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Abstract 

Glioma accounts for the highest proportion of primary intracranial malignant tumors. 

Microenvironment enormously influences the process of glioma progression. Our study is to 

establish an individualized prognostic nomogram for glioma patients with microenvironment 

signature. Glioma samples of Chinese Glioma Genome Atlas (CGGA) were grouped by the 

immune and stromal score based on ESTIMATE algorithm. Microenvironment-related genes 

(MRGs) in glioma were analyzed by R. To determine the best prognostic correlation genes, 

univariate and multivariate Cox regression analysis were used to analyze MRGs. Use the 

selected genes (CHI3L1, SOCS3, SLC47A2, COL3A1, SRPX2 and SERPINA3), we 

established the prognostic risk score model (microenvironment signature) and validated it. 

Gene Set Enrichment Analysis (GSEA) showed that the high-risk group was mainly enriched in 

immune and stromal function KEGG pathways. Finally, the nomogram was constructed and 

evaluated. The receiver operating characteristic (ROC) curve, Calibration plots and decision 

curve analysis (DCA) of training and validation set indicated the excellent predictive 

performance of nomogram. In conclusion, the 6-gene microenvironment signature can not only 

provide directions for the basic research of glioma, but also can be included as an independent 

prognostic index in nomogram for individual prediction to guide clinical treatment.  
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1. Introdution 

In primary intracranial malignant tumors, the proportion of gliomas can be as high as 81%1. 

Although a lot of achievements have been made in the clinical and molecular research of 

glioma, there are significant deficiencies in the study on the prognostic biomarkers and a more 

accurate and reliable prognostic index of glioma patients is also needed. 

Tumor cell internal genes play essential roles in the evolution of glioma2,3. At the same time, 

tumor microenvironment had vital effects on gene expression in tumor tissues4-7. Tumor 

microenvironment contains two main non-tumor components: immune cells and stromal cells, 

which are crucial for diagnosis and prognosis of tumors8,9. Many studies showed that some 

microenvironment-related genes (MRGs) play essential roles in glioma in many signal 

pathways10,11. Therefore, MRGs are expected to be clinical prognostic indicators and 

therapeutic targets for glioma. 

Thanks to the continuous development of genome sequencing technologies, several glioma 

molecular biomarkers have been discovered. There have been many studies on 1p/19q 

codeletion, tumor protein 53 (TP53) mutations, isocitrate dehydrogenase (IDH) mutation and 

so on12,13 . Emerging research suggests that certain single genes do not fully represent tumor 

characteristics, but global gene expression pattern of multigene could be used as a special 

molecular biological marker for subgroup classification, early diagnosis, treatment targeting , 

prognosis prediction and so on in glioma14,15. However, there is little research on the global 

expression pattern based on MRGs in glioma.  

Recently, a newly proposed computational algorithm, known as “Estimation of Stromal and 

Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE)” was developed9 

and successfully brought to calculate the degree of infiltration of non-tumor cells in several 

malignant tumors like prostate cancer16, breast cancer17, and colon cancer18. Therefore, in this 

study, we use the ESTIMATE algorithm to evaluate the RNA sequencing data of glioma 

samples, construct and validate a microenvironment signature that can predict prognosis and 

provide research directions for therapeutic targets in glioma. Moreover, combining clinical 

parameters and the microenvironment signature, we established an innovative and promising 

predictive nomogram model, which has more accurate predictive ability for glioma. 

 

2. Results 

 

2.1 Identification of MRGs and enrichment analysis 

Using the immune or stromal median score as the cut-off, we divided the 693 glioma cases 

into high/low immune or stromal score groups. The K-M survival curve [Figure S1] showed that, 

whether in immune (p = 0.281) or stromal (p= 0.114) groups, the median overall survival of 

patients with high scores was lower than that of patients with low scores, although they were 

not statistically significant. 

We compared their RNA-seq data based on the high/low immune or stromal score group. The 

heatmaps [Figure 1A] showed that the gene expression profiles of the cases were different. In 

the comparison based on immune score, high score group had 406 genes were up-regulated 

and 82 genes were down-regulated (|log (FC)| >=2, p < 0.05). Likewise, based on stromal 

score, high score group had 372 genes were up-regulated and 12 genes were down-regulated 

(|log (FC)| >=2, p < 0.05). The intersection of genes was considered to be an important set of 
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MRGs, for further analysis. Through the Venn diagram [Figure 1B, C], we found that there 

were 312 common up-regulated genes and 6 common down-regulated genes.  

