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Abstract: In response to the need to address the safety challenges in the use of artificial intelligence (AI), this research
aimed to develop a framework for a safety controlling system (SCS) to address the Al black-box mystery in the
healthcare industry. The main objective was to propose safety guidelines for implementing Al black-box models to
reduce the risk of potential healthcare-related incidents and accidents. The system was developed by adopting the
multi-attribute value model approach (MAVT), which comprises four symmetrical parts: extracting attributes,
generating weights for the attributes, developing a rating scale, and finalizing the system. On the basis of the MAVT
approach, three layers of attributes were created. The first level contained 6 key dimensions, the second level included
14 attributes, and the third level comprised 78 attributes. The key first level dimensions of the SCS included safety
policies, incentives for clinicians, clinician and patient training, communication and interaction, planning of actions,
and control of such actions. The proposed system may provide a basis for detecting Al utilization risks, preventing
incidents from occurring, and developing emergency plans for Al-related risks. This approach could also guide and

control the implementation of Al systems in the healthcare industry.
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1. Introduction

Artificial intelligence (AI) has recently experienced substantial growth across different industries,
including medicine and healthcare [1,2]. Applications of Al in healthcare can be divided into four
symmetrical periods: the beginning (1956-1970), the first generation of Al algorithms in healthcare (1970-
2012), the second generation of Al algorithms in healthcare (2012-2016), and Al outperforming its human
counterparts in some medical tasks (2016 to the present).

The beginning. The field of Al began in 1956 as the science and engineering of making intelligent
machines [3]. The first Al model, which had limited problem-solving ability, was developed in the mid-
1950s [4]. In 1959, the term “machine learning” was coined by Arthur Samuel, who defined it as the field
of study that gives computers the ability to learn without being programmed [5]. In 1961, an Al model was
trained with data from 1035 patients and used to diagnose congenital heart disease [6]. In 1966, a natural
language processing program was developed to mimic human therapists [7].

The first generation of AI algorithms in healthcare. In 1972, the performance of computer-aided
diagnosis for acute abdominal pain was compared with that of human physicians. The system's overall
diagnostic accuracy was higher than that of the physicians [8].

Subsequently, rule-based approaches achieved many advances in diagnosing diseases [9]. These
approaches heavily relied on developing robust decision rules and using expert knowledge in medical
practice [9]. The period included other important milestones. For example, in 1991, a pioneering attempt to
open the black-box was conducted by Dean Pomerleau [10]. In 2004, adversarial inputs were formally
described as intentionally designed input data to force Al systems to make mistakes [11].

The second generation of Al algorithms in healthcare. This period started with the development of
a deep neural network-based system able to recognize a cat in pictures and videos [12]. Subsequently, deep
learning attracted the attention of many researchers [12,13]. The second generation Al algorithms, in
contrast to the rule-based approach, were able to analyze complex interactions in health data and discover
hidden patterns [14].

AT outperforming its human counterparts in some medical tasks. Since 2016, the application of Al in
healthcare has achieved considerable success, and Al models have accomplished various medical subtasks
at or above the performance levels of physicians [15]. A highly accurate neural network algorithm was
developed in ophthalmology for detecting diabetic retinopathy after training with manually labeled retinal
fundus photographs [16]. In radiology, a convolutional neural network trained with labeled frontal chest
X-ray images outperformed radiologists in detecting pneumonia [15,17]. In cardiology, a deep learning
algorithm diagnosed heart attack with a performance comparable to that of (human) cardiologists [18]. In
pathology, one study trained Al algorithms with whole-slide pathology images to detect lymph node
metastases of breast cancer and compared the results with those of pathologists [19]. In dermatology, a
convolutional neural network was trained with clinical images and was found to classify skin lesions
accurately [20].

Despite these advancements, various challenges exist in applying Al in healthcare [1,2,21]. One of the
main challenges is safety. Several reports have described unsafe and incorrect recommendations by Al
algorithms [22]. The safety of Al models is mainly associated with model interpretability and explainability
[1]. Interpretability is defined as the ability to understand how an AI model reaches its decisions [1].
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Regarding interpretability, AI models can be categorized into white-box models, such as decision trees,
and black-box models, such as neural networks [23]. Compared with white-box models, black-box models
have excellent performance with almost no interpretability [24].

To address the Al black-box challenge, a considerable amount of research has focused on developing
explainable Al to open the black-box [23]. As a primary method for addressing the Al black-box issue, the
visualization approach was developed to explain the models' main features [25]. For example, De Fauw et
al. [26] visualized sections of the patient optical coherence tomography scans used by an AI model to make
medical decisions. However, visualization is challenging to explain, and users tend to misread the results
and over-trust their judgement [27]. Other approaches for addressing the Al black-box issue have been
developed, such as (1) analyzing one isolated layer at a time to learn the differences between layers in
neural networks [28], (2) using a simplified version of the algorithm for debugging and detecting potential
errors, and then training an accurate version of the algorithm [29], (3) training the black-box model to
explain the level of safety by assigning a confidence level to the model's prediction [30]. However, these
methods focus on diminishing the black-box rather than opening the black-box of Al [26]. To open the
black-box, the logic behind AI models' decision-making processes must be identified, and specific model
tasks must be able to be paused or modified as necessary [31].

In contrast, some researchers are less concerned about opening the black-box of AI [28]. From this
standpoint, understanding how an Al model makes decisions is less crucial than empirically verifying its
accuracy [32]. According to this viewpoint, regulators and clinicians should accept the AI black-box
models, because opaque systems are common in medicine [10]. For example, several efficient medications
such as aspirin and penicillin were used before their mechanisms were discovered [33]. Because of the
excellent performance and popularity of Al black-box models, and given the absence of effective methods
to open the black-box, accepting Al black-box models could be considered an acceptable option. However,
addressing the safety issues of Al black-box models is also essential [33-35].

The present study focused on developing a tool to evaluate the safety practices of Al models
implemented in healthcare. The main objective of this article was to build safety guidelines for
implemented Al black-box models to reduce the risk of health-related incidents and accidents. For this
purpose, a three-level multi-attribute value model (MAVT) approach was used to develop a safety

controlling system (SCS) for Al systems implementation.

2. Methodology

The SCS for Al implementation was developed by using a three-level MAVT adapted from Teo and
Ling [36]. This approach consisted of four parts: (1) extracting attributes at different levels; (2) generating
weights for the attributes; (3) assigning a rating scale for the attributes; and (4) finalizing the system [36]
(see Figure 1). Several techniques were used to accomplish these steps. A combination of a systematic
literature review and expert interviews was used for extracting attributes; a questionnaire-based survey

was used for generating weights; and questionnaire-based survey was used for developing a rating scale.
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Figure 1. Components of the three-level multi-attribute value approach.

