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Abstract

Post-concussion syndrome, recently recognized as a complication of mild traumatic brain injury,
is considered a consequence of the summative effect of multiple concussions received over
lifetime. In elderlies, the main mild brain trauma mechanism is fall (low impact force). Many
falls are often not reported or noticed but may generate serious medical and medico-legal

consequences.

Our research question was to find if a single, very mild brain trauma can induce neuro-behavioral
consequences in elderlies. One database was queried (PubMed — MeSH terminology) looking for
histopathological, neuro-cognitive and behavioral changes that can be generated by sub-

concussional trauma in senescent rodents, in comparison with young animals.

41 published research articles were selected. 17 of them used very mild brain trauma in young
and senescent animals, in the same experiment (6 rats and 11 mice). 24 articles evaluated the
effect of sub-threshold brain trauma in adult animals (no control group). Five trauma models
were used (blast models were excluded). Neuro-inflammatory changes were detected immediate
after very mild primary impact. In young animals, observed pathology disappeared fast (after 3
to 7 days). Increased apoptosis, mild axonal injury in white matter tracts plus maladaptive
astrogliosis and microglial activation was stronger in aged animals, persisted over time (8
months) and significantly altered animals’ cognition and behavior. Associated preexisting
pathology (hypertension, tau protein deposits, microbleeds, reactive inflammation) was often

responsible for amplification of the primary impact results.

As translation of observation is the weak spot of pathology and behavior animal research, further
investigation is needed before to conclude that even a single, very mild brain trauma may have

medical consequences on human senescent brain.
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Introduction

Traumatic brain injury (TBI) is a common medical condition that may lead to long-term
disability or death. Often seen in clinical practice, the complex, heterogenous consequences of
TBI are still a subject of research and debate [1]. TBI is labeled in many ways. The most popular
classification system is the Glasgow Coma Scale (GCS). Under it, the broad spectrum of brain
trauma pathology is classified as mild, moderate and severe. Mild TBI (mTBI), the least severe
form of head trauma, represents more than 80% of the cases. Most of the patients with mTBI
have a favourable evolution with full, rapid recovery. A minority of patients (10-20%) will
develop prolonged neurocognitive and behavioral changes [2]. For these patients, neurological,
cognitive, emotional and behavioral changes may organize in time, under the label of various
chronic neuropsychiatric conditions [3]. Many factors may dictate the heterogenous clinical
response after mTBI: age at the moment of impact [4], type and intensity of trauma, existence of

associated pathology [5] or the number of hits over lifetime [6].

mTBI has a recognized bimodal distribution. Young (bellow 21 years) and old people (65 years
and above) are more frequently affected [7]. When effects of mTBI are compared in the two age
groups, elderlies (65 and over) have a worse immediate clinical outcome, a higher degree of
medical resource utilization (and medical related costs), an increased higher risk for progressive
cognitive decline in time and a reduced response to medical rehabilitation [8,9]. In geriatric
patients, fall is the recognized cause of the mTBI. 35% of old people (65 and over) living alone,
in long term care facilities or in assisted living housing fall at least once per year. This

percentage increase to 50%- 60% for the group 80 years and over [10]. These numbers can be
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even higher as not all fall victims are medically evaluated if the trauma is very mild (sub-

concussion), if the fall is unwitnessed and not mentioned to the caregivers or family [11].

Beside immediate and medium-term complications after mTBI, in elderlies, a progression to
chronic traumatic encephalopathy (CTE) [12], Alzheimer Disease (AD) [13] or Parkinson

disease (PD) [14] was described, frequently in association with pre-existing pathology [15].

CTE (sometimes named post-concussion syndrome) was a subject of medical controversy for
more than 130 years [16]. Only recently CTE was recognized as one of major chronic neuro-
psychologic complication of mTBI [17]. CTE is considered now a spectrum disease [18] where
progressive brain atrophy is associated with progressive cognitive decline. Initially was linked
with professional exposure (military personnel or professional athletes) to multiple mild head
injuries over a lifetime [19]. It is widely accepted now that CTE may appear in geriatric

population without history of repeated head trauma [20,21].

