developed between a health institution and an AI developer 

during the lifetime of AI-based medical devices?  
2.00  0/1    

      
Are clinicians informed before modifications and changes in AI-based medical device 

operation? 
2.00  0/1    

      
Is there written information about procedures and the correct way of interacting with AI-

based medical devices? 
2.00  0/1    

      Is there any communication plan established between parties?  1.50   0–1  

      
Is there any procedure to monitor communication and resolve problems such as 

language, technical, and cultural barriers between parties? 
1.50   0/1    

    Human-AI interactions  18.00   

      Is there any established description of what the AI-based medical device can do?  1.50   0/1    

      Is there any established description of how well the AI-based medical device performs? 1.50   0/1    

      
Is the AI-based medical device time service (when to act or interrupt) based on the 

clinician’s current task?   
1.50 

  0/1    
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Attributes Weight Rating system 

      
Does the AI-based medical device display information relevant to the clinician’s current 

task?  
1.50 

  0/1    

      
Are the clinicians interacting with AI-based medical devices in a way that they would 

expect (are social and cultural norms considered)?  
1.50 

  0/1    

      
Is there any procedure to ensure that the AI-based medical device’s behaviors and 

language do not reinforce unfair and undesirable biases?  
1.50 

  0/1    

      Is it easy to request the AI-based medical device’s services when needed? 0.75   0/1    

      Is it easy to ignore or dismiss undesired and unwanted AI-based medical device services? 0.75   0/1    

      Is it easy to refine, edit, or even recover when the AI-based medical device is wrong? 0.75   0/1    

      
Is it possible to disambiguate the AI-based medical device's services when they do not 

match clinicians' goals? 
0.75 

  0/1    

      

Is it clear why the AI-based medical device did what it did (access to explanations and 

visualizations of why the AI-based medical device behaved as it did, in terms of 

mitigating the black-box)? 

0.75 

  0/1    

      
Does the AI-based medical device have short term memory and allow clinicians to 

efficiently access the memory? 
0.75 

  0/1    

      
Does the AI-based medical device learn from clinicians’ actions (personalizing clinicians’ 

experience by learning from their behaviors over time)? 
0.75 

  0/1    

      Are there several disruptive changes when updating the AI-based medical device? 0.75   0/1    

      
Can clinicians provide feedback concerning the interaction with the AI-based medical 

device? 
0.75 

  0/1    

      
Can the AI-based medical device identify clinicians' wrong or unwanted actions? How it 

will react to them? 
0.75 

  0/1    

      Can the clinicians customize what the AI-based medical device can monitor or analyze? 0.75   0/1    

      Can the AI-based medical device notify clinicians about updates and changes? 0.75   0/1    

  Planning of actions  15.00   

    Risk assessments and preventive plans 12.00   

      Are all risks and adverse events identified concerning the implemented AI system? 2.50    0/1    

      
Is there any system in place for assessing all detected risks and adverse events of AI 

operation? 
1.75 

0/1    

      Are prevention plans established according to information provided by risk assessment?  1.75 0/1    

      
Does the prevention plan clearly specify for clinicians who are responsible for performing 

actions? 
1.25 

0/1    

      Are specific dates set for performing preventive measures? 1.25 0/1    

      
Are procedures, actions, and processes elaborated upon on the basis of performed 

preventive measures? 
1.50    0/1    

      
Are clinicians (involved in using the implemented AI system) informed about prevention 

plans? 
1.00 

0/1    

      
Are prevention plans occasionally reviewed and updated on the basis of any changes or 

modifications in operation? 
1.00 

0/1    

    Emergency plan for risks 3.00  

      Is an emergency plan in place for the remaining risks and adverse events of AI operation? 0.75 0/1    

      
Does the emergency plan clearly specify for clinicians who are responsible for performing 

actions? 
0.75 

0/1    

      
Are the clinicians (involved in using the implemented AI system) informed about the 

emergency plan? 
0.75 

0/1    

      
Is the emergency plan occasionally reviewed and updated on the basis of any changes or 

modifications in operation? 
0.75 

0/1    

  Control of actions 24.00  

    Checking the effectiveness of AI system internally and externally 18.00  

      Is effective post-market surveillance developed to monitor AI-based medical devices? 2.50 0/1/NA    