2.1. List of attributes
In the proposed SCS, the attributes were divided into three levels. The first level attributes, called key

dimensions, were adopted from Fernandez-Mufiiz et al. [37]. These were extracted from applicable safety
standards and guidelines. These key dimensions were the fundamental and well-known elements of any
robust safety management system and included safety policies, incentives for clinicians, clinician and
patient training, communication and interaction, the planning of actions, and the control of actions.

The second and third level attributes were developed by using a systematic literature review and
interviewing ten Al domain experts. As the lowest level, the third level attributes were measurable safety
elements for implemented Al systems in healthcare. The third level attributes were extracted from the
systematic literature review and were subsequently refined during expert interviews. The third level
attributes were clustered according to their predominant topics. These topics were named as the second
level attributes.

The main reasons for using a combination of systematic review and interviews was to identify the
main topics of Al safety in the included literature and expand these topics through consultation with ten
Al domain experts. In addition, we aimed to ensure that all main aspects (elements) of Al implementation
safety were addressed. For this purpose, first, a systematic review was conducted, and the main elements
of safety in different key dimensions were extracted. Second, the extracted information was categorized
and discussed during interviews with Al domain experts to produce the third attributes, as illustrated in

Figure 2.
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Figure 2. Approach for a combination of systematic review and interviews.

2.1.1. Systematic review

To identify the attributes, we followed the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [38]. Two main features of the research question and search strategy
were developed. The following research question guided the systematic review:

SRQ: What are the primary safety attributes of implemented AI models in healthcare for each key
dimension?

A search strategy was developed by (1) defining keywords and identifying all relevant records, (2)
filtering the identified articles, and (3) addressing the risk of bias among records[39]. Three sets of

keywords were defined, and their combinations were used to identify relevant articles (Figure 3).
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Figure 3. Three sets of keywords and their combinations for identifying relevant articles.
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The PubMed and Google Scholar databases were used to discover relevant articles published through

the end of July 2020. The selection strategy is shown in Figure 4.
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Figure 4. Chart of the selection strategy following PRISMA guidelines [38].

2.1.2. Interviews

A primary method for collecting qualitative data is interviews, which are widely used in conducting
research [40]. Some researchers apply structured interviews to test a priori hypotheses by using
standardized questions and analysis. In contrast, others apply qualitative interviewing methods to better
understand the stated hypotheses [41]. In this article, both types of interviews were used.

After completing the systematic literature review, we applied an interview approach to identify the

SCS's key dimensions. The objective was to examine extracted information from the literature review,

discuss unidentified aspects of safety systems, and determine measurable third level attributes.

Consequently, we interviewed ten Al domain experts. We asked these ten specialists the following

questions:

IRQ1. What are the attributes of safety policies for implemented Al models in healthcare?

IRQ2. What are the attributes of incentives for clinicians for implemented Al models in healthcare?
IRQ3. What are the attributes of clinician and patient training for implemented AI models in
healthcare?

IRQ4. What are the attributes of communication and interaction for implemented Al models in
healthcare?

IRQ5. What are the attributes of planning of actions for implemented Al models in healthcare?
IRQ6. What are the attributes of control of actions for implemented Al models in healthcare?

The interviews were conducted during August 2020. Each interview lasted approximately 1 hour and

was divided into two main parts. First, the key dimensions and results of the systematic literature review
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were explained and discussed. Second, six research questions were asked, and the third level attributes
were developed.

Because we conducted information-gathering interviews where IRQ1-6 questions only concentrated
on Al-based models rather than individuals or their opinion regarding themselves; therefore, our study is
not considered human subjects research, and ethics approval was not required [41]. However, before
participating in the interview, we transparently informed all individuals about our study's objective and
aim. We emphasized that participation is voluntary. Therefore, participants were free to leave the
interview without any penalty or question. We ensured that individuals were not pregnant, consumed
alcohol for 24 hours before the interview, or were under hormonal treatment. We sent a recruiting email
accompanied by a list of questions (IRQ1-6) and an explanation of our research to all potential candidates.
We did not collect any identifiable data. All emails, contact information, messages were deleted right after
interviews. Finally, we obtained informed consent verbally from all individuals. The socio-demographic

information of interviewees is shown in Table 1.

Table 1. The socio-demographics information of interviewees

Interviewees Interviewees

Characteristics (number) (percent)
Age
30 to 34 2 20%
35 to 39 4 40%
40 to 44 4 40%
Years of experience in Al
Oto4 1 10%
5t09 4 40%
10to 14 5 50%
Gender
Male 10 100%
Female 0 0
Race/Ethnicity category
Non-Hispanic Black 0 0
Non-Hispanic Asian 0 0
Non-Hispanic White 10 100%
Non-Hispanic Other 0 0
Hispanic 0 0
Occupation
Postdoctoral researcher 2 20%
Data scientist 5 50%
Machine learning scientist 2 20%
Data engineer 1 10%

d0i:10.20944/preprints202012.0313.v2
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After discovery of attributes on the basis of the systematic literature review and expert interviews, we
organized the key dimensions and the second and the third level attributes into a hierarchy tree. In this
knowledge structure, the higher-level attributes represented the overall view of safety in implemented Al
models, and the lower-level attributes measured the elements of safety in AI models (Figure 5). Notably,
the highest level had 6 attributes, the middle level had 14 attributes, and the lower level had 78 attributes.

. . Number of
First level attributes: key Second level attributes hird level
dimension attributes
—[ Legislation and codes of practice ] 6
—[ Safety policies ]——[ Liability ] 9
—[ Continuous development ] 5
{ Safety incentive programs ] 3
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G 1 trainin,
Clinicians and patients enera & 5
= training
Safety controlling Specific training 2
system
— Human-human interactions 5
Communication &
1 interaction
Human-Al interaction 18
—[ Risk assessments and preventive plans ] 8
—[ Planning of actions ]—
{ Emergency plan for occurred risks ] 4
{ Checking effectiveness of Al system internally and externally l 8
—[ Control on actions ]—
—[ Comparing incident rates with benchmarks l 2

Figure 5. Attributes of the SCS in different layers.

2.2. Weight of attributes

Because the identified attributes differed in importance regarding Al system safety, differentiating
essential attributes from desirable attributes was essential. Therefore, we assigned a weight to each
attribute to understand its degree of importance. Weights are crucial for decision-making because they
indicate the most critical safety elements in Al systems implementation. For assigning weights to attributes,
we used a 4-point Likert scale. For this purpose, a questionnaire was designed containing the third level
attributes. To evaluate the significance of the third level attributes, we asked ten AI experts who
participated in developing the attributes to rate these attributes on a 4-point scale: not important = 1; neutral
=2; important = 3; and very important = 4.