We hypothesized that a single sub-concussive trauma (without any loss of conscience, GCS
=15), in specific conditions (old, frail geriatric patients with associated pathology) may
contribute to CTE development that often remains undetected but may have serious clinical and

medico-legal consequences.

In order to evaluate the importance of sub-concussive impact on aged brain, we reviewed
published research data reporting induced mTBI on senescent animal (rodents). There are
limitations in translating results from animals to humans but it is widely accepted that adequate
rodent models may mimic human mTBI and will allow alignment of the mechanical impact with

specific, measurable neuronal and behavioral consequences [22]
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Method

Our research was performed under PRISMA recommendations [23]. We evaluated one
publication database (PubMed) using a Boolean research strategy based on the following MeSH
terminology: (((animals) AND (mice) OR (rats) OR (rodents)) AND (aging) AND ((mild
traumatic brain injury) OR (concussion)) AND (head injury, closed))). 329 publications were
initially found. 125 articles were eliminated as referring to humans, sport, blast injuries, military,
treatment, paediatrics, protective medication or review articles. 204 articles (75 of them
evaluating mice, 98 rats, 2 mice and rats and 30 rodents) were reviewed based on abstract.
Finally, 41 articles were selected as reflecting the neurobehavioral consequences of a single, sub-
concussive or mild brain trauma in adult or aged rodents. Articles were finally divided, based on
published content, in main studies (responding to our research question) and associated studies

(partially responding to our research question).

Results

Based on our specific selection criteria (single, mild brain trauma in senescent animals compared
with a group of young animals) 17 research papers were selected by both investigators in the
main review arm. 6 of them used a rat experimental model: 5 articles reported results after the
use of lateral or medial fluid percussion (FP) (single trauma, 1-2 atm, craniotomy positive). 1
article reported closed head injury using weight drop (table 1). 5 evaluated histologic brain
changes. In 5 articles, neuro-behavioral changes were analyzed as early as after 7 days after the
impact.

11 articles evaluated mTBI in senescent mice vs young animals. 7 of these used controlled

cortical impact (CClI) (craniotomy positive, 3-6 m/s, under 1 mm brain tissue deformation for a
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time between 50-400ms) and 3 the closed head injury model (CHI) (craniotomy negative,
CHIMERA model in 2 cases and weight drop in one case). One article evaluated the
consequences of laser produced cerebral trauma in aged animals. 9 articles evaluated
neurobehavioral consequences usually 1 month after the primary impact. Longest survival time
was 8 months after he primary injury and reported long lasting cognitive-behavioral

consequences (table 2).

24 articles were considered associated studies as research was performed on adult rodents and no
young control group was described (table 3). 7 reports evaluated mTBI in rats and 17 and in
mice. Force varied from extremely mild (under 1 atm, less than 5 m/s or weight under 15 grms in
mice, under 450 grms in rats) to moderate (under 2 atm, more than 5 m/s or weight of more than
15 grms). Longest survival time was 24 months after the primary impact (reflecting aging after
single mTBI and showing cognitive and behavioral deficits). One article was selected as it
evaluated the structure of the normal aging in young and adult brain (cortical structure and
ventricular volumes) comparing cortex and ventricular dimensions using MRI and histology

measurements.

Discussion

Mild brain trauma is not a trivial disease. The notion of mild is referring only to the intensity of
traumatic event and the immediate clinical picture. mTBI has an uncomplicated evolution in
more than 80% of cases. In a minority of patients, evolution can be complicated by long-lasting
neurobehavioral symptomatology [24]. In rare cases, chronic invalidating complications may

develop. Between these complications, CTE was recently included. CTE was initially described
6
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as an occupational injury (military or sport related) of young people that suffered repeated mild
head trauma over their lifetime. It was demonstrated that mTBI complications can affect seniors
as well, usually in relation with same-level (low intensity) falls. In elderlies, the central dogma of
CTE (summation of multiple mild hits) is under scrutiny as it was observed that similar
histopathological picture (neuronal tissue chronic alteration) may develop even after one single
mild brain trauma [25]. It is a recognized connection between mTBI and dementia [26] but early
phases of dementia (mild cognitive impairment) are difficult to diagnose and to tie causally with

mTBI and falls [27].

