This paper presents an extended Kalman filter derivation for loosely coupled GPS (Global Positioning System)/INS (Inertial Navigation System) integration based on quaternion attitude representation using the Earth-Centered Earth (ECEF) Frame. In this loosely coupling integration, both the position and velocity estimates from GPS receiver are used as the measurements to extended Kalman filter, and then they are integrated with inertial measurements from inertial measurement units (IMU) to estimate the attitude, position and velocity of an air vehicle. The velocity estimates which have centimeter level estimation error from the GPS receiver are used to improve the filter performance. For attitude estimation, the global attitude parameterization is given by a quaternion and a multiplicative quaternion-error approach is used to guarantee a normalization constraint of quaternion in the filter. Simulation results are shown to obtain the estimation of the attitude, position, velocity, biases and scale factors and to evaluate the performance of the EKF with the measurement combination composed of the two different t
Keywords:
Subject: Engineering - Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.