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ABSTRACT 

Meprin α and β are zinc-dependent proteinases implicated in multiple diseases including cancers, 

fibrosis, and Alzheimer’s. However, until recently, only a few inhibitors of either meprin were 

reported and no inhibitors are in pre-clinical development. Moreover, inhibitors of other 

metzincins developed in previous years are not effective in inhibiting meprins suggesting the need 

for de novo discovery effort. To address the paucity of tractable meprin inhibitors we developed 

ultra-high throughput assays and conducted parallel screening of >650,000 compounds against 

each meprin. As a result of this effort, we identified 5 selective meprin α hits belonging to three 

different chemotypes (triazole-hydroxyacetamides, sulfonamide-hydroxypropanamides, and 

phenoxy-hydroxyacetamides).  These hits demonstrated a nanomolar to micromolar inhibitory 

activity against meprin α with low cytotoxicity and >30-fold selectivity against meprin β and other 

related metzincincs. These are the most selective inhibitors of meprin α to date.  
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INTRODUCTION 

Meprin α and meprin β are zinc-dependent proteinases implicated in multiple diseases including 

cancers 1, fibrosis 2, 3, and Alzheimer’s 4, 5. Due to the relatively recent discovery of meprins’ 

involvement in pathologic conditions there are very few reports of inhibitors discovery efforts for 

these enzymes. Kruse et al., 6 reported several known metzincin inhibitors that are capable of 

inhibiting meprins with some degree of selectivity. However, these inhibitors were not selective 

for other metzincins, which made their utilization for studying the roles of meprins in various 

diseases difficult. Our group had reported the first low nanomolar meprin β inhibitors, NFF449 

and PPNDS (Fig. 1, Ki = 22 nM and 8 nM, respectively), with ~100-fold selectivity against meprin 

α and good selectivity against adamalysins and matrixins 7. Ramsbeck et al., (2017) reported the 

low nanomolar selective meprin β inhibitor, 11g, with 46-fold selectivity against meprin α (Fig. 1, 

IC50 = 2,735 nM and 60 nM for meprin α and β, respectively) with good selectivity against 

adamalysins and matrixins 8. They also reported improved compounds based on the same scaffold 

9 (Fig. 1). The best compounds from this series, 8h and 8i, are 27-fold and 15-fold selective against 

meprin α (IC50 = 23 nM and 626 nM for 8h and 24 nM and 368 nM for 8i, for meprin β and α, 

respectively). 200 µM of either inhibitor had only limited effect on MMP and ADAM activity, but 

IC50 values were not reported. Tan et al., (2018) reported the first selective inhibitors of meprin α, 

10d and 10e, with 18- and 19-fold selectivity against meprin β 10 (Fig. 1). Herein we report the 

results of a large-scale parallel high screening throughput effort to discover novel inhibitors of 

meprin α and meprin β. 
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Figure 1. Synthetic selective meprin inhibitors described to date.  

 

RESULTS  

Assay miniaturization and optimization in 1,536 well plate format. The meprin α and meprin 

β assays, which utilize the substrates (Mca)-YVADAPK-(K-ε-Dnp) and (Mca)-EDEDED-(K-ε-
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Dnp), respectively, have been described previously 7. To enable an ultra-high-throughput 

screening (uHTS) campaign, we proceeded to miniaturize both assays to 1,536 well plate format 

(wpf). First, we recapitulated the assays in 1,536 well plate using reagents at the same 

concentrations as in a 384 well plate format assays by scaling the volume down by the factor of 

2.5. This resulted in the final volume of the assays of 4 µL. The meprin α assay in 1,536 well plates 

demonstrated a lower signal-to-basal (S/B) ratio than in 384 well plates (1.85 vs 2.3, respectively), 

but a better Z’ value (0.76 vs 0.6, respectively), suggesting that the assay is very suitable for large-

scale HTS 11. Actinonin’s IC50 values were within 2-fold of each other (5.7 nM and 11 nM for 

1,536 and 384 well plate format, respectively) (Fig. 2A and Table 1).  

 

Figure 2. Assay recapitulation in 1,536 well plate format. Concentration response studies in 
384 and 1,536 well plate formats show similar potency of pharmacological controls for (A) meprin 
α (actinonin) and (B) meprin β (NF449) assays. Both assays were performed in triplicate.  

 

Table 1. Comparison of meprin α and meprin β assay parameters in 384 and 1,536 well plate 

formats. 

