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Abstract

Glioma accounts for the highest proportion of primary intracranial malignant tumors.
Microenvironment enormously influences the process of glioma progression. Our study is to
establish an individualized prognostic nomogram for glioma patients with microenvironment
signature. Glioma samples of Chinese Glioma Genome Atlas (CGGA) were grouped by the
immune and stromal score based on ESTIMATE algorithm. Microenvironment-related genes
(MRGs) in glioma were analyzed by R. To determine the best prognostic correlation genes,
univariate and multivariate Cox regression analysis were used to analyze MRGs. Use the
selected genes (CHI3L1, SOCS3, SLC47A2, COL3A1, SRPX2 and SERPINA3), we
established the prognostic risk score model (microenvironment signature) and validated it.
Gene Set Enrichment Analysis (GSEA) showed that the high-risk group was mainly enriched in
immune and stromal function KEGG pathways. Finally, the homogram was constructed and
evaluated. The receiver operating characteristic (ROC) curve, Calibration plots and decision
curve analysis (DCA) of training and validation set indicated the excellent predictive
performance of nomogram. In conclusion, the 6-gene microenvironment signature can not only
provide directions for the basic research of glioma, but also can be included as an independent
prognostic index in nomogram for individual prediction to guide clinical treatment.
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1. Introdution

In primary intracranial malignant tumors, the proportion of gliomas can be as high as 81%".
Although a lot of achievements have been made in the clinical and molecular research of
glioma, there are significant deficiencies in the study on the prognostic biomarkers and a more
accurate and reliable prognostic index of glioma patients is also needed.

Tumor cell internal genes play essential roles in the evolution of glioma?23. At the same time,
tumor microenvironment had vital effects on gene expression in tumor tissues*7?. Tumor
microenvironment contains two main non-tumor components: immune cells and stromal cells,
which are crucial for diagnosis and prognosis of tumors®°. Many studies showed that some
microenvironment-related genes (MRGs) play essential roles in glioma in many signal
pathways'®". Therefore, MRGs are expected to be clinical prognostic indicators and
therapeutic targets for glioma.

Thanks to the continuous development of genome sequencing technologies, several glioma
molecular biomarkers have been discovered. There have been many studies on 1p/19q
codeletion, tumor protein 53 (TP53) mutations, isocitrate dehydrogenase (IDH) mutation and
so on'213 |  Emerging research suggests that certain single genes do not fully represent tumor
characteristics, but global gene expression pattern of multigene could be used as a special
molecular biological marker for subgroup classification, early diagnosis, treatment targeting ,
prognosis prediction and so on in glioma'#15, However, there is little research on the global
expression pattern based on MRGs in glioma.

Recently, a newly proposed computational algorithm, known as “Estimation of Stromal and
Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE)” was developed®
and successfully brought to calculate the degree of infiltration of non-tumor cells in several
malignant tumors like prostate cancer'®, breast cancer'?, and colon cancer'®. Therefore, in this
study, we use the ESTIMATE algorithm to evaluate the RNA sequencing data of glioma
samples, construct and validate a microenvironment signature that can predict prognosis and
provide research directions for therapeutic targets in glioma. Moreover, combining clinical
parameters and the microenvironment signature, we established an innovative and promising
predictive nomogram model, which has more accurate predictive ability for glioma.

2. Results

2.1 Identification of MRGs and enrichment analysis

Using the immune or stromal median score as the cut-off, we divided the 693 glioma cases
into high/low immune or stromal score groups. The K-M survival curve [Figure S1] showed that,
whether in immune (p = 0.281) or stromal (p= 0.114) groups, the median overall survival of
patients with high scores was lower than that of patients with low scores, although they were
not statistically significant.

We compared their RNA-seq data based on the high/low immune or stromal score group. The
heatmaps [Figure 1A] showed that the gene expression profiles of the cases were different. In
the comparison based on immune score, high score group had 406 genes were up-regulated
and 82 genes were down-regulated (|log (FC)| >=2, p < 0.05). Likewise, based on stromal
score, high score group had 372 genes were up-regulated and 12 genes were down-regulated
(llog (FC)| >=2, p < 0.05). The intersection of genes was considered to be an important set of
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MRGs, for further analysis. Through the Venn diagram [Figure 1B, C], we found that there
were 312 common up-regulated genes and 6 common down-regulated genes.