We used DAVID to do enrichment analysis of MRGs. In the biological process (BP), the MRGs 

were significantly enriched in the terms immune response, inflammatory response and innate 

immune response [Figure 1D]. In the cellular component (CC), the MRGs were significantly 

enriched in the terms extracellular space, extracellular region, and external side of plasma 

membrane [Figure 1E]. In the molecular function (MF), the MRGs were significantly enriched 

in the terms immunoglobulin receptor binding, serine-type endopeptidase activity, and antigen 

binding [Figure 1F]. Moreover, KEGG pathway analysis showed that the MRGs were mainly 

enriched in Phagosome, Cytokine-cytokine receptor interaction and Phagosome [Figure 1G]. 

 

Figue1. Screening and enrichment analysis of microenvironment related genes 

(MRGs). (A) Heatmap of the DEGs of immune/ stromal high score vs. low score (p<0.05, 

fold change >2).Venn diagrams show the number of common upregulated (B) and 

downregulated (C) The intersection of genes (MRGs) in immune and stromal score 

groups.(D,E,F,G) Top 10 GO terms and KEGG pathways (p <0.05) of MRGs enriched by 

DAVID. 

 

 

 

2.2 Identification of prognosis-related MRGs 

We excluded patients with loss of age and survival time in cohort 1 and performed univariate 

Cox regression analysis on the 318 MRGs. The significant prognostic genes (P < 0.05) were 

arranged in ascending order, and top 10 genes related to prognosis were identified and 
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analyzed by multivariate Cox regression analysis. After the analysis, optimal prognosis genes 

were used to construct the proportional risk model, which includes CHI3L1(coef=0.08507), 

SOCS3(coef=0.06909), SLC47A2(coef=0.13418), COL3A1(coef=0.09616), 

SRPX2(coef=-0.12213) and SERPINA3(coef=0.05121) (Table S1). Then, using the median 

expression quantity of 6 genes as the cut-off, we separated glioma patients into high/low 

expression groups and constructed the K-M curve. The results showed that the patients with 

low expression of CHI3L1, SOCS3, SLC47A2, COL3A1, SRPX2 and SERPINA3 had a better 

prognosis [Figure 2A]. At the same time, we further confirm that these 6 genes were 

significantly up-regulated in glioma tissues (163) compared with normal tissues (207) on Gene 

Expression Profiling Interactive Analysis (GEPIA) database19 [Figure 2B]. 

 

Figure2. Expression and survival analysis for CHI3L1, SOCS3, SLC47A2, COL3A1, 

SRPX2 and SERPINA3 in glioma. (A) K-M survival curves based on the expression 

levels of the 6 genes in glioma patients in the training set. (B) The expression levels of the 

six genes in tumor and normal tissues were validated in the GEPIA database. 
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2.3 Construct and validate prognostic risk scoring model (microenvironment signature) 

based on MRGs 

We graded each patient according to the risk score formula and divided them into high/low-risk 

group, using the median risk score as the cut-off point. K-M curve indicated that the OS of 

patients in high-risk group was notably worse than low-risk group (P < 0.001) [Figure 3A]. 

Moreover, the microenvironment signature showed a favorable predictive ability to predict the 
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OS rates in 1, 2and 3 years with the AUC values 0.751, 0.798 and 0.796, respectively [Figure 

3B]. We treat cohort 2 as an external validation cohort and verify it in the same way. K-M curve 

also demonstrates that OS of patients in high-risk group was markedly worse (P < 0.001) 

[Figure 3C]. And microenvironment signature showed a favorable predictive ability to predict 

the OS rates in 1, 2and 3 years with the AUC values in the 0.762, 0.82 and 0.826, respectively 

[Figure 3D]. 