Assay S/B Z’ Actinonin IC50, nM NFF449 IC50, nM 
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Meprin α 384 wpf 2.3 0.6 11 >100,000 

Meprin α 1,536 wpf 1.85 0.76 5.7 >100,000 

Meprin β 384 wpf 4.4 0.9 22,000 53 

Meprin β 1,536 wpf 6.9 0.91 9,750 48 

 

Meprin β assay exhibited greater S/B in 1,536 wpf than in 384 wpf (6.9 vs 4.4, respectively), while 

Z’ factor values were identical at 0.9. NFF449 IC50 values were 48 nM and 53 nM for 1,536 and 

384 wpf, respectively (Fig. 2B and Table 1). Despite excellent Z’ values in the 1,536 wpf in both 

assays, we wanted to ensure an optimal balance between robustness and sensitivity; in particular 

with meprin α. 

First, both assays were run for 180 min at three different enzyme concentrations including the 

concentrations at which the assays were recapitulated in 1,536 wpf (1.3 nM and 0.05 nM for 

meprin α and meprin β, respectively). QC parameters (Z’ and S/B) and IC50 values of 

pharmacological controls (actinonin and NFF449) were calculated at 30, 60, and 90 min of the 

reaction time. The meprin α assay displayed the best S/B values after 90 min of reaction time using 

1.3 nM enzyme; however, the reaction progress curve was not linear at the 90 min time point (Fig. 

3A). This suggested that while longer reaction times and higher than 1.3 nM enzyme concentration 

may lead to somewhat better S/B values, the assay sensitivity may suffer due to a non-linear 

relationship between signal and proteolysis inhibition. Therefore, to ensure optimal assay 

sensitivity, we chose 60 min reaction end point and 1.3 nM meprin α as final assay conditions for 

the primary HTS campaign. 
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The meprin β assay progress curve was hyperbolic rather than linear at 0.05 nM and 0.025 nM 

enzyme; therefore, we chose 0.0125 nM enzyme concentration where assay linearity was 

demonstrated (Fig. 3B). Z’ and S/B values were acceptable at 60 min reaction end point (0.86 and 

2.6, respectively). IC50 values of NFF449 were not significantly affected by the variations of 

reaction length and meprin β concentrations. 

 

Figure 3. Enzyme concentration and time of reaction optimization experiments in 1,536 wpf. 
(A) Meprin α 1,536 wpf assay optimization study. (B) Meprin β 1,536 wpf assay optimization 
study. Experiments repeated twice, n=4. S/B – signal-to-basal ratio. 

Next, we performed substrate optimization to achieve balanced assay conditions defined as [S]/KM 

= 1 12. In order to do that, we first determined kinetic parameters of proteolysis of meprin α and 
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meprin β substrates by the respective enzymes (Fig. 4A and B). Meprin α and meprin β proteolysis 

exhibited similar KM values (2.4 ± 0.3 µM and 2.7 ± 0.7 µM, respectively) suggesting the need for 

optimization of both assays’ substrate concentration. Meprin β exhibited >20-fold faster turnover 

of its substrate than meprin α (6.4 ± 0.06 s-1 versus 0.29 ± 0.06 s-1, respectively) which is consistent 

with >100-fold difference in enzyme concentrations for meprin α and meprin β assays (1.3 nM 

versus 0.0125 nM, respectively). To optimize substrate concentrations, both assays were run for 

90 min at three different substrate concentrations (10, 5, and 2.5 µM) which included the 

concentration at which the assays were recapitulated in 1,536 wpf (10 µM for both meprin α and 

meprin β) and the concentration approximating [S]/KM = 1 condition (2.5 µM). Enzyme 

concentrations were fixed at 1.3 nM for meprin α and 0.0125 nM for meprin β. QC parameters (Z’ 

and S/B) and IC50 values of pharmacological controls (actinonin and NFF449) were calculated at 

40, 60, and 90 min of the reaction time (Fig. 4C and D). 2.5 µM substrate condition resulted in 

increased apparent potency of pharmacological controls for both assays (2-fold for actinonin in the 

meprin α assay and 3-fold for NFF449 in the meprin β assay). This suggested that 2.5 µM substrate 

concentrations result in greater assay sensitivity. Assay QC parameters (S/B and Z’) at 2.5 µM 

substrate concentrations did not differ significantly from assays run at 10 µM substrate 

concentrations; therefore, we chose 2.5 µM substrate concentrations as a final assay condition. 
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Figure 4. Substrate concentration optimization experiments in 1,536 wpf. Results of kinetic 
studies of (A) meprin α and (B) meprin β hydrolysis of respective substrates. (C) Meprin α 1,536 
wpf assay optimization study. (D) Meprin β 1,536 wpf assay optimization study. Experiments 
repeated twice, n=4. 
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Online Robotic Pilot Study. To ascertain the readiness of the assays for large-scale screening 

effort, a small pilot screen was conducted using online robotics. Overall, ~39,000 compounds were 

tested using 31 assay plates in both meprin α and meprin β assays. Both assays performed well on 

the Kalypsys robotic system, as the meprin α assay average Z’ and S/B were 0.88 ± 0.03 and 2.9 