We used DAVID to do enrichment analysis of MRGs. In the biological process (BP), the MRGs
were significantly enriched in the terms immune response, inflammatory response and innate
immune response [Figure 1D]. In the cellular component (CC), the MRGs were significantly
enriched in the terms extracellular space, extracellular region, and external side of plasma
membrane [Figure 1E]. In the molecular function (MF), the MRGs were significantly enriched
in the terms immunoglobulin receptor binding, serine-type endopeptidase activity, and antigen
binding [Figure 1F]. Moreover, KEGG pathway analysis showed that the MRGs were mainly
enriched in Phagosome, Cytokine-cytokine receptor interaction and Phagosome [Figure 1G].

Figue1. Screening and enrichment analysis of microenvironment related genes
(MRGs). (A) Heatmap of the DEGs of immune/ stromal high score vs. low score (p<0.05,
fold change >2).Venn diagrams show the number of common upregulated (B) and
downregulated (C) The intersection of genes (MRGs) in immune and stromal score
groups.(D,E,F,G) Top 10 GO terms and KEGG pathways (p <0.05) of MRGs enriched by
DAVID.
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2.2 |dentification of prognosis-related MRGs

We excluded patients with loss of age and survival time in cohort 1 and performed univariate
Cox regression analysis on the 318 MRGs. The significant prognostic genes (P < 0.05) were
arranged in ascending order, and top 10 genes related to prognosis were identified and
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analyzed by multivariate Cox regression analysis. After the analysis, optimal prognosis genes
were used to construct the proportional risk model, which includes CHI3L1(coef=0.08507),
SOCS3(coef=0.06909), SLC47A2(coef=0.13418), COL3A1(coef=0.09616),
SRPX2(coef=-0.12213) and SERPINA3(coef=0.05121) (Table S1). Then, using the median
expression quantity of 6 genes as the cut-off, we separated glioma patients into high/low
expression groups and constructed the K-M curve. The results showed that the patients with
low expression of CHI3L1, SOCS3, SLC47A2, COL3A1, SRPX2 and SERPINA3 had a better
prognosis [Figure 2A]. At the same time, we further confirm that these 6 genes were
significantly up-regulated in glioma tissues (163) compared with normal tissues (207) on Gene
Expression Profiling Interactive Analysis (GEPIA) database® [Figure 2B].

Figure2. Expression and survival analysis for CHI3L1, SOCS3, SLC47A2, COL3A1,
SRPX2 and SERPINA3 in glioma. (A) K-M survival curves based on the expression
levels of the 6 genes in glioma patients in the training set. (B) The expression levels of the
six genes in tumor and normal tissues were validated in the GEPIA database.
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2.3 Construct and validate prognostic risk scoring model (microenvironment signature)
based on MRGs

We graded each patient according to the risk score formula and divided them into high/low-risk
group, using the median risk score as the cut-off point. K-M curve indicated that the OS of
patients in high-risk group was notably worse than low-risk group (P < 0.001) [Figure 3A].
Moreover, the microenvironment signature showed a favorable predictive ability to predict the
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OS rates in 1, 2and 3 years with the AUC values 0.751, 0.798 and 0.796, respectively [Figure
3B]. We treat cohort 2 as an external validation cohort and verify it in the same way. K-M curve
also demonstrates that OS of patients in high-risk group was markedly worse (P < 0.001)
[Figure 3C]. And microenvironment signature showed a favorable predictive ability to predict
the OS rates in 1, 2and 3 years with the AUC values in the 0.762, 0.82 and 0.826, respectively
[Figure 3D].

Figure3. Survival analysis and prognostic evaluation of the microenvironment
signature in glioma. K-M survival curve of the risk score for patient OS in the training (A)
and validation set (C). The OS of patients in high risk group was significantly worse than
low risk group. The prognostic evaluation of the microenvironment signature displayed by
the ROC curve for predicting the 1,2 and 3-year OS rates in the training (B) and validation
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GSEA indicated that the gene sets of high-risk group in the cohort 1 were significantly enriched
immunity-related pathways included natural killer cell mediate cytotoxicity, JAK/STAT signaling
pathway, allograft rejection, leukocyte trans endothelial migration [Fig4 A-D]. The significantly
enriched stromal-related pathways included focal adhesion, ECM receptor interaction, cell
adhesion molecules cams, cytokine-cytokine receptor interaction [Figd E-H]. In summary,
these 6-high expression of MRGs in glioma tissue, led to a relatively worse prognosis in
high-risk groups through the immune and stromal regulation. And we also inferred that these 6
MRGs could be the potential therapeutic targets for glioma.