Our research hypothesis is that a single, sub-concussive head trauma may generate specific CTE
histopathological and neuro-behavioral changes in senescent subjects, when pre-existing

pathology exists.

We evaluated published research data in order to find histopathological and neuro-behavioral
effects of a single, very mild (sub-concussive) head trauma in aged rodents in comparison with
the neuro-behavioral picture generated by similar forces in young animals. The difficulty of this
review study resides in accommodating and analyzing data coming from a large number of
impact models (five), a well-recognized challenge that reflects the complexity of the head trauma
pathology research. We deliberately eliminated the blast mechanism as not frequently seen in

geriatric populations.

There are several ways to produce brain trauma in rodents. The open-head injury model
(craniotomy+) includes FP model (median or lateral) and CCI model. The external force (fluid or
mechanical) is applied against intact dura. The impact is a combination of speed, depth and time.

The closed-head injury (CHI) models use either gravity (classical weight drop — “Marmarou”

7
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model) or an external mechanical force impacting the intact skull. In most models, head is
blocked in a stereotaxic frame. One external closed head mechanical model (Closed-Head
Impact Model of Engineered Rotational Acceleration - CHIMERA) allows a free movement of
the head in the moment of the impact.

In closed head models, the intensity of head injury is judged based on general reported outcomes
like well-being of the animal (blood pressure, spontaneous respirations or recovery of free
movements) or recognized measurables like the righting reflex [28]. All animals that had an
open-skull surgery were allowed to recover after trauma. Animals age was judged based on

published average lifespan (36 months for rats and 24 months for mice) [29].

Three rat studies evaluated inflammatory and apoptotic gene expressions, early after primary
impact (PMID: 24385964, 23238576, 31039431). All senescent mice studies performed
extensive neuronal tissue inflammatory biomarkers evaluation (chemokines, cytokines) and gene
expression in support of histopathological observation (immunohistology). In young animals,
after mild trauma proinflammatory cytokines had an early increase followed by rapid decrease.
In aged animals, same proteins increased slower and did not decreased even after one month
after the primary impact. Specific markers (p16™) doubled in aged animals after trauma;
p21%P% increased in old animals but not in relation with mTBI (30904769). Other apoptotic
related proteins (hippocalcin, LANP, Heat Shock Protein 27) were detected significantly

increased in aged brains in precise areas (dentate gyrus) after very mild trauma (32290848).

In young/adult rodents, very mild trauma generated an acute reactive astrogliosis and activated

microglia in cortex and evidence of axonal injury in the corpus callosum. Changes were
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discovered in specific brain regions and were proportional with trauma intensity (22245525,
21704658, 17174280). Transitory neuro-behavioral changes were reported in adult rodents,
mainly in relation with very mild trauma, in response to white matter (axonal) alterations
(29993324, 24550885 and 29376093). Long-term cognitive and behavioral changes were
observed after 4 weeks after mild to moderate injuries (26774527, 28910378).

In senescent animals, 15 studies reported similar histopathological changes. Increased apoptosis
and mild axonal injury were associated with maladaptive astrogliosis and microglial activation.
Edema and neuronal tissular destruction were significantly stronger in aged animal groups and
persisted over time (8 months). Several studies (22952778, 32290848, 30904769) reported
similar microglia senescent changes and increased, exacerbated secondary neuro-inflammatory
response (“inflammaging”). Trauma intensity was responsible for the location of lesions: very
mild trauma affected only hippocampus and corpus callosum of aged animals (2328576,
1335138). 30486287 reported an increased complement activation with specific local lesion
evolution (lesion peaked and associated cavitation increased), permanent hippocampus

involvement and persistent neuronal cognitive and behavioral changes in aged mice.