      
Are there occasional checks performed on the execution of the preventive plan and 

emergency plan? 
2.50 

0/1    

      Are there procedures to check collection, transformation, and analysis of data? 2.25 0/1    
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Attributes Weight Rating system 

      
Is there a clear distinction between the information system and the post-market 

surveillance system? 
2.25 

0/1    

      Are accidents and incidents reported, investigated, analyzed, and recorded? 2.25 0/1    

      
Are there occasional external evaluations (audits) to validate preventive and emergency 

plans? 
2.00 

0/1/NA    

      
Are there occasional external evaluations (audits) to ensure the efficiency of all policies 

and procedures? 
2.00 

0/1/NA    

      Are there procedures to report the results of external and internal evaluation?  2.25 0/1/NA    

    Comparing incident rates with benchmarks 6.00   

      
Do the accident and incident rates regularly compare with those of other healthcare 

institutions from the same sector using similar processes? 
3.00 

0/1/NA    

      
Do all policies and procedures regularly compare with those of other healthcare 

institutions from the same sector using similar processes? 
3.00 

0/1/NA    

 

4. Discussion  
This study offers an alternative solution for opening the AI black-box in healthcare by introducing an 

SCS. The framework provides safety guidelines for implementing AI black-box models to reduce the risk 

of healthcare-related incidents and accidents. The proposed framework and system provide a basis for 

implementing and monitoring safety legislation and procedures, identifying the risks and adverse events 

in AI activities, preventing accidents and incidents from occurring, and having an emergency plan for 

threats. Therefore, the proposed framework and tool can guide the safety activities of implemented AI 

systems. 

 

The SCS represents a set of attributes in different layers and can be used in healthcare institutions with 

implemented AI models. The management of healthcare institutions can use the proposed set of attributes 

as a checklist, verifying whether a set of desired safety elements exists. Having useful specific attributes in 

healthcare systems will lead to high scores in the SCS. Healthcare institutions can use this framework to (1) 

calculate their safety score, and compare it with those of other institutions, and (2) detect deficiencies in 

current safety practices regarding the implemented AI models. The above steps can help improve the 

overall safety performance.  

The proposed framework for evaluating AI safety performance was developed by using the MAVT 

approach, comprising four parts: extracting attributes, generating weights for attributes, developing a 

rating scale, and finalizing the system. With the MAVT approach, three layers of attributes were created. 

The first level contained 6 key dimensions, the second level contained 14 attributes, and the third level 

contained 78 attributes. 

 

First key dimension.  

Three attributes—"legislations and codes of practice,” "liability,” and "continual development"—were 

extracted as primary elements of safety policies from the literature review and were confirmed in 

interviews. Commitment to current legislation and codes of practice is a basic element of every AI system. 

Among current legal regimes, data privacy-related legislation plays a vital role in developing and 

implementing AI systems. Because of the complexity of protecting data privacy and its effects on data 
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availability, three different viewpoints concerning the level of adaptation of data protection legislation have 

recently been proposed. 

First view. The European Union has adopted legislation entitled General Data Protection Regulation 

(GDPR), which details a comprehensive and uniform approach for data privacy, regardless of how data 

are collected, in what format, or who the custodian is [62]. Under GDPR, only anonymous data can be 

shared. The anonymization process under GDPR requires implementing different techniques on datasets 

to prevent data re-identification [62]. Although GDPR aims to protect data privacy rather than to prevent 

data sharing, a fear of violation penalties has decreased data collection and data aggregation efforts among 

European companies and even data flow from Europe to the U.S. [63].  