Figure4. GSEA analysis base on high risk group vs. low risk group. the genesets of
high-risk group in the cohort 1 were significantly enriched immunity-related pathways (A-D) and
stromal-related pathways (E-H)
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2.5 Identify the microenvironment signature as an independent prognostic factor

Base on the microenvironment signature, we counted the clinical information of glioma
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patients in the cohort 1 and cohort 2 (Table1). Then, we performed univariate and multivariate
Cox regression analysis on them (Table 2). After analyses we found that the microenvironment
signature (P < 0.001), age (P = 0.007) and IDH mutation status (P < 0.001) were significantly
correlated with OS. Therefore, the microenvironment signature constructed by the training
cohort could be an independent prognostic factor for glioma patients. Then, we conducted the
same analyses to the validation cohort, and also got the same result (Table 2).

Table 1. Demographics and clinicopathologic characteristics of patients in the training and
validation set based on the risk score group.

Training set Validation set

Variables Total Low risk High risk Total Low risk  High risk

(n=656) (n=327) (n=329) (n=313) (n=119) (n=194)
Age
<50 463 266 197 216 100 116
>=50 193 61 132 97 19 78
Gender
Female 283 150 133 116 49 67
Male 373 177 196 197 70 127
Radio status
Treated 500 246 254 241 99 142
Untreated 131 72 59 62 19 43
NA 25 9 16 10 1 9
Chemo status (TMZ)
Treated 479 221 258 190 66 124
Untreated 156 97 59 110 49 61
NA 21 9 12 13 4 9
IDH mutation status
Mutant 333 241 92 167 103 64
Wildtype 275 51 224 145 15 130
NA 48 35 13 1 1 0
MGMTp methylation
status
Methylated 304 156 148 152 65 87
Unmethylated 217 102 115 143 47 96
NA 135 69 66 18 7 11

NA, not available; TMZ, Temozolomide.

Table 2. Univariate and multivariate cox proportional hazards analysis of clinical
parameters and microenvironment signature of patients in the training and validation set.
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TMZ, Temozolomide.

2.6 Construct and verify the nomogram

Based on the training cohort, we established a prognostic nomogram, which can predict the 1,
2 and 3-year survival probability of glioma patients. We enrolled three independent prognostic
parameters in the prognostic nomogram: age, microenvironment signature and IDH status
[Figure 5A]. The C-index of the nomogram for OS prediction was 0.707 (se = 0.013) and the
nomogram had a favorable ability to predict the OS rates of 1, 2 and 3-year, and their AUC
values were 0.77, 0.80 and 0.79 respectively. Similarly, in the validation cohort, the AUC
values were 0.72, 0.79, and 0.80 respectively [Figure 5B, C]. At the same time, there was an
excellent agreement between the nomogram prediction and the actual observation in terms of
1, 2 and 3-year survival rates, which could be found in the calibration curves of the training and
validation cohorts [Figure 5D, E]. Ultimately, the DCA curve showed this nomogram model had
better clinical benefits [Figure 5F, G].

Figure5. Nomogram to predict the survival probability of glioma patients and the

evaluations of it. (A) Prognostic nomogram to predict 1, 2 and 3-year of the OS of glioma

patients based on the raining set. ROC curve of nomogram for predicting survival in the

raining (B) and validation set (C). Calibration curve of nomogram to predict 1, 2 and 3-year

of the OS of glioma patients in the training (D) and validation set (E). The observed OS (%)
is plotted on the y-axis; the nomogram predicted OS (%) is plotted on the x-axis. The DCA
curve of the nomogram predicting total OS in the training (F) and validation set (G).

Among all the areas formed by the curves and "None" and "All", the nomogram curve is

the largest, which showed that the prediction ability of nomogram model is better than that

of single parameter model.
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3. Discussion

The tumor microenvironment of glioma plays an essential role in the development of glioma.
The change of microenvironment related genes can affect the expression of tumor tissue, and
then affect the clinical outcome*5. Therefore, MRGs are promising prognostic indicators and
treatments target for glioma.

With the progress of high-throughput sequencing technology, more and more biomarkers
related to the survival of glioma patients have been identified'2'3. Many global gene
expression patterns can be used in prognosis prediction, risk stratification and treatment
guidance of glioma202', However, there is still a lot of room for us to study the global
expression pattern based on MRGs in glioma.