We assessed agreement among Al experts by calculating Kendall's W (Kendall's coefficient of
concordance) [43,44]. This non-parametric statistic ranges in value between 0 and 1, such that 1 indicates
more substantial agreement [45]. We assessed the concordance of opinions regarding six key dimensions

of the SCS. There was strong agreement (Kendall's W scale bigger than 0.6) among Al experts in the key

d0i:10.20944/preprints202012.0313.v2
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dimensions of "planning of actions" and "control of actions.” In addition, the Al experts were moderately
in agreement (Kendall's W scale between 0.3 to 0.6) regarding the remaining key dimensions. However, we
decided to adopt the average experts' ratings as each third level attribute's weight. Next, the weights of all
third-level attributes were recalculated such that the sum of all weights was 100. For this to be achieved,
we added up rates of the scale for all third-level attributes; then, we divided the rate of each attribute by
the sum of all attributes. In the final step, the weights of the second and the first level attributes were
determined. For this purpose, we added up the weight of all third-level attributes corresponding to the first
and second level attributes. According to the results, the key dimension of "communication and interaction"
had the highest weight and was followed by "control of actions" and "safety policies.” The weights of the

key dimensions and the second level attributes are shown in Figure 6 and Figure 7.
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Figure 6. Weights of the first and second level attributes.

2.3. The rating system
The next part of the MAVT approach was developing a rating system and assigning it to the third

level attributes. To reduce the probability of having different results from different auditors and to improve
the generalization of the SCS, we developed a rating system by allocating points to the third level attributes
in a straightforward manner. Different types of rating systems were extracted from Teo and Ling [36] and
used in the survey. Four possible rating options were as follows:

1) 0/1, in which the rating options are "0" (no) or "1" (yes),

2) 0-1, in which the rating options are a fraction between "0" and "1",

3) 0/1/NA, in which the rating options are "0" or "1" or "not applicable”, and

4) 0-1/NA, in which the rating options are a fraction between "0" and "1" or "not applicable.”

A questionnaire was designed containing the third level attributes. To assign the most relevant rating
system to each attribute, we asked the ten Al experts to select the most relevant rating system. We assessed
the agreement among Al experts by assigning numbers from 1 to 4 to each rating system and calculating
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Kendall's W. There was strong agreement (Kendall's W scale bigger than 0.6) among the Al experts in all
key dimensions except "control of actions" and "safety policies." The most relevant (popular) rating system

was assigned to each attribute according to the collected data.

2.4. Finalizing the model
The score of each third level attribute was determined by multiplying the attribute's weight in the
auditor's assessment by the attribute according to the assigned rating system. After scores were

determined, the total score was calculated by adding all scores of third level attributes. In conclusion, the

entire MAVT approach for developing the SCS in 19 steps is represented in Figure 7.
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Figure 7. The 19 steps of the MAVT approach.

3. Results

An SCS can be defined as a set of policies, practices, procedures, strategies, roles, functions, and
resources associated with safety that interacts in an organized way to decrease the damage generated in a
process [37,46]. Different SCSs have been developed for different industries and technologies, but there is
a lack of studies aiming to understand the key dimensions and measurable indicators of the safety of black-
box Al models in healthcare. Although the developed safety models and guidelines for industries may not
apply directly to Al models in healthcare, their methods and frameworks can be adapted to create a
comprehensive safety system suitable for black-box AI models.

This article developed a system to evaluate the safety performance of Al models implemented in
healthcare. The proposed system was constructed by applying the three-level MAVT approach [36]. The
first level attributes, adopted from Fernandez-Muiiiz et al. [37], were the main elements of safety standards

and guidelines. The 14 attributes of the second level and the 78 elements of the third level were extracted
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by using a systematic literature review, conducting interviews, and performing two small questionnaire-
based surveys.

The key first level dimensions of the SCS are as follows: (1) safety policies; (2) incentives for clinicians;
(3) clinician and patient training; (4) communication and interaction; (5) planning of actions, and (6) control

of actions (Figure 8).
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Figure 8. The first and second level attributes of the SCS.

The first key dimension.

Safety policies can be divided into three attributes of legislation and codes of practice (including six
attributes), liability (including nine attributes), and continual development (including five attributes).
Developing Al models in healthcare faces several legal regimes, such as federal regulations, state tort law,
the Common Rule, and the Federal Trade Commission Act. In malpractice claims, owing to the use of Al
black-box models in clinical workflows, the current legal system is not suitable [47,48]. Therefore, the
responsibilities of different parties, including Al developers, the source of training data, clinicians, and
suppliers who provide the Al system platform, must be clearly defined [1]. In addition, clinical systems are
being controlled by designed rules, and using black-box data-driven devices can introduce new risks [49].
For example, traditional medical devices are updated manually, whereas Al-based devices are updated by
training with new data [49]. The differences between the data-driven and the traditional devices require
clinical regulations to be updated to correctly implement Al-based devices in the clinical workflows [47].

The continual development of Al models is one of the main attributes of safety policies. Al-based
devices are a new type of medical technology, and they may become outdated because of continually
changing medical treatment patterns and improvements in medical instruments [50,51]. Therefore, this
unique aspect of Al-based medical devices in medical regulation is important to consider [1]. The Food and
Drug Administration (FDA) has defined and developed the Software as Medical Device (SaMD) category
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and Digital Health Software Precertification (Pre-Cert) Program to address this issue [47,52]. Accordingly,
the FDA's new policy centers on Al developers' organizational excellence rather than approving Al-based
medical devices [53]. Organizational excellence is defined as an effort to develop different processes and
standards intended to engage employees to deliver excellent products [53]. Consequently, developers are
authorized to update Al models without to review by the FDA [54]. However, a testing process must
crucially be developed so that the updated models' performance is not below that of the primary models
[55].

The second key dimension.

Because of false confidence, clinicians often accept the results and recommendations of Al models
regardless of their accuracy [29]. To address this issue and to motivate clinicians to constantly check the
results of Al systems, clinicians' incentives can be considered according to two attributes: developing safety
incentive programs and adopting resolutions according to clinicians' recommendations. Safety incentive
programs comprise three aspects, such as: "Are there any incentives offered to clinicians to put defined
procedures of implemented Al systems into practice?” The attribute of adopting resolutions comprises
three aspects, such as: "Is there any meeting with clinicians to adopt their recommendations concerning Al-

based medical device operation?”

The third key dimension.