Second view. The current U.S. data privacy legislation is more lenient than that of the European Union 

[64]. In general, Europe places more emphasis on protecting citizens from technological risks, whereas the 

U.S. focuses more on innovation and technology [64]. Under U.S. privacy law, health data are treated 

differently depending on how they have been created, who is handling the data, and who the data 

custodian is [65]. The Health Insurance Portability and Accountability Act (HIPAA) includes a privacy rule 

that prohibits disclosing protected health information [47]. HIPAA limits the use of protected health 

information unless there is authorization from the patient or Institutional Review Board [65]. Under HIPAA 

policy, any type of de-identified data is considered non-personal and not subject to data protection 

regulation [62]. Furthermore, HIPAA focuses on specific actors and their activities rather than on the data 

itself; therefore, a considerable amount of health data are not covered by HIPAA [65].  

Third view. From China's perspective, AI is a powerful tool for economic success, military dominance, 

and controlling the population [63]. Chinese companies accumulate a tremendous amount of health-related 

data, which can be used in AI development, owing to lenient regulation on data collection and little public 

concern about data privacy [54,66]. However, in recent years, the Chinese public has started to petition 

large companies, such as Baidu and Alibaba, for the right to data privacy [66]. Consequently, China has 

initiated personal data protection laws and ethical principles for developing and using AI [67,68].  

Among the third level attributes of safety policies, the elements "Software as Medical Device (SaMD),” 

"Digital Health Software Precertification (Pre-Cert) Program,” "current legal regimes,” and "assigning 

responsibility" were mainly extracted from the included articles. The elements of "safety objectives of the 

AI-based medical device,” "positive atmosphere in the health institution,” and "coordinating the AI-based 

medical device policies with existing policies" were mainly found from the interviews. However, we 

observed that the AI experts differed in the weights assigned to this crucial dimension's attributes. The 

most confusing second level attribute was the liability, on which AI experts did not reach agreement.  

The term Software as a Medical Device (SMD) is described as "software that uses an algorithm that 

operates on data input to generate an output that is used for medical purposes" [69]. SMD applications are 

diverse as Computer-Aided Detection (CAD) software—for example, software detecting breast cancer—

and smartphone applications for diagnostic purposes—for example, software for analyzing images 

collected from a magnetic resonance imaging medical device. Although some FDA guidelines for SMD 

overlap with attributes of other key dimensions, we decided to consider "commitment to FDA regulations 

regarding Software as Medical Device" under "safety policies.” As described earlier, the Pre-Cert Pilot 

Program looks first at the AI developers rather than at AI-based medical devices, in contrast to the FDA 
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process for traditional medical devices [70]. Because the FDA selected several companies to participate in 

developing the Software Pre-Cert pilot program, we decided to include it as an attribute. 

 

Second and third key dimensions.  

Both the "incentives for clinicians" and “clinician and patient training" attributes were formed and 

developed in interviews. There was moderate agreement regarding the weights of attributes and strong 

consensus regarding the assigned rating system.   

 

Fourth key dimension.  

Although two parts of this key dimension were mainly extracted from the literature review, a 

considerable amount of interview time was spent on this aspect to define the third level attributes. Human-

human interactions are associated with communication management among all parties―for example, AI 

developers and health institutions―involved in implemented AI-based medical devices. All main 

communication management elements, including planning, managing, and monitoring communication, 

were discussed in interviews, and measurable attributes were defined. One of the main attributes of 

human-human interaction is developing an information system for storing, processing, collecting, creating, 

and distributing information. This information system contains different elements of hardware and 

software, system users and developers, and the data itself.  

Regarding human-AI interactions, the attributes from Amershi et al. [57] were discussed in the 

interviews to define measurable attributes. The main elements of the human-AI interaction included the 

following: AI system capability, AI system accuracy, AI system time service, AI system displaying 

information, AI system language, social and cultural norms in human-AI interaction, AI system readiness, 

dismissal of unwanted service, AI system recovery, AI system disambiguation, AI system explainability 

(black-box mitigation), AI system short term memory, personalizing the AI system, updating the AI system, 

feedback mechanisms in the AI system, the AI system’s reaction to wrong actions, customizing the AI 

system, and notification mechanisms in the AI system. Importantly, personalization means that AI systems 

can learn from clinicians' actions, and customization means that clinicians can customize the AI system’s 

actions.  