 

Figure3. Survival analysis and prognostic evaluation of the microenvironment 

signature in glioma. K-M survival curve of the risk score for patient OS in the training (A) 

and validation set (C). The OS of patients in high risk group was significantly worse than 

low risk group. The prognostic evaluation of the microenvironment signature displayed by 

the ROC curve for predicting the 1,2 and 3-year OS rates in the training (B) and validation 

set (D). 

 

 

2.4 GSEA 

GSEA indicated that the gene sets of high-risk group in the cohort 1 were significantly enriched 

immunity-related pathways included natural killer cell mediate cytotoxicity, JAK/STAT signaling 

pathway, allograft rejection, leukocyte trans endothelial migration [Fig4 A-D]. The significantly 

enriched stromal-related pathways included focal adhesion, ECM receptor interaction, cell 

adhesion molecules cams, cytokine-cytokine receptor interaction [Fig4 E-H]. In summary, 

these 6-high expression of MRGs in glioma tissue, led to a relatively worse prognosis in 

high-risk groups through the immune and stromal regulation. And we also inferred that these 6 

MRGs could be the potential therapeutic targets for glioma. 

 

Figure4. GSEA analysis base on high risk group vs. low risk group. the genesets of 

high-risk group in the cohort 1 were significantly enriched immunity-related pathways (A-D) and 

stromal-related pathways (E-H) 
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2.5 Identify the microenvironment signature as an independent prognostic factor 

Base on the microenvironment signature, we counted the clinical information of glioma 
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patients in the cohort 1 and cohort 2 (Table1). Then, we performed univariate and multivariate 

Cox regression analysis on them (Table 2). After analyses we found that the microenvironment 

signature (P < 0.001), age (P = 0.007) and IDH mutation status (P < 0.001) were significantly 

correlated with OS. Therefore, the microenvironment signature constructed by the training 

cohort could be an independent prognostic factor for glioma patients. Then, we conducted the 

same analyses to the validation cohort, and also got the same result (Table 2). 

 

Table 1. Demographics and clinicopathologic characteristics of patients in the training and 

validation set based on the risk score group. 

 

    Training set       Validation set 

Variables Total Low risk High risk   Total Low risk High risk 

  (n=656) (n=327) (n=329)   (n=313) (n=119) (n=194) 

Age               

<50 463 266 197  216 100 116 

>=50 193 61 132  97 19 78 

Gender               

Female 283 150 133   116 49 67 

Male 373 177 196   197 70 127 

Radio status        
Treated 500 246 254  241 99 142 

Untreated 131 72 59  62 19 43 

NA 25 9 16  10 1 9 

Chemo status (TMZ)               

Treated 479 221 258   190 66 124 

Untreated 156 97 59   110 49 61 

NA 21 9 12   13 4 9 

IDH mutation status        
Mutant 333 241 92  167 103 64 

Wildtype 275 51 224  145 15 130 

NA 48 35 13  1 1 0 

MGMTp methylation 

status               

Methylated 304 156 148   152 65 87 

Unmethylated 217 102 115   143 47 96 

NA 135 69 66   18 7 11 

NA, not available; TMZ, Temozolomide. 

 

Table 2. Univariate and multivariate cox proportional hazards analysis of clinical 

parameters and microenvironment signature of patients in the training and validation set. 
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TMZ, Temozolomide. 

 

2.6 Construct and verify the nomogram 

Based on the training cohort, we established a prognostic nomogram, which can predict the 1, 

2 and 3-year survival probability of glioma patients. We enrolled three independent prognostic 

parameters in the prognostic nomogram: age, microenvironment signature and IDH status 

[Figure 5A]. The C-index of the nomogram for OS prediction was 0.707 (se = 0.013) and the 

nomogram had a favorable ability to predict the OS rates of 1, 2 and 3-year, and their AUC 

values were 0.77, 0.80 and 0.79 respectively. Similarly, in the validation cohort, the AUC 

values were 0.72, 0.79, and 0.80 respectively [Figure 5B, C]. At the same time, there was an 

excellent agreement between the nomogram prediction and the actual observation in terms of 

1, 2 and 3-year survival rates, which could be found in the calibration curves of the training and 

validation cohorts [Figure 5D, E]. Ultimately, the DCA curve showed this nomogram model had 

better clinical benefits [Figure 5F, G]. 