± 0.07, respectively, while the meprin β assay average Z’ and S/B were 0.91 ± 0.03 and 4.5 ± 0.17, 

respectively. 169 and 260 hits were identified in the meprin α and meprin β assays, respectively, 

which constituted 0.43% and 0.67% hit rates, respectively. After removal of duplicates, Venn 

analysis showed that 37 compounds inhibited both meprins, while there were 129 compounds 

selectively inhibiting meprin α and 220 compounds selectively inhibiting meprin β, suggesting that 

selective probes for both enzymes can be discovered. This also suggested that both assays are 

ready for large scale effort. 

Primary HTS Campaign. Primary HTS campaigns were conducted using The Scripps Research 

Institute proprietary library of 649,570 compounds using both meprin α and meprin β assays 13. 

Overall, 522 plates were used for each assay with excellent QC parameters (average Z’ = 0.86 ± 

0.04 and average S/B = 2.8 ± 0.09 for meprin α assay and average Z’ = 0.88 ± 0.03 and average 

S/B = 4.4 ± 0.27 for meprin β assay). IC50 values of control compounds were reproducible with 

literature and our preliminary experiments (meprin α actinonin IC50 = 2.9 ± 0.12 nM, n=11 plates; 

meprin β NF449 IC50 = 10.4 ± 0.85 nM, n=11 plates). Using hit cutoffs derived from the average 

and 3 standard deviations of the activity of all samples tested which were 10.76% and 14.33% for 

the meprin α and meprin β assays, 5,064 and 4,929 hits were identified which constituted hit rates 

of 0.78% and 0.76%, respectively. It was noted that the majority of meprin α hits exhibited % 

inhibition close to the hit cutoff, whereas meprin β hits were distributed evenly in the range of 20-

100% inhibition (Fig. 5A and B). 
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After removal of a handful of duplicates, Venn analysis showed that 1,416 compounds inhibited 

both meprins, while there were 3,632 compounds selectively inhibiting meprin α and 3,470 

compounds selectively inhibiting meprin β (Fig. 5C). Correlational analysis showed 48 and 39 

compounds selectively inhibiting meprin α and meprin β, respectively, with %inhibition ≥ 50 (Fig. 

5D).  
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Figure 5. Primary uHTS campaigns. Scatter plots of (A) meprin α and (B) meprin β primary 
campaigns. Overall, >650,000 compounds were screened in singlicate against each target. (C) 
Venn diagram of meprin α and meprin β uHTS hits shows 1,416 non-selective hits, 3,632 meprin 
α and 3,470 meprin β nominally selective hits. (D) Correlation plot of meprin α and meprin β 
actives demonstrates distribution of hits. (E) Venn diagram of meprin α and meprin β confirmation 
assays shows confirmed 81 confirmed non-selective hits, 125 meprin α and 1,016 meprin β 
confirmed selective hits. Each confirmation assay was performed in triplicate. (F) Correlation plot 
of meprin α and meprin β actives demonstrates distribution of hits. (G) Venn diagram of meprin α 
and β hits screen against the counter targets MMP-8, MMP-14, and ADAM10. 84 meprin actives 
inhibited one of three counter targets. (H) Venn diagram of meprin α and β hits versus three 
combined counter targets. 117 compounds selectively inhibited meprin α while 960 compounds 
selectively inhibited meprin β. 

Hit confirmation and prioritization. For the confirmation assays all compounds that inhibited 

either meprin with >20% inhibition were selected. Confirmation assays were done at a single 

concentration point in triplicate. Out of 2,378 total compounds tested in confirmation assays, only 

206 confirmed activity against meprin α and 1,097 confirmed activity against meprin β constituting 

8.7% and 46.1% confirmation rate for meprin α and meprin β, respectively. The low confirmation 

rate for meprin α was not unexpected due to the majority of meprin α hits from the primary 

campaign being close to the hit cutoff (Fig. 5A). 