One of the main controversial elements of human-AI interaction is the AI system's accuracy and 

effectiveness. As a part of model safety, the AI model's performance in clinical trials should outperform the 

performance of existing diagnostics devices and clinicians' judgment [47]. Accuracy, defined as a proper 

fraction of predictions, is a commonly used metric for evaluating AI algorithms' performance [47].  

Many studies have reported the three measures of accuracy, sensitivity, and specificity in clinical trials 

to capture the full extent of models' properties [47]. However, covering all essential differences in patient 

demographics and disease states in clinical trials is impossible [50]. One solution is to add external 

validation after the clinical trials before implementing the model in clinical workflows [50]. The external 

validation phase would include training and testing the model by using data from the clinics where the AI 

model will be used [50]. 

Other metrics to measure model performance are stability and robustness [35]. Model stability means 

that, when given two almost identical input data sets, an AI model generates almost the same results [71]. 

Model robustness indicates the stability of the model's performance after including noise in the input data 
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[35]. Robustness represents the model efficiency for new data outside the training data [35]. These measures 

are essential for applying AI models in healthcare, because the lack of stability and robustness can diminish 

clinicians' and patients' trust in AI models [72].  

 

Fifth key dimension.  

In this key dimension, risk assessment was mainly extracted from the literature review, and elements 

of the preventive plan and emergency plan were discussed in interviews. The foundation of the "planning 

of action" dimension is risk assessment. The principal risks of implemented AI systems include data 

difficulties, technological problems, security problems, models misbehaving, and interaction issues [73]. 

Two elements of models misbehaving and interaction issues were addressed in AI-human interactions. 

Therefore, the main risks associated with the implemented AI system are data difficulties and technology 

problems.  

Risk of data difficulties. One of the main concerns regarding AI in healthcare is data availability 

[1,2,21]. Despite considerable recent efforts in collecting and releasing high-quality AI-ready datasets, most 

health data are not accessible to the public [1,2,21]. These data are generally collected and controlled by 

hospitals and other health organizations and used for operations but not for analytics or research. 

Therefore, the formats of the data are often not ideal for training AI models. For example, image data may 

not be anonymized, organized, or appropriately annotated [74]. Of the publicly available datasets, most are 

released once and become progressively outdated [50]. For example, despite advances in fundus camera 

technology, the Messidor database is still used to train AI algorithms on images acquired in 2007 [75]. 

Other issues in data availability include coverage of rare and novel cases [76], missing data in datasets, 

a lack of appropriately labeled data [77], high-dimensionality together with small sample sizes [78], and 

data contamination with artifacts and noise [79]. Among image datasets, the main issues include difficulty 

in collecting many high quality manually annotated images [80], the limitations of human perception in 

annotating and labeling images [81], the time required for reviewing and annotating each image in a dataset 

[82], the level of raters' sensitivity to a particular target [83,84],, loss of information due to image processing 

and resizing [85], and collection of images from only a specific device [86]. 

Data privacy is the main difficulty in increasing data availability in healthcare [1,2,21]. A delicate 

balance must be struck between stimulating the potential benefits of aggregating health data and protecting 

individual privacy rights. To do so, different reported practices include anonymizing data before sharing, 

using validated protocols for de-identification, exploring safer ways to share data, and defining the 

responsibilities of health organizations as data custodians [87]. However, linking de-identified data is much 

more difficult when patients visit different health institutions, obtain insurance through various 

companies, or change their location [65]. Consequently, forming fragmented health data makes data-driven 

innovation more difficult [65]. 

Mitigating the risk of data difficulties. High-quality AI-ready data are the foundation for developing 

accurate algorithms. Even the unintentional effects of biases due to selecting unsuitable data can decrease 

the accuracy of AI models. To generate high-quality AI-ready data, different methods have been proposed 

in various studies. Data aggregation efforts across health organizations are one way to generate high-

quality data [88]. One of the main challenges in data aggregation is that the data format may differ among 

health organizations [89]. Therefore, usable data with consistently structured formats must be generated 
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among health organizations [89]. Several efforts have been proposed to address this concern, including 

developing cloud infrastructures, adopting unified data formats such as Faster Healthcare Interoperability 

Resources, and launching collaborative efforts among health organizations to create high-level joint 

features [1,90]. 