Clinicians and patients should be educated on the risks, benefits, and limitations of Al models [33].
Different actions that should be taken may include engaging clinicians in developing data-driven systems,
providing training events in health organizations before and after Al model implementation, using
different teaching methods to educate clinicians, asking for feedback from learners, and developing
personalized education [56]. Clinician and patient training can be divided into (1) general training,
including five attributes, such as "Are clinicians given sufficient training concerning Al system operation
when they enter a health institution, change their positions or use new Al-based devices?" and (2) specific
training for certain patients and clinicians facing high-risk events, including two attributes, such as "Are

specific patients or clinicians trained who are facing high-risk events?”

The fourth key dimension.

Communication and interaction can be divided into two main attributes of human-human
interactions: interaction between parties (such as healthcare institutions and Al developers, including five
attributes), and human-AlI interaction (including 18 attributes mainly adopted from Amershi et al.) [57].
The safe implementation of Al-based devices in healthcare depends on comprehensive and effective
interaction among healthcare institutions, clinicians, and Al developers. This interaction is necessary,
because Al models cannot be trained and tested for all disease states and patient demographics during
clinical trials. This interaction includes five attributes, such as "Is there any information system developed
between a health institution and an Al developer during the lifetime of Al-based medical devices?" [58—
60]. The attribute of human-Al interaction is associated with designing safety guidelines for interaction
between humans and Al A total of 18 attributes are considered for human-Al interaction, such as: "Is there
any established description of what the Al-based medical device can do?" [57].
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The fifth key dimension.

Because implemented Al models are required to perform tasks in dynamic and complex healthcare
environments, and because these models cannot be fully evaluated during clinical trials, a safety plan must
be created to identify all risks and adverse events, and plan a course of action to remove risks and plan
emergency actions. The planning of actions is divided into two main aspects: (1) risk assessment and
preventive plans, including eight attributes, such as: "Are all risks and adverse events identified concerning
implemented Al systems?” and (2) emergency plan for occurred risks, including four attributes, such as:
"Do the health institution and the Al developer have an emergency plan for remaining risks and adverse

events of Al operation?”

The sixth key dimension.

The control of actions aims to monitor all risks and adverse events and all procedures and planning.
The control of actions is divided into two main aspects: 1) checking the Al system's effectiveness internally
and externally, and 2) comparing incident rates with benchmarks. Checking the Al system's effectiveness
internally and externally involves eight attributes, such as "Is effective post-market surveillance developed
to monitor Al-based medical devices?” Post-market surveillance has two main parts. The first is practical
cooperation among clinicians, health organizations, and Al developers to gather clinical and safety-related
data (explained the communication and interaction attribute). The second is monitoring and analyzing
different safety signals, longitudinal data, risks and adverse events, and thresholds for Al-based device
recall [61]. The comparison of incidence rates with benchmarks includes two attributes. All attributes are

shown in Table 2.

Table 2. Summary of system attributes.

Attributes Weight Rating system
SCS 100.00
Safety policies 23.50
Legislation and codes of practice 11.25
Is there a commitment to current legal regimes, such as federal regulations, state tort law,
the Common Rule, Federal Trade Commission Act, legislation associated with data | 3.00 0-1
privacy, and legislation associated with the explainability of AI?
Is a written declaration available reflecting the safety objectives of the Al-based medical 200 o
device?
Are clinicians informed about the safety objectives of the Al-based medical device? 2.00 0/1
Is a written declaration available reflecting the safety concerns of the directors of health 150 o
institution?
Does the health institution coordinate the Al-based medical device policies with other 150 o
existence policies?
Is there a positive atmosphere to ensure that individuals from all parties, such as the 105 01
health institution and the Al developer, participate in and contribute to safety objectives?
Liability 7.00
Are the responsibilities of the AI developer established in writing? 1.00 0/1
Are the responsibilities of clinicians established in writing? 0.75 0/1
Are the responsibilities of the source of training data established in writing? 0.75 0/1
Are the responsibilities of the source of suppliers who provide the system platform 075 0/1
established in writing?
Are the responsibilities of the Al algorithm (at the higher level) established in writing? 0.25 0/1/NA
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Attributes Weight Rating system
Is there a positive atmosphere to ensure that individuals from all parties, such as the 0.75 01
health institution and the Al developer, know their responsibilities?

Is there an appropriate balance for the responsibilities of different parties? 0.75 0-1
Is there any procedure for resolving conflicts between parties? 1.00 0/1
Are resolving conflicts established in writing? 1.00 0/1
Continuous development 523
Is there a commitment to FDA regulations regarding Software as Medical Device 0.75 o1
(SaMD)?
Is there involvement in the Digital Health Software Precertification (Pre-Cert) Program? | 0.75 0/1/NA
Is an organizational excellence framework established in writing? 0.75 0/1
Is there a commitment to organizational excellence? 1.50 0/1
Is there a testing policy for updated Al-based devices? 1.50 0/1
Incentives for clinicians 5425
Safety incentive programs 2.25
Are there any incentives offered to clinicians to put defined procedures of implemented 0.75 0/1
Al systems into practice?
Are incentives frequently offered to clinicians to suggest improvements in the 1.00 0/1
performance and safety of implemented Al systems?
Are there disincentive programs for clinicians who fail to put defined procedures of 0.50 0/1
implemented Al systems into practice?
Adopting resolutions 3.00
Are there any meetings with clinicians to adopt their recommendations concerning Al- 150 0/1
based medical device operation?
Is adoption of resolutions coordinated with other parties, such as the Al developer? 0.50 0/1
Do any modifications or changes in Al-based medical device operations involve direct 100 0/1
consultation with clinicians who are affected?
Clinician and patient training 5.25
General training BY5
Are clinicians given sufficient training concerning Al system operation when they enter 175 o
a health institution, change their positions or use new Al-based devices?
Is there a need for follow-up training? 0.50 0/1/NA
Are general training actions continual and integrated with the established training plan? | 0.50 0/1/NA
Are the health institution's characteristics considered in developing training plans? 0.50 0/1/NA
Is the training plan coordinated with all parties, such as the Al developer and health
institution? 030 O-UNA
Specific training 1.50
Are specific patients or clinicians trained who are facing high-risk events? 0.75 0/1/NA
Are specific training actions continual and integrated with the established specific
. 0.75 0/1/NA
training plan?
Communication and interaction 27.00
Human-human interactions 9.00
Is any information system developed between a health institution and an AI developer 200 o1
during the lifetime of Al-based medical devices?
Are clinicians informed before modifications and changes in Al-based medical device 2,00 o1
operation?
Is there written information about procedures and the correct way of interacting with AI- 2,00 o1
based medical devices?
Is there any communication plan established between parties? 1.50 0-1
Is there any procedure to monitor communication and resolve problems such as 150 o
language, technical, and cultural barriers between parties?
Human-Al interactions 18.00
Is there any established description of what the Al-based medical device can do? 1.50 0/1
Is there any established description of how well the Al-based medical device performs? 1.50 0/1
Is the Al-based medical device time service (when to act or interrupt) based on the 150 0/1
clinician’s current task?
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Attributes Weight Rating system
Does the Al-based medical device display information relevant to the clinician’s current 150 0/1
task?