Venn analysis showed that 81 compounds inhibited both meprins, while there were 125 

compounds selectively inhibiting meprin α and 1,016 compounds selectively inhibiting meprin β 

(Fig. 5E). Correlational analysis showed 19 and 12 compounds selectively inhibiting meprin α and 

β, respectively, with ≥50% inhibition (Fig. 5F). Overall, 827 compounds exhibited >20% 

inhibition.  

It was also noted that the majority of the most active hits for each enzyme were potential Zn-

binders due to the presence of hydroxamate and reverse hydroxamate moieties. Compounds acting 

via Zn binding may be undesirable due to clinical trial failures observed previously based on a lack 

of selectivity, toxicity, and metabolic instability. To prioritize selectivity, we introduced additional 
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assays to help with triaging the compounds to ascertain that we are not biasing for non-selective 

compounds. We utilized ADAM10, MMP-8, and MMP-14 as the most relevant counter targets. 

The counter screens were conducted in triplicate using the same 2,378 compounds that were tested 

in confirmation assays. 

Venn analysis showed that 84 meprin actives inhibited at least one counter target (Fig. 5G), while 

there were 117 compounds selectively inhibiting meprin α and 960 compounds selectively 

inhibiting meprin β (Fig. 5H) and 14 and 75 compounds selectively inhibiting meprin α and meprin 

β, respectively, with ≥50% inhibition. Cheminformatics analysis of the Scripps HTS assay 

database containing hundreds of biological assay results showed that 660 out of 1,237 confirmed 

hits were not promiscuous; meaning they hit in less than 5 other assays.  Out of these 660 

compounds 536 were meprin α active and 195 were meprin β active. Medicinal chemistry triage 

suggested that 289 compounds out of 536 meprin α actives were tractable, while out of 195 meprin 

β actives 180 were tractable, which constitutes 469 total tractable compounds. Removal of 62 

duplicates left us with 407 unique compounds of which 404 were available for concentration 

response studies. Despite the majority of top actives from the 2,378 primary HTS hits being 

potential Zn-binders, the hit rate in counter screens was <2.0% (Fig. 5G and H) suggesting low 

metzincin promiscuity of meprin hits. 

We conducted concentration response studies of 404 compounds in meprin α and β assays using 

10-point 3:1 serial dilutions starting at the highest concentration of 17.4 µM in triplicate. Out of 

404 tested compounds, 13 exhibited IC50 values <1 µM and 47 <5 µM in in both meprin α and 

meprin β assays. 

To pick compounds for further characterization and probe development we used a cutoff of IC50 

values < 10 µM against either meprin and 10-fold selectivity window for meprin α or meprin β. 
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Additionally, we picked the top selective compounds with IC50 values <10 µM that had no apparent 

Zn-binding moieties. More specifically, we prioritized selective compounds without apparent Zn-

binding groups (hydroxamates, carboxylates, etc.). Using these criteria, we selected 46 

compounds. Interestingly, the majority (42) were selective for meprin β and only 4 were selective 

for meprin α. These 46 potentially non-Zn-binding compounds were clustered in 21 distinct 

scaffolds. The most populated scaffold had 9 members suggesting its amenability to medicinal 

chemistry. 

The second group of compounds was chosen based on selectivity between main target (either 

meprin α or β) and four other tested metzincins (either meprin α or meprin β, ADAM10, MMP-8, 

and MMP-14) and potency towards the main target (either meprin α or meprin β) regardless of the 

presence of Zn binders. These criteria yielded 41 compounds belonging to 17 distinct clusters. 

Interestingly, the majority (32) were selective for meprin α and only 9 were selective for meprin 

β, which is the opposite trend from non-Zn-binders. 

Hit potency, selectivity, and cytotoxicity. We were able to procure 64 out of 87 selected 

compounds from commercial sources, which we tested in triplicate, 10-point, 3:1 serial dilution 

concentration response format starting at the highest concentration of 17.4 µM against both meprin 

α and meprin β. In addition to meprins, we also tested 64 hits against related metzincins (MMP-2, 

MMP-3, MMP-8, MMP-9, MMP-10, MMP-14, ADAM10, and ADAM17) to ascertain general 

non-promiscuity against zinc-dependent proteases.  

Table 2. Selectivity testing of meprin α top HTS hits. All units are IC50, µM. 

