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To be or to have been lucky, that is the question

A. Lesage! and J-M. Victor?

Abstract: Is it possible to measure the dispersion of ex-ante chances (i.e. chances “before the
event”) among people, be it gambling, health, or social opportunities? We explore this question
and provide some tools, including a statistical test, to evidence the actual dispersion of ex-ante
chances in various areas with a focus on chronic diseases.

Introduction.

“That evening he was lucky”: what do we mean by this? And even weirder when we say: “the
luck turned”. Does this mean that we could be visited by fortune? Or that some people are
luckier than others on certain days? Of course, we cannot rule out the fact that some people
may bias the chances of success simply by cheating. But is there any way to assess the
dispersion of chances among gamblers (or just the fraction of cheaters)?

This kind of question is part of the field of probability calculus, which aims at determining the
relative likelihoods of events. The probability calculus started during summer 1654 with the
correspondence between Pascal and Fermat precisely on elementary problems of gambling.
Symmetry arguments are at the heart of this calculus: for example, for an unbiased coin, the
two results, heads or tails, are a priori equivalent and therefore have the same probability of
occurrence 1/2. This is why it is not anecdotal that Pascal wanted to give his treatise the
“astonishing” title “Geometry of Chance”. Another illustration of the power of symmetry
arguments is the tour de force of Maxwell who managed to calculate the velocity distribution
of particles in idealized gases. At the time when he derived what is called since the Maxwell-
Boltzmann distribution, there was no possibility to measure this distribution. It was almost 60
years before Otto Stern could achieve the first experimental verification of this distribution [1],
around the same time when he confirmed with Walther Gerlach the existence of the electron
spin, for which he won the Nobel Prize in 1944. The agreement between theoretical and
experimental distributions was surprisingly good.

In probability theory, events are usually associated to random variables that are measurable.
For example, in the heads or tails game, heads may be associated with 1 and tails with 0. Then
for a given number N of draws, one can count the number of times the heads are flipped. This
number k is between 0 and N and the ratio k/N is the frequency of the heads. If the coin is
unbiased, this frequency fluctuates around 1/2 when the game (N draws for each game) is
played many times. Importantly, the frequency is observed ex post, i.e. after the game is played,
then the mean frequency is used as a measure of the probability of getting a head. This is the
usual way of assessing probabilities in statistics. Remember that assessing probabilities for
anticipating the outcome of future events is the very purpose of statistics.

Dispersion of chances is far from being limited to gamblers. Disease risk is another area where
people may be and actually are unequal for genetic or environmental reasons. In this case, the
result of a "draw" is whether or not you have a disease D. Gambling is then limited to one
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“draw” per “gambler” and only the mean probability that an individual in a given population
will become ill can be observed. But can we assess the dispersion of disease risks? And if so,
how can we? As a last emblematic example, we mention social opportunities. Measuring
inequality of opportunity is a crucial issue with considerable political stakes, though it is
extremely difficult to assess. On this last point, we postpone the in-depth study of the measure
of inequal opportunities to a further work.

In all these examples, be it gambling, disease, or social opportunity, the ex-ante chances are
themselves random variables that cannot be deduced from frequency measurements nor be
induced by symmetry arguments. They are hidden variables. We propose here some tools to
assess the distribution of such hidden variables and we explore more specifically the relevance
of those tools to and their consequences in the field of chronic diseases.

I. A simple draw is not enough.

Let us first assume that there is a sample of n people tossing a coin and that each of them has a
probability p; to win (hence 1-p; to lose). In an unbiased game, all the p; are identical and equal
to 1/2. Imagine that some gamblers are luckier, others less fortunate, hence some p; are > 1/2,
others are < 1/2. This means that the p; are random variables that are drawn from a probability

distribution f(p) that is different from & (p - %) Let @ and %2 be the mean and variance of
f(p). Let us assume now that each individual plays N times. The result of each draw j of the
individual i is a random variable X/, either 1 in case of success or 0 in case of failure. This is a
Bernoulli process: for each i the random variables Xij are i.i.d. (independent, identically
distributed, i.e. the probability of success p; is the same for the N draws of i). Let us define S; =

9’=1X{. S; is a random variable that follows a binomial distribution B(N, p;). S; is the number
of times the individual i has won. The mean of S; and its variance are

(S;) = Np; (1D
Var(S;) = Np;(1 —p,) (2)

Once every individual has played N times, we obtain an estimation of the distribution of the n
random variables S; as a histogram over the N+ 1 values k=0, 1, 2,...N. These random
variables S; are independent but non identically distributed as the p; are different from one
individual to another.