Are the clinicians interacting with Al-based medical devices in a way that they would 150 0/1
expect (are social and cultural norms considered)?
Is there any procedure to ensure that the Al-based medical device’s behaviors and 150 0/1
language do not reinforce unfair and undesirable biases?
Is it easy to request the Al-based medical device’s services when needed? 0.75 0/1
Is it easy to ignore or dismiss undesired and unwanted Al-based medical device services? | 0.75 0/1
Is it easy to refine, edit, or even recover when the Al-based medical device is wrong? 0.75 0/1
Is it possible to disambiguate the Al-based medical device's services when they do not 075 0/1
match clinicians' goals?
Is it clear why the Al-based medical device did what it did (access to explanations and 0/1
visualizations of why the Al-based medical device behaved as it did, in terms of | 0.75
mitigating the black-box)?
Does the Al-based medical device have short term memory and allow clinicians to 0.75 0/1
efficiently access the memory?
Does the Al-based medical device learn from clinicians’ actions (personalizing clinicians’ 0.75 0/1
experience by learning from their behaviors over time)?
Are there several disruptive changes when updating the Al-based medical device? 0.75 0/1
Can clinicians provide feedback concerning the interaction with the Al-based medical 0.75 0/1
device?
Can the Al-based medical device identify clinicians' wrong or unwanted actions? How it 0.75 0/1
will react to them?
Can the clinicians customize what the Al-based medical device can monitor or analyze? | 0.75 0/1
Can the Al-based medical device notify clinicians about updates and changes? 0.75 0/1
Planning of actions 15.00

Risk assessments and preventive plans 12.00
Are all risks and adverse events identified concerning the implemented Al system? 2.50 0/1
Is there any system in place for assessing all detected risks and adverse events of Al 175 0/1
operation?
Are prevention plans established according to information provided by risk assessment? | 1.75 0/1
Does the prevention plan clearly specify for clinicians who are responsible for performing 195 0/1
actions?
Are specific dates set for performing preventive measures? 1.25 0/1
Are procedures, actions, and processes elaborated upon on the basis of performed 150 o1
preventive measures?
Are clinicians (involved in using the implemented Al system) informed about prevention 100 0/1
plans?
Are prevention plans occasionally reviewed and updated on the basis of any changes or 1.00 0/1
modifications in operation?

Emergency plan for risks 3.00
Is an emergency plan in place for the remaining risks and adverse events of Al operation? | 0.75 0/1
Does the emergency plan clearly specify for clinicians who are responsible for performing 075 0/1
actions?
Are the clinicians (involved in using the implemented AI system) informed about the 0.75 0/1
emergency plan?
Is the emergency plan occasionally reviewed and updated on the basis of any changes or 0.75 0/1
modifications in operation?

Control of actions 24.00

Checking the effectiveness of Al system internally and externally 18.00
Is effective post-market surveillance developed to monitor Al-based medical devices? 2.50 0/1/NA
Are there occasional checks performed on the execution of the preventive plan and 250 0/1
emergency plan?
Are there procedures to check collection, transformation, and analysis of data? 2.25 0/1
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Attributes Weight Rating system
Is there a clear distinction between the information system and the post-market 295 0/1
surveillance system?

Are accidents and incidents reported, investigated, analyzed, and recorded? 2.25 0/1

Are there occasional external evaluations (audits) to validate preventive and emergency 2.00 0/1/NA

plans?

Are there occasional external evaluations (audits) to ensure the efficiency of all policies 2.00 0/1/NA

and procedures?

Are there procedures to report the results of external and internal evaluation? 2.25 0/1/NA
Comparing incident rates with benchmarks 6.00

Do the accident and incident rates regularly compare with those of other healthcare 3.00 0/1/NA

institutions from the same sector using similar processes?

Do all policies and procedures regularly compare with those of other healthcare 3.00 0/1/NA

institutions from the same sector using similar processes?

4. Discussion

This study offers an alternative solution for opening the Al black-box in healthcare by introducing an
SCS. The framework provides safety guidelines for implementing Al black-box models to reduce the risk
of healthcare-related incidents and accidents. The proposed framework and system provide a basis for
implementing and monitoring safety legislation and procedures, identifying the risks and adverse events
in Al activities, preventing accidents and incidents from occurring, and having an emergency plan for
threats. Therefore, the proposed framework and tool can guide the safety activities of implemented Al

systems.

The SCS represents a set of attributes in different layers and can be used in healthcare institutions with
implemented Al models. The management of healthcare institutions can use the proposed set of attributes
as a checklist, verifying whether a set of desired safety elements exists. Having useful specific attributes in
healthcare systems will lead to high scores in the SCS. Healthcare institutions can use this framework to (1)
calculate their safety score, and compare it with those of other institutions, and (2) detect deficiencies in
current safety practices regarding the implemented AI models. The above steps can help improve the
overall safety performance.

The proposed framework for evaluating Al safety performance was developed by using the MAVT
approach, comprising four parts: extracting attributes, generating weights for attributes, developing a
rating scale, and finalizing the system. With the MAVT approach, three layers of attributes were created.
The first level contained 6 key dimensions, the second level contained 14 attributes, and the third level

contained 78 attributes.

First key dimension.

Three attributes — "legislations and codes of practice,” "liability,” and "continual development"—were
extracted as primary elements of safety policies from the literature review and were confirmed in
interviews. Commitment to current legislation and codes of practice is a basic element of every Al system.
Among current legal regimes, data privacy-related legislation plays a vital role in developing and

implementing Al systems. Because of the complexity of protecting data privacy and its effects on data
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availability, three different viewpoints concerning the level of adaptation of data protection legislation have
recently been proposed.

First view. The European Union has adopted legislation entitled General Data Protection Regulation
(GDPR), which details a comprehensive and uniform approach for data privacy, regardless of how data
are collected, in what format, or who the custodian is [62]. Under GDPR, only anonymous data can be
shared. The anonymization process under GDPR requires implementing different techniques on datasets
to prevent data re-identification [62]. Although GDPR aims to protect data privacy rather than to prevent
data sharing, a fear of violation penalties has decreased data collection and data aggregation efforts among
European companies and even data flow from Europe to the U.S. [63].