ESTIMATE is a bioinformatics tool for predicting non-tumor cell infiltration. It can score each
sample by evaluating the particular gene expression feature of stromal and immune cells®. In
this study, we first use ESTIMATE to grade the cohort 1 samples. Taking the median score as
the dividing value, the samples were partitioned for high/low immune or stromal score group.
Then, we regard the 318 intersection genes of DEGs between the immune and stromal group
as MRGs. Finally, univariate and multivariate Cox regression analysis confirmed that 6
up-regulated genes (CHI3L1, SOCS3, SLC47A2, COL3A1, SRPX2 and SERPINA3) were
significantly related to prognosis. TCGA-based GEPIA also proved that they are up-regulated
in glioma compared to normal tissues. GSEA showed that gene sets of the high-risk group in
the cohort 1 were chiefly enriched in immune and stromal related KEGG pathways, which
suggested that glioma with high expression of 6 kinds of MRGs can affect tumor progression
through related pathways. CHI3L1, also known as YKL-40, is a pro-inflammatory factor that
can be used as a biomarker of glioma and brain injury. High levels expression of YKL-40 in
human gliomas can activate AKT?2. Angiogenesis and malignancy of glioblastoma can be
synergistically inhibited by Anti-YKL-40 antibody and ionizing irradiation?3. SOCS3 is related to
tumor progression and therapeutic response in glioma, and it crucial for glioma to acquire
anti-radioactivity. Hypermethylation of SOCS3 promoter is an important marker of poor
prognosis in glioma?*25, The expression of SLC47A2 can be cis-regulated in renal cell
carcinoma?®. Type Ill collagen is an important signal molecule to promote wound healing, and
COL3A1 encodes its alpha 1 chain?’. SRPX2 enhances EMT process and promotes glioma
metastasis through MAPK signaling pathway?8. The upregulation of SERPINA3 might reshape
the extracellular tissue matrix and promote the invasion of glioma, and it was significantly
related to the poor survival of patients?®. In summary, CHI3L1, SOCS3, SRPX2 and
SERPINAS3 were significantly associated with the evolution of glioma. However, SLC47A2 and
COL3A1 had not been studied in glioma. These MRGs can be used not only as independent
prognostic biomarkers but also as potential targets to guide the treatment of glioma.

Then, based on the expression of 6 MRGs, we developed and validated a novel risk score
model (microenvironment signature) and separated glioma patients into low/high-risk group
based on their risk score. Subsequently, the K-M curve showed that the high-risk group had an
appreciably poorer prognosis. Therefore, glioma patients with high-risk scores should receive
more attention and adopt more aggressive individualized medical strategies. At the same time,
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they need to be closely followed up to detect recurrence.

Nomogram can intuitively show the prognosis, which makes it widely used in clinical practice?°.
In this study, we constructed and verified a nomogram based on microenvironment signature,
IDH mutation status and age. As far as we know, the nomogram is an innovative combination
of microenvironment signature and clinical parameters, which can individually and more
precisely predict the survival rate of glioma patients. The ROC curve showed that the
nomogram has an excellent ability to predict the OS rate of 1-, 2- and 3- years. The calibration
curve showed that the prediction of the nomogram is in outstanding agreement with the actual
observation, and the DCA curve showed that the nomogram model was better than the single
parameter model. Combining the results of these three indicators, the innovative and
promising nomogram demonstrates excellent prediction ability.

There is no denying that there are still some deficiencies in our research. First, the data we
download from CGGA is incomplete and limited. Some clinical information of some patients is
missing and some clinical parameters, such as operation method, tumor location, tumor size,
etc. were not included in the study. Second, a limitation of this prediction model lies in its
retrospective property, so it needs to be further verified in future clinical trials.

4. MATERIALS AND METHODS

4.1 Database

From the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/) databases, we
download clinical information and RNA sequencing data of glioma patients. Cohort 1
(mRNAseqg_693) 3! and cohort 2 (mRNAseq_325) 32 were selected as training set and
validation set respectively.

4.2 Screening and enrichment analysis of microenvironment related genes (MRGs)

Figure 6 showed the schematic diagram for constructing the nomogram. Through the
evaluation of ESTIMATE algorithm, each sample was calculated to get its own immune and
stromal score. Taking the median score of immune or stromal score as the dividing point,
cohort 1 was partitioned for high/low immune or stromal score group. We screened the
differentially expressed genes (DEGs) in immune or stromal score group by edgeR3® (R
3.6.1 )( https://bioconductor.org/). Then, use the default Benjamini-Hochberg false discovery

rate (FDR) method to correct the false-positive results. DEGs with | fold change (FC) | > 2 and
FDR < 0.05 were considered to be significantly different34. We show the significant DEGs of
the immune or stromal score group in the heatmaps and the intersection DEGs of the two
groups in a Venn diagram and regard them as meaningful MRGs for later analysis. Then, we
used DAVID (http://david.ncifcrf.gov/) to do Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis of MRGs35. P-value < 0.05 was regarded as
statistically significant.