Training AI models in a simulated virtual environment has created a unique opportunity to cover the 

lack of high-quality healthcare data [91]. By using the virtual environment, an AI model can learn and 

become powerful before it is implemented in the physical world [92]. Chawla [93] has reported the 

successful implementation of AI models trained inside a virtual environment. The key advantages of using 

a virtual environment for training AI models are as follows: 

1. The virtual environment allows AI developers to simulate rare cases for training models [92]. 

2. The entire training process can occur in a simulated environment without the need to collect data 

[93]. 

3. Learning in the virtual environment is fast; for example, AlphaZero, an AI-based computer 

program, was trained over a day to become a master in playing Go, chess, and shogi [29]. 

However, using a virtual environment for training AI models in healthcare is not as advanced as its 

applications in other fields, such as autonomous cars. For example, the Waymo company has created 

virtual models of whole cities, and every day it sends 25,000 virtual self-driving cars through these cities to 

train AI algorithms [94]. Using a virtual environment gives Waymo the ability to simulate more than 5 

billion miles of autonomous driving [94]. This achievement may inspire healthcare companies to develop 

a vast virtual world including all disease states, patient demographics, and health conditions to train AI 

models. 

Another way of generating high-quality data is building health datasets comprising data from 

volunteers and groups of consenting individuals. Encouraging patients to share their electronic medical 

record information and medical images, and creating datasets of volunteers’ data have been described in 

several studies [74]. For example, in 2015, the U.S. National Institutes of Health set an objective to develop 

genomic data, lifestyle data, and biomarker data from 1 million volunteers from diverse backgrounds [54]. 

Another project supported by Google is developing a dataset comprising data from 10,000 volunteers over 

4 years [89]. Participants in this project monitor their sleeping patterns and daily activities, answer common 

questions, and periodically visit specific medical testing locations [89]. However, various concerns exist 

regarding this type of data generation, including the lack of a specific mechanism for patients to share their 

data and the absence of a well-founded repository for aggregating patient data outside health care 

organizations. Awareness about the benefits of this process is lacking, and no institution has been 

authorized to monitor these projects [74,95]. 

The involvement of tech companies in healthcare has created a new trend of high-quality data 

generation [96]. For example, big tech companies collect massive amounts of behavioral data from social 

media and sensors [96]. Biomedical signals such as heart rate and rhythm, blood pressure, blood oxygen 

saturation, voice, tremor respiratory rate, limb movement, and temperature can be recorded by modern 

wearable devices [21]. These biological signals can be used for detecting several health conditions and 

diseases [2]. Patient-generated health data are another unique method for creating high-quality data. 

Various health-related datasets can be built by patients and caregivers outside clinics by using software 

applications, wearable sensors, monitoring devices, smartphones, and tablets with cameras [97]. Recently, 
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substantial improvements have been made in high-quality and low-cost technologies with the potential to 

collect various patient-generated data regarding movement and behavior, environmental toxins, social 

interactions, diseases, images, and other physiological variables [98]. For example, one study has begun 

developing comprehensive open-access datasets through parents recording the behavior of their children 

with autism by using cell phone cameras [97]. In addition, the FDA has made efforts to establish a path for 

collecting patient- and caregiver-generated health data in clinical trials [99]. 

Collecting lifespan data from implemented AI-based medical devices is another method to access 

high-quality health data. These efforts require creating a system as a combination of hardware and software 

components to store and transfer generated data [100]. For example, by implementation of an AI model in 

different health organizations, high-quality data can be collected and stored in a repository outside health 

organizations, with consideration of data privacy protection [1]. 

Security problems. One of the main risks associated with implemented AI systems is security. 