Second view. The current U.S. data privacy legislation is more lenient than that of the European Union
[64]. In general, Europe places more emphasis on protecting citizens from technological risks, whereas the
U.S. focuses more on innovation and technology [64]. Under U.S. privacy law, health data are treated
differently depending on how they have been created, who is handling the data, and who the data
custodian is [65]. The Health Insurance Portability and Accountability Act (HIPAA) includes a privacy rule
that prohibits disclosing protected health information [47]. HIPAA limits the use of protected health
information unless there is authorization from the patient or Institutional Review Board [65]. Under HIPAA
policy, any type of de-identified data is considered non-personal and not subject to data protection
regulation [62]. Furthermore, HIPAA focuses on specific actors and their activities rather than on the data
itself; therefore, a considerable amount of health data are not covered by HIPAA [65].

Third view. From China's perspective, Al is a powerful tool for economic success, military dominance,
and controlling the population [63]. Chinese companies accumulate a tremendous amount of health-related
data, which can be used in Al development, owing to lenient regulation on data collection and little public
concern about data privacy [54,66]. However, in recent years, the Chinese public has started to petition
large companies, such as Baidu and Alibaba, for the right to data privacy [66]. Consequently, China has
initiated personal data protection laws and ethical principles for developing and using Al [67,68].

Among the third level attributes of safety policies, the elements "Software as Medical Device (5aMD),”

”on

"Digital Health Software Precertification (Pre-Cert) Program,” "current legal regimes,” and "assigning

responsibility” were mainly extracted from the included articles. The elements of "safety objectives of the

”on

Al-based medical device,” "positive atmosphere in the health institution,” and "coordinating the Al-based
medical device policies with existing policies" were mainly found from the interviews. However, we
observed that the Al experts differed in the weights assigned to this crucial dimension's attributes. The
most confusing second level attribute was the liability, on which Al experts did not reach agreement.

The term Software as a Medical Device (SMD) is described as "software that uses an algorithm that
operates on data input to generate an output that is used for medical purposes” [69]. SMD applications are
diverse as Computer-Aided Detection (CAD) software —for example, software detecting breast cancer —
and smartphone applications for diagnostic purposes—for example, software for analyzing images
collected from a magnetic resonance imaging medical device. Although some FDA guidelines for SMD
overlap with attributes of other key dimensions, we decided to consider "commitment to FDA regulations
regarding Software as Medical Device" under "safety policies.” As described earlier, the Pre-Cert Pilot

Program looks first at the Al developers rather than at Al-based medical devices, in contrast to the FDA
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process for traditional medical devices [70]. Because the FDA selected several companies to participate in

developing the Software Pre-Cert pilot program, we decided to include it as an attribute.

Second and third key dimensions.
Both the "incentives for clinicians" and “clinician and patient training" attributes were formed and
developed in interviews. There was moderate agreement regarding the weights of attributes and strong

consensus regarding the assigned rating system.

Fourth key dimension.

Although two parts of this key dimension were mainly extracted from the literature review, a
considerable amount of interview time was spent on this aspect to define the third level attributes. Human-
human interactions are associated with communication management among all parties—for example, Al
developers and health institutions—involved in implemented Al-based medical devices. All main
communication management elements, including planning, managing, and monitoring communication,
were discussed in interviews, and measurable attributes were defined. One of the main attributes of
human-human interaction is developing an information system for storing, processing, collecting, creating,
and distributing information. This information system contains different elements of hardware and
software, system users and developers, and the data itself.

Regarding human-Al interactions, the attributes from Amershi et al. [57] were discussed in the
interviews to define measurable attributes. The main elements of the human-Al interaction included the
following: Al system capability, Al system accuracy, Al system time service, Al system displaying
information, Al system language, social and cultural norms in human-Al interaction, Al system readiness,
dismissal of unwanted service, Al system recovery, Al system disambiguation, Al system explainability
(black-box mitigation), Al system short term memory, personalizing the Al system, updating the Al system,
feedback mechanisms in the Al system, the Al system’s reaction to wrong actions, customizing the Al
system, and notification mechanisms in the Al system. Importantly, personalization means that Al systems
can learn from clinicians' actions, and customization means that clinicians can customize the Al system’s
actions.

One of the main controversial elements of human-Al interaction is the Al system's accuracy and
effectiveness. As a part of model safety, the Al model's performance in clinical trials should outperform the
performance of existing diagnostics devices and clinicians' judgment [47]. Accuracy, defined as a proper
fraction of predictions, is a commonly used metric for evaluating Al algorithms' performance [47].

Many studies have reported the three measures of accuracy, sensitivity, and specificity in clinical trials
to capture the full extent of models' properties [47]. However, covering all essential differences in patient
demographics and disease states in clinical trials is impossible [50]. One solution is to add external
validation after the clinical trials before implementing the model in clinical workflows [50]. The external
validation phase would include training and testing the model by using data from the clinics where the Al
model will be used [50].

Other metrics to measure model performance are stability and robustness [35]. Model stability means
that, when given two almost identical input data sets, an Al model generates almost the same results [71].
Model robustness indicates the stability of the model's performance after including noise in the input data
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[35]. Robustness represents the model efficiency for new data outside the training data [35]. These measures
are essential for applying Al models in healthcare, because the lack of stability and robustness can diminish

clinicians' and patients' trust in AI models [72].

Fifth key dimension.

In this key dimension, risk assessment was mainly extracted from the literature review, and elements
of the preventive plan and emergency plan were discussed in interviews. The foundation of the "planning
of action" dimension is risk assessment. The principal risks of implemented Al systems include data
difficulties, technological problems, security problems, models misbehaving, and interaction issues [73].
Two elements of models misbehaving and interaction issues were addressed in Al-human interactions.
Therefore, the main risks associated with the implemented Al system are data difficulties and technology
problems.

Risk of data difficulties. One of the main concerns regarding Al in healthcare is data availability
[1,2,21]. Despite considerable recent efforts in collecting and releasing high-quality Al-ready datasets, most
health data are not accessible to the public [1,2,21]. These data are generally collected and controlled by
hospitals and other health organizations and used for operations but not for analytics or research.
Therefore, the formats of the data are often not ideal for training Al models. For example, image data may
not be anonymized, organized, or appropriately annotated [74]. Of the publicly available datasets, most are
released once and become progressively outdated [50]. For example, despite advances in fundus camera
technology, the Messidor database is still used to train Al algorithms on images acquired in 2007 [75].