Compound 
ID 

 Structure Meprin  
α 

Meprin 
β 

MMP2 MMP3 MMP8 MMP9 MMP10 MMP14 ADAM17 
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The top nine compounds exhibited IC50 values ≤1 µM against meprin α (Table 2). Examination of 

structures of meprin α top hits revealed that they fall into four groups (Fig. 6), thiadiazole-

hydroxyacetamides (SR19849, SR19848, SR19847), triazole-hydroxyacetamides (SR19850, 

SR19855), sulfonamide-hydroxypropanamides (SR162808, SR162799), and phenoxy-

hydroxyacetamides (SR1220670, SR1596857). SR162808 was the most potent and selective 

19847 
  

0.892 1.43 2.87 >17 >17 >17 >17 >17 >17 

19848 
 

 

0.335 0.385 >17 >17 >17 >17 >17 >17 >17 

19849 
  

0.218 0.287 >17 >17 >17 >17 >17 >17 8.01 

19850 

  

0.564 17 17 >17 >17 >17 >17 >17 5.03 

19855 

  

1.3 >17 >17 >17 >17 >17 >17 >17 >17 

1596857 

  

1.18 >17 >17 >17 >17 >17 >17 >17 >17 

220670 
 

 

1.12 >17 >17 >17 4.20 17 >17 >17 >17 

162799 

  

0.564 >17 >17 >17 >17 >17 >17 >17 >17 

162808 

  

0.446 >17 17 >17 >17 >17 >17 >17 >17 
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inhibitor of meprin α with an IC50 value of 0.446 µM and >30-fold selectivity against meprin β 

and other tested metzincins (Table 2). Both sulfonamide-hydroxypropanamides (SR162808 and 

SR162799) exhibited sub-micromolar IC50 values for meprin α inhibition and >30-fold selectivity 

against meprin β and other tested metzincins.  
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Figure 6. Results of concentration response studies of top potent and selective meprin α 

inhibitors. 

The top meprin β inhibitors belonged to two structural families (Fig. 7 and Table 3), isobutyryl-

tetrahydronaphthalen-amides (SR910128, SR910130, and SR910140) and nitrofuran-containing 

compounds (SR207820 and SR412882). Compound SR355996 was the only representative of the 

bis-nitrobenzoic acid scaffold. 

 

Figure 7. Results of concentration response studies of top potent and selective meprin β 

inhibitors. 
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Table 3. Selectivity testing of meprin β top HTS hits. All units are IC50, µM. 

 

 

We also tested representative compounds from each scaffold for effects on skin fibroblast and 

melanocyte viability to ascertain cytotoxicity towards various skin cell types. Overall, hits showed 

either none or very little effect on cell viability (Fig. 8) suggesting a lack of general cytotoxicity 

and amenability of hit chemotypes for the development into in vitro probe for biological studies. 

Compound 
ID 

 Structure Meprin 
α 

Meprin 
β 

MMP-
2 

MMP-
3 

MMP-
8 

MMP-
9 

MMP-
10 

MMP-
14 

ADAM17 

SR207820 

   

>17 1.5 >17 17 >17 >17 >17 >17 >17 

SR412882 

   

>17 3.5 >17 15 >17 >17 9.7 10.5 17 

SR910128 

  

 

>17 1.0 >17 >17 3.1 4.5 >17 >17 >17 

SR910130 

   

>17 2.0 >17 >17 3.0 9.9 >17 >17 >17 

SR910140 

  

 

>17 1.6 >17 >17 4.0 10 >17 >17 >17 

SR355996 

  

 

>17 0.97 >17 >17 >17 17 >17 >17 >17 
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Figure 8. Results of cytotoxicity studies of representative meprin α and meprin β inhibitors. 

(A-C) Meprin α inhibitors. (D-F) Meprin β inhibitors. 

DISCUSSSION 

As the result of the uHTS effort we discovered and characterized several novel scaffolds with 

activity against meprin α and meprin β. All top selective meprin α HTS hits contain a hydroxamate 

moiety, whereas meprin β hits lack one. Based on the presence of the hydroxamate moiety in 

meprin α inhibitors it is likely that they act via binding of the active site zinc atom as was 

demonstrated for numerous other metzincins. Tan et al., 10 proposed the interaction model whereby 

the hydroxamic moiety of an analog of compounds 10d and 10e (Fig. 1) binds zinc and carboxylate 

moieties interact with residues of the S1 and S1’ subsites. Based on this model, the selectivity of 

10d and 10e is derived from differences between meprin α and meprin β S1 and S1’ subsites. Both 

10d and 10e structures are symmetric with a central hydroxamate moiety connected via propyl 

linkers to either terminal benzodioxanes or benzodioxols. Our HTS hits are unlikely to interact 
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with both subsites as the hydroxamate is terminal in all cases. Similar to 10d and 10e, most of the 

hits (Table 2) have at least one other electronegative moiety in addition to the hydroxamate that 

could be interacting with positively charged residues in either subsite of meprin α. However, only 

5 (SR19855, SR1596857, SR220670, SR162799, and SR162808) out of 9 hits show selectivity for 

meprin α suggesting that additional interactions may be responsible for selectivity against meprin 

β.  