Figue6. The schematic diagram for constructing the prognostic nomogram based
on microenvironment signature.
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4.3 Construct and evaluate the prognostic risk score model of MRGs

First of all, univariate Cox regression analysis was conducted to the MRGs in training cohort 1
by using survival software package in R 3.6.1. Genes with P < 0.05 were deemed as statistical
significance to overall survival (OS) of glioma patients36. Then the first 10 genes with the
lowest P-value were analyzed by multivariate Cox regression analysis. After the analysis we
used the selected genes as the genes related to the optimal prognosis and established a
prognostic risk score model to predict OS%7.

The risk score was obtained according to the following formula:

n
Risk score = Z Bixi
i=1
Where Bi and xi are the coefficient and relative expression value of each selected gene,
respectively®8, and each patient could get a prognostic risk score according to this formula.
According to their median risk score, glioma patients were divided into low/ high-risk group.
Next, we constructed the Kaplan-Meier (K-M) survival curve of low/ high-risk group, and the
survival difference between the two groups was evaluated by two-sided log-rank test.
Subsequently, the prediction accuracy of the prediction model based on MRGs was evaluated
for 1, 2, and 3- year by using R packet
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‘survivalROC’#(https://cran.r-project.org/web/packages/ survivalROC/). The area under the
ROC curve (AUC) ranges from 0.5 to 1. Among them, 0.5 means no discrimination and 1
means perfect discrimination. Finally, we used the similar approach to validate the
performance of the risk scoring model built by cohorts 1 in cohorts 2.

4.4 Gene set enrichment analysis (GSEA)
Use the gene sets database (c2. cp. kegg. v7. 0. symbols. gmt.), and we performed GSEA
(high-risk group VS. low-risk group) (http://software.broadinstitute.org/gsealindex.jsp) with

permutation = phenotype, permutation = 1000. Determination of statistically significant
enriched gene sets based on P < 0.05 and FDR < 0.25 as criteria“.

4.5 Construction and validation of the nomogram

We combined the MRGs-based prognostic model (microenvironment signature) with other
clinicopathological parameters of glioma patients for univariate and multivariate Cox
proportional hazard regression analysis in the cohort 1 and cohort 2. After the analyses, we
screened out all independent prognostic factors and used the rms R package
(https://cran.r-project.org/web/packages/rms/) to construct a nomogram of these independent
prognostic factors to evaluate the probability of 1, 2 and 3-year OS in cohort 1 glioma
patients'#. The discriminant ability of nomogram was graphically evaluated by using C-index,
the AUC value, Calibration plots and decision curve analysis (DCA) 394142, Finally, cohort 2
was used as an external verification of the prognostic nomogram. All analyses were performed
with R, and P < 0.05 was deemed to be statistically significant. Hazard ratios (HRs) and 95%
confidence intervals (Cls) were also stated.

5. Conclusion

In this study, a promising nomogram contains novel microenvironment signature was
constructed and validated for glioma individual prognostic assessment. Further bioinformatics
analysis of these MRGs and microenvironment will help to clarify its possible survival
mechanism. Next, this model will be further verified in clinical trials and is likely to be translated
into meaningful practice to guide the individualized treatment of glioma patients.

Supplementary Materials:

Figure S1. The overall survival of glioma patients based on immune or stromal score
groups. Glioma cases were divided into high/low score groups based on their immune or
stromal score. As shown in the K-M survival curves, p value of immune score group is
0.281(A), of stromal score group is 0.114(B).
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Table S1. Top 10 genes related to prognosis after univariate Cox regression analysis and the
Regression coefficient (coef) after multivariate Cox regression analysis.

gene pvalue coef
CHI3L1 5.69E-38  0.08507
SOCS3 5.09E-32  0.06909
HSPA6 1.40E-29 /
SERPINE1  1.68E-29 /
SLC47A2 4.82E-29 0.13418
SPOCD1 5.51E-28 /
COL3A1 5.59E-28  0.09616
ABCC3 1.04E-27 /
SRPX2 2.01E-27 -0.12213

SERPINA3 2.83E-27  0.05121
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CGGA Chinese Glioma Genome Atlas

MRGs  Microenvironment-related genes

GSEA Gene Set Enrichment Analysis

ROC receiver operating characteristic

DCA  decision curve analysis

TP53  tumor protein 53

IDH isocitrate dehydrogenase

ESTIMATE  Estimation of Stromal and Immune cells in Malignant Tumor tissues using
Expression data

DEGs differentially expressed genes

FDR false discovery rate

GO  Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes
OS  overall survival

K-M  Kaplan-Meier

AUC  area under the ROC curve

HRs Hazard ratios

Cis confidence intervals

BP  biological process

CC  cellular component

MF  molecular function

GEPIA  Gene Expression Profiling Interactive Analysis
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