Other issues in data availability include coverage of rare and novel cases [76], missing data in datasets,
a lack of appropriately labeled data [77], high-dimensionality together with small sample sizes [78], and
data contamination with artifacts and noise [79]. Among image datasets, the main issues include difficulty
in collecting many high quality manually annotated images [80], the limitations of human perception in
annotating and labeling images [81], the time required for reviewing and annotating each image in a dataset
[82], the level of raters' sensitivity to a particular target [83,84],, loss of information due to image processing
and resizing [85], and collection of images from only a specific device [86].

Data privacy is the main difficulty in increasing data availability in healthcare [1,2,21]. A delicate
balance must be struck between stimulating the potential benefits of aggregating health data and protecting
individual privacy rights. To do so, different reported practices include anonymizing data before sharing,
using validated protocols for de-identification, exploring safer ways to share data, and defining the
responsibilities of health organizations as data custodians [87]. However, linking de-identified data is much
more difficult when patients visit different health institutions, obtain insurance through various
companies, or change their location [65]. Consequently, forming fragmented health data makes data-driven
innovation more difficult [65].

Mitigating the risk of data difficulties. High-quality Al-ready data are the foundation for developing
accurate algorithms. Even the unintentional effects of biases due to selecting unsuitable data can decrease
the accuracy of Al models. To generate high-quality Al-ready data, different methods have been proposed
in various studies. Data aggregation efforts across health organizations are one way to generate high-
quality data [88]. One of the main challenges in data aggregation is that the data format may differ among
health organizations [89]. Therefore, usable data with consistently structured formats must be generated
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among health organizations [89]. Several efforts have been proposed to address this concern, including
developing cloud infrastructures, adopting unified data formats such as Faster Healthcare Interoperability
Resources, and launching collaborative efforts among health organizations to create high-level joint
features [1,90].

Training Al models in a simulated virtual environment has created a unique opportunity to cover the
lack of high-quality healthcare data [91]. By using the virtual environment, an Al model can learn and
become powerful before it is implemented in the physical world [92]. Chawla [93] has reported the
successful implementation of Al models trained inside a virtual environment. The key advantages of using
a virtual environment for training Al models are as follows:

1. The virtual environment allows Al developers to simulate rare cases for training models [92].

2. The entire training process can occur in a simulated environment without the need to collect data
[93].

3. Learning in the virtual environment is fast; for example, AlphaZero, an Al-based computer
program, was trained over a day to become a master in playing Go, chess, and shogi [29].

However, using a virtual environment for training AI models in healthcare is not as advanced as its
applications in other fields, such as autonomous cars. For example, the Waymo company has created
virtual models of whole cities, and every day it sends 25,000 virtual self-driving cars through these cities to
train Al algorithms [94]. Using a virtual environment gives Waymo the ability to simulate more than 5
billion miles of autonomous driving [94]. This achievement may inspire healthcare companies to develop
a vast virtual world including all disease states, patient demographics, and health conditions to train Al
models.

Another way of generating high-quality data is building health datasets comprising data from
volunteers and groups of consenting individuals. Encouraging patients to share their electronic medical
record information and medical images, and creating datasets of volunteers’ data have been described in
several studies [74]. For example, in 2015, the U.S. National Institutes of Health set an objective to develop
genomic data, lifestyle data, and biomarker data from 1 million volunteers from diverse backgrounds [54].
Another project supported by Google is developing a dataset comprising data from 10,000 volunteers over
4 years [89]. Participants in this project monitor their sleeping patterns and daily activities, answer common
questions, and periodically visit specific medical testing locations [89]. However, various concerns exist
regarding this type of data generation, including the lack of a specific mechanism for patients to share their
data and the absence of a well-founded repository for aggregating patient data outside health care
organizations. Awareness about the benefits of this process is lacking, and no institution has been
authorized to monitor these projects [74,95].

The involvement of tech companies in healthcare has created a new trend of high-quality data
generation [96]. For example, big tech companies collect massive amounts of behavioral data from social
media and sensors [96]. Biomedical signals such as heart rate and rhythm, blood pressure, blood oxygen
saturation, voice, tremor respiratory rate, limb movement, and temperature can be recorded by modern
wearable devices [21]. These biological signals can be used for detecting several health conditions and
diseases [2]. Patient-generated health data are another unique method for creating high-quality data.
Various health-related datasets can be built by patients and caregivers outside clinics by using software
applications, wearable sensors, monitoring devices, smartphones, and tablets with cameras [97]. Recently,
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substantial improvements have been made in high-quality and low-cost technologies with the potential to
collect various patient-generated data regarding movement and behavior, environmental toxins, social
interactions, diseases, images, and other physiological variables [98]. For example, one study has begun
developing comprehensive open-access datasets through parents recording the behavior of their children
with autism by using cell phone cameras [97]. In addition, the FDA has made efforts to establish a path for
collecting patient- and caregiver-generated health data in clinical trials [99].

Collecting lifespan data from implemented Al-based medical devices is another method to access
high-quality health data. These efforts require creating a system as a combination of hardware and software
components to store and transfer generated data [100]. For example, by implementation of an Al model in
different health organizations, high-quality data can be collected and stored in a repository outside health
organizations, with consideration of data privacy protection [1].

Security problems. One of the main risks associated with implemented Al systems is security.
Adversarial attacks, one of the major types of security problems in the Al system, can result when flawed
Al systems are susceptible to manipulation by inputs explicitly designed to fool it [50]. For example, one
study has shown that adding a very small amount of perturbation to images can cause medical image
classifiers to incorrectly classify a mole with a 100% confidence level [50]. Because the issue of adversarial
attacks cannot be completely addressed in clinical trials, fully managing malicious attacks is a main aspect
of the safe implementation of Al systems in healthcare. Hostile attacks can be partially addressed by
effective post-market surveillance; however, implementing regulatory actions and novel techniques can
secure Al systems against adversarial attacks [11]. For example, in situations in which clinical data can be
changed with fraudulent intent, using the BlockChain technique allows for data storage in immutable
interconnected blocks [11].

Technological problems. Typically, the technological problems in Al systems relate to software and
hardware. From a software perspective, Al systems are explicitly concerned with algorithms. Although we
have discussed the main issues associated with algorithms, such as data difficulties and accuracy,
generalization and algorithm fairness must also be addressed. Unknown accuracy of the results for
minority subgroups is a major element of algorithm fairness [50]. For example, one study has developed
an Al algorithm with high accuracy in the classification of benign and malignant moles but has found that
it has poor performance on images of darker skin because it was trained on data from mainly fair-skinned
patients [50]. Therefore, in developing and implementing Al systems, further training of Al models on data
from minority groups, and the accuracy of Al models for underrepresented groups, must be considered
[50].