The most selective and potent meprin α HTS hit, SR162808, exhibited more than 30-fold 

selectivity against meprin β and other metzincins (Table 2) and no cytotoxicity (Fig. 8b). For 

comparison, 10d and 10e exhibit 18-fold and 19-fold selectivity, respectively (Table 4). 

Unfortunately, nothing has been reported about their effects on cell viability. For in vivo probe or 

drug lead development a significant selectivity and toxicity window are extremely important; 

therefore, SR162808 represents a good starting point for a medicinal chemistry optimization effort. 

In conclusion, an HTS campaign lead to the discovery of 5 selective meprin α hits belonging to 

three different chemotypes: triazole-hydroxyacetamides (SR19855), sulfonamide-

hydroxypropanamides (SR162808 and SR162799), and phenoxy-hydroxyacetamides (SR1220670 

and SR1596857). The chemical diversity of the HTS hits, a good metzincin selectivity profile, and 

low cytotoxicity suggest that these hits can be developed into more potent compounds for in vivo 

studies. 

Table 4. Comparison of SR19855 and compounds 10d and 10e from 10. All units are IC50, µM 

ID Meprin α Meprin β Selectivity Fold 

SR162808 0.30 >17 38 

10d  0.16 2.95 18 

10e  0.40 7.59 19 
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MATERIALS AND METHODS 

Reagents. MMP-1, MMP-2, MMP-8, MMP-9, MMP-10, MMP-13, MMP-14, ADAM10,  

ADAM17 and Mca-KPLGL-Dpa-AR-NH2 fluorogenic peptide substrate were purchased from 

R&D Systems (cat # 901-MP, 902-MP, 908-MP, 911-MP, 910-MP, 511-MM, 918-MP, 936-AD, 

930-ADB, and ES010, respectively). All common chemicals were purchased from Sigma. NFF449 

was purchased from Tocris (cat# 1391) and actinonin was from Sigma-Aldrich (cat# 01809).  

HTS substrate synthesis. Meprin α and meprin β substrates ((Mca)-YVADAPK-(K-ε-Dnp) and 

(Mca)-EDEDED-(K-ε-Dnp), respectively) 14 were synthesized utilizing Fmoc solid-phase 

methodology on a peptide synthesizer. All peptides were synthesized as C-terminal amides to 

prevent diketopiperazine formation 15. Cleavage and side-chain de-protection of peptide-resins was 

for at least 2 h using thioanisole-water-TFA (5:5:90). The substrates were purified and 

characterized by preparative RP HPLC and characterized by MALDI-TOF MS and analytical RP 

HPLC. 

Meprins expression protocol. Recombinant human meprin α and meprin β were expressed using 

the Bac-to-Bac expression system (Gibco Life Technologies, Paisley, UK) as described 16-18. 

Media and supplements were obtained from Gibco Life Technologies. Recombinant Baculoviruses 

were amplified in adherently growing Spodoptera frugiperda (Sf)9 insect cells at 27°C in Grace’s 

insect medium supplemented with 10% fetal bovine serum, 50 units/mL penicillin, and 50 μg/mL 

streptomycin. Protein expression was performed in 500 mL suspension cultures of BTI-TN-5B1-

4 insect cells growing in Express Five SFM supplemented with 4 mM glutamine, 50 units/mL 

penicillin, and 50 μg/mL streptomycin in Fernbach-flasks using a Multitron orbital shaker 
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(INFORS AG, Bottmingen, Switzerland). Cells were infected at a density of 2×106 cells/mL with 

an amplified viral stock at a MOI of ~10. Protein expression was stopped after 72 h, and 

recombinant meprins were further purified from the media by ammonium sulfate precipitation 

(60% saturation) and affinity chromatography (Streptactin for Strep-tagged meprin α and Ni-NTA 

for His-tagged meprin β). Meprins were activated by trypsin, which was removed afterwards by 

affinity chromatography using a column containing immobilized chicken ovomucoid, a trypsin 

inhibitor. 