12 studies evaluated neuronal (open field, rotarod and balance beam), cognitive (passive
avoidance, mazes, novel objects avoidance) and behavioral changes (social, memory). Specific
hippocampal inflammation and white matter destruction were associated with alteration of
cognitive and executive functions (30904769, 29848996 and 22952778). 30998995 evaluated
executive function in adult rats after mTBI and observed that age and not traumatic intensity was

responsible for long term changes (12 months).


https://doi.org/10.20944/preprints202012.0314.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 December 2020 d0i:10.20944/preprints202012.0314.v1

Several studies evaluated the consequences of mild trauma in specific circumstances. 29269117
observed “lifelong” neuro-behavioral consequences in mutated mice (APP/PS KI) after very
mild brain trauma. Using similar mutated APP/PS KI mice, 25904805 reported a delayed but
persistent inflammatory response that involved both astrocytes and microglia and generated very
long-lasting cognitive deficits (3 months) after trauma. 31262044 reported destruction of blood
brain barrier and persistent neuro-inflammatory response after very mild trauma in spontaneous
hypertensive rats, also associated with chronic cognitive impairment. 23953759, using a different
open-skull injury technique (laser injuries in young, adult and aged mice) observed significant
maladaptive response of microglia (increased soma and reduced processes) after injuries in
senescent animals. 29808778 showed metabolic long-time changes in aged injured brain that
worsen in time. Study 32641073 reported an increased number of microbleeds, cortical thinning
and increased ventricular volume in aged, non-injured animals. 31039431 reported that, in aged
animals, an associated external trauma (limb fractures) may exacerbate neuroinflammatory

response.

The complexity of brain trauma mechanism is well recognized. Closed head injuries alter brain
tissue in a two steps mechanism. The primary impact will produce direct (primary) brain tissue
destruction that will be followed by a cascade of pathophysiologic and neurochemical
(secondary) events that can be highly variable among patients [29]. The association between
neuronal death (produced eighter by apoptosis or necrosis), neuro-inflammation and white
matter, axonal alterations in different brain areas is probably related with neuro-behavioral

changes observed in humans and animals after mild brain trauma.
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Most of the brain trauma studies performed on animal models used young or adult subjects and
evaluated the consequences of mild or moderate impacts. It was not clear if a single, very mild
trauma (sub-concussive) can persistently alter cognition and behavior in aged animals. Our
literature research revealed that a single, sub-concussional trauma will induce only minimal,
transitory changes in young or adult animals. These lesions can also “prime” the brain for further
traumatic events allowing CTE development as a summation of trauma over time. In senescent
animals, maladaptive neuro-inflammatory response with increased sensibility to apoptosis, a
weakened blood brain barrier, an increased propensity to brain edema formation, the presence of
microbleeds and altered local metabolism with increased reactive oxygen species generation are
responsible for the development of a serious histopathologic picture associated with long term

neuro-cognitive consequences.

Our study has several limitations. Our literature review was performed on only one, English
speaking, database. The low number of true long-lasting senescent rodent studies was perceived
as a serious limitation. There are several models that are currently used for modelling
consequences of mTBI in rodents, reflecting both the complexity of the brain trauma and specific
research interests. As there are not accepted guidelines for mTBI research design, there are not
many similitudes between research centers. In our review, we did not separate mTBI
consequences based on subjects’ sex but in aged humans there were reported serious differences.
Translation of the results from rodents to humans is a well-recognized basic science challenge,

mainly when cognition and behavior are evaluated [30].