From a hardware perspective, Al systems are mostly concerned with implementing algorithms on a
physical computation platform [101]. Different physical computation platforms— distinguishable in terms
of power efficiency, computation capability, and form factor—have been developed for Al systems,
including a general-purpose central processing unit; graphical processing units; customizable and
programmable accelerator hardware platforms, such as application-specific integrated circuits and field-
programmable gate arrays; and other emerging platforms such as memristor crossbar circuits [101].
However, from the hardware perspective, the memory wall is a major challenge for Al systems [101]. The

memory wall is defined as a situation in which improvements in processor speed are masked by the much
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slower progress in dynamic random access (DRAM) memory speed [102]. Although DRAM organization

has improved, this aspect is a major issue in Al systems [102].

Sixth key dimension.

Among elements of this key dimension, post-market surveillance was mainly extracted from the
literature review. This effort was supplemented by internal and external validation and use of benchmarks
formed and discussed during interviews. Part of the safe implementation of Al-based healthcare devices is
post-market surveillance to monitor medical devices' safety [61]. Implementing comprehensive and
effective post-market surveillance is essential for two reasons: (1) the FDA's new policy focuses on Al
developers rather than Al-based medical devices, and (2) AI models cannot be trained and tested for all
disease states and patient demographics during clinical trials and external validation [59]. The post-market
surveillance system should include practical cooperation among clinicians, health organizations, and Al
developers to efficiently gather clinical and safety-related data. Such a system should correctly identify
safety signals, practically collect longitudinal data, effectively report adverse events, and strictly define
thresholds for device recall [61,103]. An ideal level of post-market surveillance in Al-based medical devices
includes three parts: extensively collecting data across the lifespan of devices, integrating results into
electronic health records, and full tracking and reporting adverse events [58]. Developing and
implementing a clear definition and distinction between information systems (data for human-human

interaction) and post-market surveillance systems (data for Al-human interaction) is crucial.

5. Study limitations

The proposed framework of the AI SCS in the healthcare industry has several limitations. First, we
did not perform safety audits to ensure the developed tool's effectiveness. Therefore, at this time, the
quality of the proposed approach cannot be assessed in terms of:

1. The comprehensibility of the considered safety elements to potential auditors.

2. The robustness of the rating scale for each safety element to secure a reliable rating under similar
conditions.

3. The potential for improving key dimensions and different layers of attributes.
The feedback from the healthcare institutions about the system.

To address the above challenges, the proposed framework should be implemented in several
healthcare institutions concurrently to investigate its effectiveness. In addition, several key questions
should be addressed, including (1) clinicians' acceptance of the framework, (2) the compatibility of the
model across multiple healthcare institutions, (3) the opportunity for implementation in different types of
healthcare organizations, (4) and the framework's effectiveness.

The second limitation of this study is the number of interviewees and their socio-demographic
information. Many attributes were identified during the interviews, thus indicating their importance in
developing Al safety system requirements. However, we interviewed ten Al experts who were middle-
aged white males. Therefore, the small number of interviewees and their lack of diversity can introduce
potential bias into the developed attributes.

Finally, the structural relationships between measurable variables (the third level attributes) and latent

variables (the first and the second level attributes) should also be assessed to validate the developed model.
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A survey including many health institutions considering implementation of Al-based systems (including
medical devices) should be conducted for that purpose. Another essential consideration is developing a set
of robust Al-relevant safety criteria. Finally, implementation of the proposed system in real settings would

require comprehensive management and appropriate regulatory oversight.

6. Conclusion

This article has discussed the challenges in advancing the implementation of Al in healthcare. We have
outlined the safety challenges of Al in the context of explainability as opposed to the black-box approach.
Our main objective was to propose a framework for controlling Al systems' safety as an alternative to
opening the black-box. We adopted the MAVT approach to develop an Al system's safety attributes at three
levels. This development process consisted of four parts: extracting attributes, generating weights for
attributes, creating a rating scale, and finalizing the framework's architecture. We used a systematic
literature review and interviews with subject experts to establish the safety attributes' hierarchical
structure. We integrated the systematic review and interviews to understand better the main aspects of Al
safety in the published literature and extend these aspects through consultation with AI domain experts.
The first level contained 6 key dimensions, the second level included 14 attributes, and the third level had
78 attributes. Questionnaire-based surveys were used for assigning the weights and developing the
attribute rating system. Finally, the limitations of the proposed Al safety controlling framework were
discussed.

The first level key dimensions of the SCS are as follows: (1) safety policies; (2) incentives for clinicians;
(3) clinician and patient training; (4) communication and interaction; (5) planning of actions; and (6) control
of actions. In safety policies, it is essential to pay extra attention to the adaptation of data protection
legislation. Because of the complexity of data privacy, many countries adapted their data protection
legislation. In safety policies, the elements "Software as Medical Device (5aMD)," "Digital Health Software
Precertification (Pre-Cert) Program,” were discussed in detail by included articles.

The key dimension of communication and interaction can be divided into two main elements of
human-human interactions and human-Al interactions. For the human-human interaction, it is necessary
to develop an information system for storing, processing, collecting, creating, and distributing information.
Several elements must be addressed for the human-Al interactions, such as Al system capability, Al system
accuracy, and Al system explainability (black-box mitigation). Among elements of human-Al interaction,
included papers discussed the Al system's accuracy and effectiveness.

In the key dimension of planning of actions, the principal risks of Al systems include data difficulties,
technological problems, security problems, and models misbehaving. In data difficulties, data privacy is
the main problem for increasing data availability in healthcare. However, new approaches are being
developed to increase data availability in the healthcare sector, including data aggregation efforts across
health organizations, training Al models in a simulated virtual environment, building health datasets
comprising data from volunteers and groups of consenting individuals, the involvement of tech companies
in healthcare, collecting lifespan data from implemented Al-based medical devices, and patient-generated
health data. The adversarial attacks are one of the major security problems of the Al system. The

technological problems in Al systems can be divided into software and hardware.
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Concerning the control of actions, it is necessary to have effective post-market surveillance to monitor
medical devices' safety. As a part of this system, it is necessary to have practical cooperation among
clinicians, health organizations, and Al developers to gather clinical data.

The implementation of the proposed framework in healthcare institutions should allow
understanding its effectiveness better. In the near future, the key questions concerning this framework
should also be addressed, including (1) clinicians' acceptance of the framework, (2) the compatibility of the
model across multiple healthcare institutions, (3) the opportunity for implementation in different types of
healthcare organizations. Also, we encourage other researchers to assess the structural relationships
between measurable variables (the third level attributes) and latent variables (the first and the second level

attributes) to validate the developed model.
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