Meprin α and meprin β assays in 384 well plate. Both assays followed the same general protocol 

7. 5 µL of 2x enzyme solution (2.6 and 0.1 nM for meprin α and meprin β, respectively) in assay 

buffer (50 mM Hepes, 0.01% Brij-35, pH 7.5) were added to solid bottom black 384 low volume 

plates (Nunc, cat# 264705). Next, 75 nL of test compounds or pharmacological control (actinonin 

or NFF449) were added to corresponding wells using a 384-pin tool device (V&P Scientific, San 

Diego). After 30 min incubation at RT, the reactions were started by addition of 5 µL of 2x 

solutions of substrates (20 µM, mepin α substrate Mca-YVADAPK-K(Dnp) or meprin β substrate 

Mca-EDEDED-K(Dnp)). Reactions were incubated at RT for 1 h, after which the fluorescence 

was measured using the Synergy H4 multimode microplate reader (Biotek Instruments) (λexcitation 

= 324 nm, λemission = 390 nm). 

Three parameters were calculated on a per-plate basis: (a) the signal-to-background ratio (S/B); 

(b) the coefficient for variation [CV; CV = (standard deviation/mean) x 100)] for all compound 

test wells; and (c) the Z- or Z’-factor 11. Z takes into account the effect of test compounds on the 

assay window, while Z’ is based on controls. 

Determination of kinetic parameters of meprin α and meprin β mediated proteolysis of their 

respective substrates. Substrate stock solutions were prepared at various concentrations in HTS 
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assay buffer (50 mM Hepes, 0.01% Brij-35, pH 7.5). Assays were conducted by incubating a range 

of substrate concentrations (2–50 µM) with various meprin concentrations at 25 °C. Fluorescence 

was measured on a multimode microplate reader Synergy H1 (Biotek Instruments, Winooski, VT) 

using λexcitation = 324 nm and λemission = 393 nm. Rates of hydrolysis were obtained from plots of 

fluorescence versus time, using data points from only the linear portion of the hydrolysis curve. 

The slope from these plots was divided by the fluorescence change corresponding to complete 

hydrolysis and then multiplied by the substrate concentration to obtain rates of hydrolysis in units 

of M/s. Kinetic parameters were calculated by non-linear regression analysis using the GraphPad 

Prism 8.0 suite of programs. 

Meprin α and meprin β assays in 1,536 well plate format. Both assays followed the same 

general protocol. 2 µL of 2x enzyme solution (1.3 and 0.0125 nM for meprin α and meprin β, 

respectively) in assay buffer (50 mM Hepes, 0.01% Brij-35, pH 7.5) were added to solid bottom 

black 1,536 low volume plates (Corning cat# 7261). Next, 30 nL of test compounds or 

pharmacological control (actinonin or NFF449) were added to corresponding wells using a 1,536 

pin tool device (V&P Scientific, San Diego). After 30 min incubation at RT, the reactions were 

started by addition of 2 µL of 2x solutions of substrates (20 µM, meprin α substrate Mca-

YVADAPK-K(Dnp) or meprin β substrate Mca-EDEDED-K(Dnp)). Reactions were incubated at 

RT for 1 h, after which the fluorescence was measured using the Viewlux multimode microplate 

reader (Perkin Elmer) (λexcitation = 324 nm, λemission = 390 nm). 

Three parameters were calculated on a per-plate basis: (a) the signal-to-background ratio (S/B); 

(b) the coefficient for variation [CV; CV = (standard deviation/mean) x 100)] for all compound 

test wells; and (c) the Z- or Z’-factor 11. Z takes into account the effect of test compounds on the 

assay window, while Z’ is based on controls. 
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uHTS campaign. The miniaturized 1536-well plate format meprin α and meprin β assays were 

used to screen a collection of approximately 650,000 compounds (The Scripps Research library) 

on the automated Kalypsys/GNF platform at The Scripps Research Molecular Screening Center 