 

Figure5. Nomogram to predict the survival probability of glioma patients and the 

evaluations of it. (A) Prognostic nomogram to predict 1, 2 and 3-year of the OS of glioma 

patients based on the raining set. ROC curve of nomogram for predicting survival in the 

raining (B) and validation set (C). Calibration curve of nomogram to predict 1, 2 and 3-year 

of the OS of glioma patients in the training (D) and validation set (E). The observed OS (%) 

is plotted on the y-axis; the nomogram predicted OS (%) is plotted on the x-axis. The DCA 

curve of the nomogram predicting total OS in the training (F) and validation set (G). 

Among all the areas formed by the curves and "None" and "All", the nomogram curve is 

the largest, which showed that the prediction ability of nomogram model is better than that 

of single parameter model. 
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3. Discussion 

 

The tumor microenvironment of glioma plays an essential role in the development of glioma. 

The change of microenvironment related genes can affect the expression of tumor tissue, and 

then affect the clinical outcome4,5. Therefore, MRGs are promising prognostic indicators and 

treatments target for glioma.  

With the progress of high-throughput sequencing technology, more and more biomarkers 

related to the survival of glioma patients have been identified12,13. Many global gene 

expression patterns can be used in prognosis prediction, risk stratification and treatment 

guidance of glioma20,21. However, there is still a lot of room for us to study the global 

expression pattern based on MRGs in glioma. 

ESTIMATE is a bioinformatics tool for predicting non-tumor cell infiltration. It can score each 

sample by evaluating the particular gene expression feature of stromal and immune cells9. In 

this study, we first use ESTIMATE to grade the cohort 1 samples. Taking the median score as 

the dividing value, the samples were partitioned for high/low immune or stromal score group. 

Then, we regard the 318 intersection genes of DEGs between the immune and stromal group 

as MRGs. Finally, univariate and multivariate Cox regression analysis confirmed that 6 

up-regulated genes (CHI3L1, SOCS3, SLC47A2, COL3A1, SRPX2 and SERPINA3) were 

significantly related to prognosis. TCGA-based GEPIA also proved that they are up-regulated 

in glioma compared to normal tissues. GSEA showed that gene sets of the high-risk group in 

the cohort 1 were chiefly enriched in immune and stromal related KEGG pathways, which 

suggested that glioma with high expression of 6 kinds of MRGs can affect tumor progression 

through related pathways. CHI3L1, also known as YKL-40, is a pro-inflammatory factor that 

can be used as a biomarker of glioma and brain injury. High levels expression of YKL-40 in 

human gliomas can activate AKT22. Angiogenesis and malignancy of glioblastoma can be 

synergistically inhibited by Anti-YKL-40 antibody and ionizing irradiation23. SOCS3 is related to 

tumor progression and therapeutic response in glioma, and it crucial for glioma to acquire 

anti-radioactivity. Hypermethylation of SOCS3 promoter is an important marker of poor 

prognosis in glioma24,25. The expression of SLC47A2 can be cis-regulated in renal cell 

carcinoma26. Type III collagen is an important signal molecule to promote wound healing, and 

COL3A1 encodes its alpha 1 chain27. SRPX2 enhances EMT process and promotes glioma 

metastasis through MAPK signaling pathway28. The upregulation of SERPINA3 might reshape 

the extracellular tissue matrix and promote the invasion of glioma, and it was significantly 

related to the poor survival of patients29. In summary, CHI3L1, SOCS3, SRPX2 and 

SERPINA3 were significantly associated with the evolution of glioma. However, SLC47A2 and 

COL3A1 had not been studied in glioma. These MRGs can be used not only as independent 

prognostic biomarkers but also as potential targets to guide the treatment of glioma. 

Then, based on the expression of 6 MRGs, we developed and validated a novel risk score 

model (microenvironment signature) and separated glioma patients into low/high-risk group 

based on their risk score. Subsequently, the K-M curve showed that the high-risk group had an 

appreciably poorer prognosis. Therefore, glioma patients with high-risk scores should receive 

more attention and adopt more aggressive individualized medical strategies. At the same time, 
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they need to be closely followed up to detect recurrence. 

Nomogram can intuitively show the prognosis, which makes it widely used in clinical practice30. 