In conclusion, apoptosis and inflammation were contributing factors for neuro-cognitive

alterations discovered after very mild brain trauma in rodent models. Chronic inflammation
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status (“inflammaging”), coexistence of peripheric traumatic pathology, the summative effects of
repeated head trauma, abnormal brain protein deposits and associated cardio-vascular pathology
were aggravating factors. In senescent animals, neuro-cognitive changes were observed long
time after the primary mild impact. As translation of research results from animal models to
humans is challenging, further studies are needed before to conclude that very mild brain trauma

may be involved in the development of mild cognitive impairment in senescent patients.
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Table 1
PMID 1% Author, Age_1 Age_2 Method No. Survival Cranio  Histo (*) Neuro  Behave Obs.
year, Hits tomy
Reference
24385964 Sun_D, 2013 1mo 24 mo LFP 2 atm 1 2d Yes Yes, proteomics + NA NA Increased apoptosis
[31] Dentate gyrus in aged group,
23238576 Titus 3 mo 19 mo LFP mild 1.5 and 1 1-3d Yes Yes, NA Yes mTBI lowered
2013 [32] moderate 1.9 proteomics + cAMP in aged
atm hippocamp animals
hippocamp,
proportional cu
impact (low impact
affects just aged,
High impact, both
groups)
31039431 Sun_M 3mo 12mo LFP 2 atm 1 7d Yes Yes Yes Yes, Worse in Bone fracture may
2018 [33] hippocamp MRI aged exacerbate brain
inflammation
worse behavioral
27449121 Rowe, 2016 Rats from 6 mo MidFP 1.5-2 atm 1 6 mo max Yes NA Yes No depression, 5 groups, aim was
[34] <l moto (age dependent) anxiety if mTBlin  to evaluate age at
6 mo adulthood injury and aging
with mTBI using
acute and chronic
behavior batteries
22374222 Itoh, 21/2 mo 24 mo CHI 1 1,3,7d No Yes NA Yes, cognitive free radicals
2013 [35] Impaired in old increased in aged
group
1335138 Hamm, 3mo 20 mo LFP, medium 1.7- 1 5 d motor, Yes Yes Yes Yes, Significant Selective cognitive
1993 [36] 1.8 atm 12d cognitive deficits
cognitive impairment in hippocampus
aged related. No motor

or cognitive in
young group

Table 1. Single mild brain trauma in senescent rats. (*): axonal destruction, apoptosis, activation of astrogliosis and microgliosis,
inflammation, LFP: lateral fluid percussion, MidFP: midline fluid percussion, CHI: closed head injury, d: days, mo: months.

Histo: histology; Neuro: neurologic; Behave: Behavioral
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Table 2.
PMID 1¢t Author, Year, Age 1 Age 2 Method No. Survival Cranio  Histo (*) Neuro  Behave Obs.
Reference
32290848 Early, Adult Old 18 mo Ccl, 1 1,3,7 Y Y NA NA aged increased altered
4mo d . ) edema, inflammation
2020 [37] 4m/s, Transcriptomics+ and astrocytes function
in4
0.9, 30ms (aquaporin 4)
30904769 Ritzel Adult Old 18 mo Ccl, 1 3d Y Y Y Anxiety Microglial sensitivity and
3mo (sham peripheral immune
2019 [38] 6m/s, no Cytokines+ dysfunction
1mm, 50 ms cranio) Transcriptomics+
23273602 Kumar 3 mo 24 mo CClem/s, 2 1 1,7d Y Y NA NA Highly reactive
mm _ macrophage and
2013 [39] Proteomics+ microglia, hippocamp
27090212 Morganti 3 mo 23 mo CCl 4,0.95 1 1d Y Y NA NA Peripheral CCR2 macro
300ms recruit increased in aged
2016 [40] Proteomics+ brains
29848996 Chou 3-6 20-25 mo CCl 4m/s, 1 4,7, Y Y NA Y (spatial CCR2/5 response
mo 0.95, 300ms 28d . learning and increased in aged
2018 [41] Proteomics+ memory) reducing behavioral
recovery
30486287 Krukowski NA 19mo CCl 4m/s, 1 1mo Y Y Y Y (spatial Complement activation,
0.95, 300ms learn and loss of synapses,
2018 [42] Complement memory) increased macrophages
Clq, C3,CR3
MRI-T2: lesion size
peaked, cavitation size
increase, hippocamp
CD11 increase
22952778 Timaru-Kast 2mo 21mo CCl, 8m/s, 1 1h, Y Y, Y Y Age effect on Brain
1mm, 150 24h, 3 Edema Formation,
2012 [43] m/s d IL1, ILe TNF Secondary Brain Damage

and Inflammatory
Response inflammaging
=increase of IL1, IL6,
TNF x2 in aged animals