Adversarial attacks, one of the major types of security problems in the AI system, can result when flawed 

AI systems are susceptible to manipulation by inputs explicitly designed to fool it [50]. For example, one 

study has shown that adding a very small amount of perturbation to images can cause medical image 

classifiers to incorrectly classify a mole with a 100% confidence level [50]. Because the issue of adversarial 

attacks cannot be completely addressed in clinical trials, fully managing malicious attacks is a main aspect 

of the safe implementation of AI systems in healthcare. Hostile attacks can be partially addressed by 

effective post-market surveillance; however, implementing regulatory actions and novel techniques can 

secure AI systems against adversarial attacks [11]. For example, in situations in which clinical data can be 

changed with fraudulent intent, using the BlockChain technique allows for data storage in immutable 

interconnected blocks [11]. 

Technological problems. Typically, the technological problems in AI systems relate to software and 

hardware. From a software perspective, AI systems are explicitly concerned with algorithms. Although we 

have discussed the main issues associated with algorithms, such as data difficulties and accuracy, 

generalization and algorithm fairness must also be addressed. Unknown accuracy of the results for 

minority subgroups is a major element of algorithm fairness [50]. For example, one study has developed 

an AI algorithm with high accuracy in the classification of benign and malignant moles but has found that 

it has poor performance on images of darker skin because it was trained on data from mainly fair-skinned 

patients [50]. Therefore, in developing and implementing AI systems, further training of AI models on data 

from minority groups, and the accuracy of AI models for underrepresented groups, must be considered 

[50]. 

From a hardware perspective, AI systems are mostly concerned with implementing algorithms on a 

physical computation platform [101]. Different physical computation platforms—distinguishable in terms 

of power efficiency, computation capability, and form factor—have been developed for AI systems, 

including a general-purpose central processing unit; graphical processing units; customizable and 

programmable accelerator hardware platforms, such as application-specific integrated circuits and field-

programmable gate arrays; and other emerging platforms such as memristor crossbar circuits [101]. 

However, from the hardware perspective, the memory wall is a major challenge for AI systems [101]. The 

memory wall is defined as a situation in which improvements in processor speed are masked by the much 
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slower progress in dynamic random access (DRAM) memory speed [102]. Although DRAM organization 

has improved, this aspect is a major issue in AI systems [102]. 

 

Sixth key dimension. 

Among elements of this key dimension, post-market surveillance was mainly extracted from the 

literature review. This effort was supplemented by internal and external validation and use of benchmarks 

formed and discussed during interviews. Part of the safe implementation of AI-based healthcare devices is 

post-market surveillance to monitor medical devices' safety [61]. Implementing comprehensive and 

effective post-market surveillance is essential for two reasons: (1) the FDA's new policy focuses on AI 

developers rather than AI-based medical devices, and (2) AI models cannot be trained and tested for all 

disease states and patient demographics during clinical trials and external validation [59]. The post-market 

surveillance system should include practical cooperation among clinicians, health organizations, and AI 

developers to efficiently gather clinical and safety-related data. Such a system should correctly identify 

safety signals, practically collect longitudinal data, effectively report adverse events, and strictly define 

thresholds for device recall [61,103]. An ideal level of post-market surveillance in AI-based medical devices 

includes three parts: extensively collecting data across the lifespan of devices, integrating results into 

electronic health records, and full tracking and reporting adverse events [58]. Developing and 

implementing a clear definition and distinction between information systems (data for human-human 

interaction) and post-market surveillance systems (data for AI-human interaction) is crucial. 

5. Study limitations 
The proposed framework of the AI SCS in the healthcare industry has several limitations. First, we 

did not perform safety audits to ensure the developed tool's effectiveness. Therefore, at this time, the 

quality of the proposed approach cannot be assessed in terms of: 

1. The comprehensibility of the considered safety elements to potential auditors. 

2. The robustness of the rating scale for each safety element to secure a reliable rating under similar 

conditions. 

3. The potential for improving key dimensions and different layers of attributes. 

4. The feedback from the healthcare institutions about the system. 

To address the above challenges, the proposed framework should be implemented in several 

healthcare institutions concurrently to investigate its effectiveness. In addition, several key questions 

should be addressed, including (1) clinicians' acceptance of the framework, (2) the compatibility of the 

model across multiple healthcare institutions, (3) the opportunity for implementation in different types of 

healthcare organizations, (4) and the framework's effectiveness. 