In this study, we constructed and verified a nomogram based on microenvironment signature, 

IDH mutation status and age. As far as we know, the nomogram is an innovative combination 

of microenvironment signature and clinical parameters, which can individually and more 

precisely predict the survival rate of glioma patients. The ROC curve showed that the 

nomogram has an excellent ability to predict the OS rate of 1-, 2- and 3- years. The calibration 

curve showed that the prediction of the nomogram is in outstanding agreement with the actual 

observation, and the DCA curve showed that the nomogram model was better than the single 

parameter model. Combining the results of these three indicators, the innovative and 

promising nomogram demonstrates excellent prediction ability.  

There is no denying that there are still some deficiencies in our research. First, the data we 

download from CGGA is incomplete and limited. Some clinical information of some patients is 

missing and some clinical parameters, such as operation method, tumor location, tumor size, 

etc. were not included in the study. Second, a limitation of this prediction model lies in its 

retrospective property, so it needs to be further verified in future clinical trials. 

 

4. MATERIALS AND METHODS 

 

4.1 Database 

From the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/) databases, we 

download clinical information and RNA sequencing data of glioma patients. Cohort 1 

(mRNAseq_693) 31 and cohort 2 (mRNAseq_325) 32 were selected as training set and 

validation set respectively. 

 

4.2 Screening and enrichment analysis of microenvironment related genes (MRGs) 

Figure 6 showed the schematic diagram for constructing the nomogram. Through the 

evaluation of ESTIMATE algorithm, each sample was calculated to get its own immune and 

stromal score. Taking the median score of immune or stromal score as the dividing point, 

cohort 1 was partitioned for high/low immune or stromal score group. We screened the 

differentially expressed genes (DEGs) in immune or stromal score group by edgeR33 (R 

3.6.1 )( https://bioconductor.org/). Then, use the default Benjamini-Hochberg false discovery 

rate (FDR) method to correct the false-positive results. DEGs with | fold change (FC) | > 2 and 

FDR < 0.05 were considered to be significantly different34. We show the significant DEGs of 

the immune or stromal score group in the heatmaps and the intersection DEGs of the two 

groups in a Venn diagram and regard them as meaningful MRGs for later analysis. Then, we 

used DAVID (http://david.ncifcrf.gov/) to do Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway analysis of MRGs35. P-value < 0.05 was regarded as 

statistically significant. 

 

Figue6. The schematic diagram for constructing the prognostic nomogram based 

on microenvironment signature. 
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4.3 Construct and evaluate the prognostic risk score model of MRGs 

First of all, univariate Cox regression analysis was conducted to the MRGs in training cohort 1 

by using survival software package in R 3.6.1. Genes with P < 0.05 were deemed as statistical 

significance to overall survival (OS) of glioma patients36. Then the first 10 genes with the 

lowest P-value were analyzed by multivariate Cox regression analysis. After the analysis we 

used the selected genes as the genes related to the optimal prognosis and established a 

prognostic risk score model to predict OS37.  

The risk score was obtained according to the following formula: 

Risk score = ∑ βixi

n

i=1

 

Where βi and xi are the coefficient and relative expression value of each selected gene, 

respectively38, and each patient could get a prognostic risk score according to this formula. 

According to their median risk score, glioma patients were divided into low/ high-risk group. 

Next, we constructed the Kaplan-Meier (K-M) survival curve of low/ high-risk group, and the 

survival difference between the two groups was evaluated by two-sided log-rank test. 

Subsequently, the prediction accuracy of the prediction model based on MRGs was evaluated 

for 1, 2, and 3- year by using R packet 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2020                   doi:10.20944/preprints202012.0404.v1

https://doi.org/10.20944/preprints202012.0404.v1


‘survivalROC’39(https://cran.r-project.org/web/packages/ survivalROC/). The area under the 

ROC curve (AUC) ranges from 0.5 to 1. Among them, 0.5 means no discrimination and 1 

means perfect discrimination. Finally, we used the similar approach to validate the 

performance of the risk scoring model built by cohorts 1 in cohorts 2. 