Proteomics+
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29269117 Cheng 3mo 13mo CHIMERA, 50 2 14d-8 No Y Y Y APP vs WT. In WT,
gr, 0.5m/s mo _ microgliosis and axonal
2018 [44] (0.6)) Proteomics+ injury may persist 8 mo

after injury

30636629 Cheng 3 mo 13 mo CHIMERA, 1 14d No Y Yimpact Y threshold increase of Iba
0.1-0.7J =>0.5) and GFAP in corpus
2018 [45] callosum
25904805  Webster APP1 WT CHI 5m/s, 1 9h, 1d, No Y Y Y APP/PS1 KI AD model.
(8mo) 1mm, 100 7d,1 One single hit delays the
2015 [46] ms mo 3 Proteomics+ inflammatory response

mo and produce more
inflammation vs WT

23953759 Hefendehl 3mo, NA Laser (910 21d Yes Y NA NA Microglia soma increased,
12 nm, 15s) process length decreased,
2014 [47] mo, low responsiveness, no
27 mo homogenous distrib.

(photon microscopy)

Table 2. Single mild brain trauma in senescent mice (*): axonal destruction, apoptosis, activation of astrogliosis and microgliosis, inflammation;
APP/PS1: Alzheimer disease mouse model, WT: wild type, CCI: controlled cortical impact, CHI: closed head injury, CHIMERA: Closed-Head Impact
Model of Engineered Rotational Acceleration, Y=Yes, NA=not available, AD: Alzheimer disease, nm: nanometers, s: seconds, d:days, mo: months.
Histo: histology; Neuro: neurologic; Behave: Behavioral
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Table 3
PMI 1t Author Age_1 Age_2 Method Number Survival Craniotomy  Histo (*) Neuro Behave Obs
Hits
22245525 Shultz Adult rat NA LFP, very mild 1 4days/ Yes Yes No No Increased microglial/
2012 [48] (300 grm) (0.5 atm) 1month macros and reactive
astrogliosis
21704658 Shultz Adult rat NA LFP 1 atm 1 24h/1mo  Yes Yes NA Cognitive, Astrogliosis and
2011 [49] anxiolytic microgliosis in corpus
callosum
21933013 Shultz Adult rat NA LFP 1 atm 1-3-5 5d/2 mo Yes Yes Yes Yes Apoptosis, cortex and
2012 [50] (repeated) hippocamp
8155285 Hamm Adult rats NA LFP 2 atm 1 7d/12d Yes Yes Yes Yes Selective hippocampal
1993 [51] modification with
neurobehavioral changes
of the environment and a
flexible response to it
30998995 Arulsamy Rats 12mo NA WD (450 gr, 1 12 mo No Yes Yes Yes Age and not mTBI
2019 [52] 0.75 m) Proteomics + intensity affect executive
function
28855139 Collins-Praino Rats 3 mo NA WD 1 3 mo No Yes L1, IL6, TNF  No Yes mTBI induces changes
[53] (9 cytokines) when microglial priming
exists
20528171 Spain Adult mice NA LFP, 0.9 atm 1 4h—-1% Yes Yes Yes Yes, PT changes unmyelinated
2010 [54] mo Learning axons in both ipsi and
contra
26774527 Muccigrosso Adult mice NA MidPF 1 1mo Yes (IL-1B, CCL2, Yes Yes, at 1 mo Hippocampal Learning
2016 [55] 1.2 atm TNFa after 1-week, anterograde
learning after 1 mo
28910378 Taib Adult mice NA CCl, 3.5m/s, 1 1w-3 mo Yes IL1b and CD11b Signific.  Yes, +at3 Neuro-inflammation
2016 [56] 1mm, 50ms increased max at3mo mo (microglia) and WMI.
at 3 days + Myelin sheath defects in
demyelination corpus callosum at 3
at3moin CC months (em)
Proteomics+