The second limitation of this study is the number of interviewees and their socio-demographic 

information. Many attributes were identified during the interviews, thus indicating their importance in 

developing AI safety system requirements. However, we interviewed ten AI experts who were middle-

aged white males. Therefore, the small number of interviewees and their lack of diversity can introduce 

potential bias into the developed attributes. 

Finally, the structural relationships between measurable variables (the third level attributes) and latent 

variables (the first and the second level attributes) should also be assessed to validate the developed model. 
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A survey including many health institutions considering implementation of AI-based systems (including 

medical devices) should be conducted for that purpose. Another essential consideration is developing a set 

of robust AI-relevant safety criteria. Finally, implementation of the proposed system in real settings would 

require comprehensive management and appropriate regulatory oversight. 

6. Conclusion  
This article has discussed the challenges in advancing the implementation of AI in healthcare. We have 

outlined the safety challenges of AI in the context of explainability as opposed to the black-box approach. 

Our main objective was to propose a framework for controlling AI systems' safety as an alternative to 

opening the black-box. We adopted the MAVT approach to develop an AI system's safety attributes at three 

levels. This development process consisted of four parts: extracting attributes, generating weights for 

attributes, creating a rating scale, and finalizing the framework's architecture. We used a systematic 

literature review and interviews with subject experts to establish the safety attributes' hierarchical 

structure. We integrated the systematic review and interviews to understand better the main aspects of AI 

safety in the published literature and extend these aspects through consultation with AI domain experts. 

The first level contained 6 key dimensions, the second level included 14 attributes, and the third level had 

78 attributes. Questionnaire-based surveys were used for assigning the weights and developing the 

attribute rating system. Finally, the limitations of the proposed AI safety controlling framework were 

discussed. 

The first level key dimensions of the SCS are as follows: (1) safety policies; (2) incentives for clinicians; 

(3) clinician and patient training; (4) communication and interaction; (5) planning of actions; and (6) control 

of actions. In safety policies, it is essential to pay extra attention to the adaptation of data protection 

legislation. Because of the complexity of data privacy, many countries adapted their data protection 

legislation. In safety policies, the elements "Software as Medical Device (SaMD)," "Digital Health Software 

Precertification (Pre-Cert) Program," were discussed in detail by included articles. 

The key dimension of communication and interaction can be divided into two main elements of 

human-human interactions and human-AI interactions.  For the human-human interaction, it is necessary 

to develop an information system for storing, processing, collecting, creating, and distributing information. 

Several elements must be addressed for the human-AI interactions, such as AI system capability, AI system 

accuracy, and AI system explainability (black-box mitigation). Among elements of human-AI interaction, 

included papers discussed the AI system's accuracy and effectiveness. 

In the key dimension of planning of actions, the principal risks of AI systems include data difficulties, 

technological problems, security problems, and models misbehaving. In data difficulties, data privacy is 

the main problem for increasing data availability in healthcare. However, new approaches are being 

developed to increase data availability in the healthcare sector, including data aggregation efforts across 

health organizations, training AI models in a simulated virtual environment, building health datasets 

comprising data from volunteers and groups of consenting individuals, the involvement of tech companies 

in healthcare, collecting lifespan data from implemented AI-based medical devices, and patient-generated 

health data. The adversarial attacks are one of the major security problems of the AI system. The 

technological problems in AI systems can be divided into software and hardware. 
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Concerning the control of actions, it is necessary to have effective post-market surveillance to monitor 

medical devices' safety. As a part of this system, it is necessary to have practical cooperation among 

clinicians, health organizations, and AI developers to gather clinical data.  

The implementation of the proposed framework in healthcare institutions should allow 

understanding its effectiveness better. In the near future, the key questions concerning this framework 

should also be addressed, including (1) clinicians' acceptance of the framework, (2) the compatibility of the 

model across multiple healthcare institutions, (3) the opportunity for implementation in different types of 

healthcare organizations. Also, we encourage other researchers to assess the structural relationships 

between measurable variables (the third level attributes) and latent variables (the first and the second level 

attributes) to validate the developed model. 
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