 

4.4 Gene set enrichment analysis (GSEA) 

Use the gene sets database (c2. cp. kegg. v7. 0. symbols. gmt.), and we performed GSEA 

(high-risk group VS. low-risk group) (http://software.broadinstitute.org/gsea/index.jsp) with 

permutation = phenotype，permutation = 1000. Determination of statistically significant 

enriched gene sets based on P < 0.05 and FDR < 0.25 as criteria40. 

  

4.5 Construction and validation of the nomogram 

We combined the MRGs-based prognostic model (microenvironment signature) with other 

clinicopathological parameters of glioma patients for univariate and multivariate Cox 

proportional hazard regression analysis in the cohort 1 and cohort 2. After the analyses, we 

screened out all independent prognostic factors and used the rms R package 

(https://cran.r-project.org/web/packages/rms/) to construct a nomogram of these independent 

prognostic factors to evaluate the probability of 1, 2 and 3-year OS in cohort 1 glioma 

patients14. The discriminant ability of nomogram was graphically evaluated by using C-index, 

the AUC value, Calibration plots and decision curve analysis (DCA) 39,41,42. Finally, cohort 2 

was used as an external verification of the prognostic nomogram. All analyses were performed 

with R, and P < 0.05 was deemed to be statistically significant. Hazard ratios (HRs) and 95% 

confidence intervals (CIs) were also stated. 

 

5. Conclusion 

 

In this study, a promising nomogram contains novel microenvironment signature was 

constructed and validated for glioma individual prognostic assessment. Further bioinformatics 

analysis of these MRGs and microenvironment will help to clarify its possible survival 

mechanism. Next, this model will be further verified in clinical trials and is likely to be translated 

into meaningful practice to guide the individualized treatment of glioma patients. 

 

Supplementary Materials: 

Figure S1. The overall survival of glioma patients based on immune or stromal score 

groups. Glioma cases were divided into high/low score groups based on their immune or 

stromal score. As shown in the K-M survival curves, p value of immune score group is 

0.281(A), of stromal score group is 0.114(B). 
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Table S1. Top 10 genes related to prognosis after univariate Cox regression analysis and the 

Regression coefficient (coef) after multivariate Cox regression analysis. 

gene pvalue coef 

CHI3L1 5.69E-38 0.08507 

SOCS3 5.09E-32 0.06909 

HSPA6 1.40E-29 / 

SERPINE1 1.68E-29 / 

SLC47A2 4.82E-29 0.13418 

SPOCD1 5.51E-28 / 

COL3A1 5.59E-28 0.09616 

ABCC3 1.04E-27 / 

SRPX2 2.01E-27 -0.12213 

SERPINA3 2.83E-27 0.05121 

 

 

Author Contributions：Tianhua Li, Yiguang Chen and Yongjian Chen performed the data 

curation and analysis. Shisheng Zou and Anming Yang analyzed and interpreted the results. 

Tianhua Li drafted the manuscript. Guangjie Liu, Yi Liu and Jun Fan reviewed the manuscript. 

All authors read and approved the final manuscript. All authors have read and agreed to the 

published version of the manuscript. 

 

Funding: This research received no funding. 

 

Acknowledgments: The authors would like to acknowledge the illustrations by Jin Jin. 

 

Conflicts of Interest: The authors declare no conflict of interest. 

 

Abbreviations 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2020                   doi:10.20944/preprints202012.0404.v1

https://doi.org/10.20944/preprints202012.0404.v1


CGGA   Chinese Glioma Genome Atlas 

MRGs   Microenvironment-related genes 

GSEA   Gene Set Enrichment Analysis 

ROC   receiver operating characteristic 

DCA   decision curve analysis 

TP53   tumor protein 53 

IDH   isocitrate dehydrogenase 

ESTIMATE   Estimation of Stromal and Immune cells in Malignant Tumor tissues using 

Expression data 

DEGs   differentially expressed genes 

FDR   false discovery rate 

GO   Gene Ontology 

KEGG   Kyoto Encyclopedia of Genes and Genomes 

OS   overall survival 

K-M   Kaplan-Meier 

AUC   area under the ROC curve 

HRs   Hazard ratios 

Cis   confidence intervals 

BP   biological process 

CC   cellular component 

MF   molecular function 

GEPIA   Gene Expression Profiling Interactive Analysis 
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