(SRMSC, Jupiter, FL, http://hts.florida.scripps.edu/). Both uHTS campaigns were run separately 

but in a similar manner. Briefly, the first step was the primary screen of all test compounds as 

singlicates against the meprin α and meprin β target at a final concentration of 7.0 μM. Next, 

compounds selected as primary hits were cherry-picked and retested in triplicate against the 

primary screen target and its anti-target (meprin α for the meprin β screening effort, and vice-

versa) at a same final concentration of 7.0 μM. The additional counter screen assays against related 

metzincins (MMP-8, MMP-14, and ADAM10) were performed in triplicate at a final concentration 

of 7.0 μM. The final step was the titration of selected hits as 10-point, 1:3 serial dilutions in both 

the target and anti-target assay, starting at a final nominal concentration of 17 μM. For all the 

aforementioned assays, actinonin and NFF449, for meprin α and meprin β, respectively, at a final 

concentration of 1 µM, were used as a positive control and reference for 100% inhibition. Wells 

treated with DMSO only were used as negative controls and 0% inhibition reference. The percent 

inhibition of each well was then normalized as follows: 

%_Inhibition = (RFU_Test_Compound - MedianRFU_Low_Control) / 

(MedianRFU_High_Control - MedianRFU_Low_Control) * 100 

where “Test_Compound” refers to wells containing test compound, “High_Control” is defined as 

wells treated with either actinonin or NFF449 (n=24) and “Low_Control” as wells containing 

DMSO only (n=24). All data generated during this effort were uploaded to the SRMSC’s 

institutional screening database (Assay Explorer, Symyx). Sample to background (S/B) ratios, as 
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well as Z and Z’ values, were calculated on a per-plate basis as described 7. Curve fitting and 

resulting IC50 determinations were performed as previously reported 19. 

ADAM10 and ADAM17 assays. Both assays followed the same general protocol. 2.5 µL of 2x 

enzyme solution (20 nM) in assay buffer (10 mM HEPES, 0.001% Brij-35, pH 7.5) were added to 

solid bottom black 1536 plates (Greiner, cat# 789075). Next, test compounds and pharmacological 

controls were added to corresponding wells using a 1536 pin tool device (V&P Scientific, San 

Diego). After 30 min incubation at RT, the reactions were started by addition of 2.5 µL of 2x 

solutions of substrate (R&D Systems cat#: ES010, Mca-KPLGL-Dpa-AR-NH2, 20 µM). Reactions 

were incubated at RT for 2 h, after which the fluorescence was measured using Perkin Elmer 

Viewlux multimode microplate imager) (λexcitation = 324 nm, λemission = 390 nm). Final concentration 

of test compounds in assays was 7.0 µM.  

MMP assays. All assays followed the same general protocol. 5 µL of 2x enzyme solution (5 nM) 

in assay buffer (50 mM Tricine, 50mM NaCl, 10mM CaCl2, 0.05% Brij-35, pH 7.5) were added 

to solid bottom black 384 plates (Nunc, cat# 264705). Next, test compounds and pharmacological 

controls were added to corresponding wells using a 384-pin tool device (V&P Scientific, San 

Diego). After 30 min incubation at RT, the reactions were started by addition of 5 µL of 2x 

solutions of substrate (R&D Systems cat#: ES010, Mca-KPLGL-Dpa-AR-NH2, 20 µM). Reactions 

were incubated at RT for 1 h, after which the fluorescence was measured using the Synergy H4 

multimode microplate reader (Biotek Instruments) (λexcitation = 324 nm, λemission = 390 nm).  

Cell toxicity studies. Test compounds were solubilized in 100% DMSO and added to 

polypropylene 384 well plates (Greiner cat# 781280). 1,250 of BJ skin fibroblasts (ATCC® CRL-

2522™) and primary melanocytes (ATCC® PCS-200-013™) were plated in 384-well plates in 8 

µL of serum-free media (HybriCare for BT474, EMEM for HEK293). Test compounds and 
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pharmacological assay control (lapatinib) were prepared as 10-point, 1:3 serial dilutions starting 

at 10 mM, then added to the cells using the pin tool mounted on the Integra 384. Plates were 

incubated for 72 h at 37°C, 5% CO2 and 95% relative humidity. After incubation, 8 µL of 

CellTiter-Glo® (Promega cat# G7570) was added to each well and incubated for 15 min at room 

temperature. Luminescence was recorded using a Biotek Synergy H1 multimode microplate 

reader. Viability was expressed as a percentage relative to wells containing media only (0%) and 

wells containing cells treated with DMSO only (100%). Three parameters were calculated on a 

per-plate basis: (a) the signal-to-background ratio (S/B); (b) the coefficient for variation [CV; CV 

= (standard deviation/mean) x 100)] for all compound test wells; and (c) the Z’-factor. IC50 values 

were calculated by fitting normalized data to sigmoidal log versus response equation utilizing non-

linear regression analysis from GraphPad Prizm 8. 
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