24289885 Fenn 3 mo, mice NA LPF 2 atm 1 7d-1mo  Yes Yes Yes Yes, primed microglia reduced
2014 [57] Motor depressive motility and increased
like soma
24223856 Tajiri Adult mice NA CCl4.0 m/s, 1 1 1% mo Yes Increased Abeta Significant Tg2576 APP mice, more
2013 [58] mm, 150 ms deposits errors Abeta in both cortex and
hippocam
29993324 Mouzon 3 mo, mice NA CHI5m/s lor5 12 mo No Yes Yes Yes, hTau minimal after 1
2019 [59] 1mm, 200 ms CA1/CA3 Cognitive impact, WMI present
hippocamp impair at
single
impact
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29376093 Mouzon 3 mo, mice NA CHI 5m/s 1 24 mo No Yes Yes Yes, |ba-1, GFAP+, la 24
2017 [60] 1mm, 200 ms Astrogliosis and increased months after single
reduced cc thick risk behavior  impact
at 24 mo
29808778 Lyons 4 mo mice NA CHI 5m/s, 1, 1 3d, 28d No Yes NA Learning & mitochondria metabolism
2018 [61] 100ms spatial deficit after single impact,
memory worsen in time. MRI
12732240 Zohar 2 mo mice NA WD 20,25,30 1 7d, 1 mo, No Yes No Learningand MRl ex-vivo
2003 [62] grms 2mo, 3 differe spatial
mo nce memory
21499325 Zohar 2 mo mice NA WD 1 7d, 1 mo, No No No depressive
2011 [63] 20,25,30 2 mo, 3 like
grms mo
24312187 Rachmany 2 mo mice NA WD 1 3d,7d,1  No Yes, diffuse Yes Yes cell culture, p53
2013 [64] 30 grms mo
22892942 Rachmany 2 mo mice NA WD 1 24h,3d, No Yes, diffuse No Yes
2012 [65] 30 grms 7d
17174280 Tashlykov 2 mo mice NA WD 1 3d No Yes, cingulate No Yes Apoptosis hippocamp and
2006 [66] 5-30 grms cortex prop. with trauma
intensity.
18651249 Tashlykov 2 mo mice NA WD 1 3d No Yes p53 and NA NA minimal trauma (>10
2008 [67] 5-30 grms Bcl-2 grms) induces apoptosis
in dentate and hippocamp
25879458 Baratz 2 mo mice NA WD 1 1-18h,72 No Yes, GFAP NA Cognitive Apoptosis, TNF,
2015 [68] 50 grms h, impairment astrogliosis
7 days
24550885 Luo 3 mo mice NA CHI, 3-5m/s, 1-3 1d No Yes, CREB No Cognitive Short term inflammation
2014 [69] 200ms, 6 mo change  impair after exists after single
0.9mm s after repeated
single
32641073 Taylor 3 mo, mice NA NA No NA NA Reduce cortical NA NA Cerebral microbleeds
2020 [70] 17 mo, thickness and (MRl in-vivo and ex-vivo +
25 mo increase histo) without previous
ventricular trauma.
volume
24756076 Aungst 3 mo rats NA LFP 1.1 atm 1-3 28 days Yes neuronal cell Yes Yes Focussed on hippocamp.
2020 [71] loss Spatial learning, memory,
increased observed only after
numbers of repetitive trauma in
activated young animals
microglia

Table 3. Associated studies related to mTBI in adult and senescent rats (*) axonal destruction, apoptosis, activation of astrogliosis and
microgliosis, inflammation; LFP: lateral fluid percussion, MFP: midline fluid percussion, WD: weight drop, CHI: closed head injury,
NA - not available, PT: posttraumatic, MRI: magnetic resonance imaging, em: electronic microscopy, CC: corpus callosum

Histo: histology; Neuro: neurologic; Behave: Behavioral
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