Just as the p; are drawn from the distribution f(p), the S; are the realizations of a random
variable S (which takes the N + 1 discrete values k =0, 1, 2,...N). The probability
distribution function of S is given as follows:

vk =0,1,..N Prob(S =k) = J dpf (p) Cip*(1 —p)N=* (3)
0

The mean of S is

N 1 N )
(§)= ) kProb(s = k) = | dpf ) kClp“(1=py*t= | dps ) Np = Np)
k=0 0 k=0 0

hence
(S) =N (4)
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and its variance is
Var(S) = (S%) — (S)?

where
N 1 N
(S2) = ) k*Prob(S=k) = | dpf(p) ) k*Cip*(1—p)"*
= [ dpr@) e - p) + W)
0
hence
(S%) = N({p) — (p*)) + N*(p*)
and
Var(S) = N((p) — (p?)) + N*(p?) — N*(p)?
Now
(p) =
and
(p?) =1? + @2
so that
Var(S) = N(®(1 — &) — ¥?) 4+ N2x? (5)

Note that within the limit N — oo, the probability distribution function of the reduced variable
X = % (where k =0, 1, 2, ...N) converges to the distribution f(p).

Equation (5) shows that, if N = 1, the variance Var(S) = ®(1 — ®) does not depend on the
variance %2 of f(p). As a matter of fact, when N = 1, the gains are either 0 or 1 so that the
histogram of gains has only two bins, one at 0, the other at 1. The mean of gains is @ and the
variance is ®(1 — ®). Neither the mean nor the variance depends on the variance 22 of f(p).
Moreover, according to equation (3), the histogram of gains itself depends only on the mean of
the distribution f(p):

Prob(s = 0) = f dpf )1 —p)=1—d ©)
0

Prob(S=1) = f dpf(p)p = ® (7
0

The histogram of gains cannot therefore provide information on the dispersion of chances. For
example, the two following distributions:

1
i) =6 (p-3) ®)
and
F0) = 3[5(0) + 6(p ~ D] ©)
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have the same mean ® = % hence result in the same histograms (Figure 1 for N = 1). However,

the variance of f; is null whereas the variance of f, is 1/4. (Note that 1/4 is the maximal
variance that a probability distribution f(p) can take). This means that a simple draw is not
enough to extract the variance of f(p) from the histogram of gains; multiple draws are
necessary, though are they sufficient?
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Figure 1. On the left-hand side f;(p) = § (p — %) and on the right-hand side £, (p) = % [6(p) + 8(p — 1)]. In each case, the

histogram of success is plotted for increasing values of the number N of draws and for two numbers n of gamblers: n = 10
(in blue) and n = 100 (in orange).

I1. A statistical test of the dispersion of chances.
We first note that the histogram of gains for two draws has three bins, one at 0, the second at 1
and the third at 2, with the following values (Figure 1 for N = 2):

1
Prob(S =0) = f dpf(@)(1—p)* =((1-p)?) = (1 - P)* +32? (10)
0
Prob(S=1) = Zf dpf(P)p(1 —p) = 20(1 — d) — 23?2 (11)
0
Prob(§ =2) = f dpf(p)p? = P2+x2 (12)
0

Hence the histogram of gains now depends on (and only on) both the mean and the variance
of f(p). For three or more draws, we could also have access to higher order moments of f (p).
Nevertheless, the minimum condition for the presence of a probability dispersion is that the
variance of f(p)is non-zero. We therefore propose to design a statistical test that will be able
to discriminate between both following hypotheses:

(1) Null hypothesis H,: everybody has the same probability @ of gain. This means that
f () = 8(p — @) whose mean is (p) = @ and variance 2? = 0;
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(i) Alternative hypothesis H,: f has the same mean & but some people are luckier than
the others so that f has a non-zero variance 2.

According to H, the mean of N draws is @ and the variance is N (1 — &), whereas according
to H, the mean of N draws is also ® but the variance is N(®(1 — ®) — £2?) + N2%2. Hence if
the variance Var(S) grows linearly with N, then all individuals have the same probability p of
success. If on the contrary Var(S) grows quadratically with N then not all individuals have the
same chance of success. We can therefore rephrase our hypothesis test in the following
alternative based on the dependence of the variance Var(S) on the number N of draws:

Q) Null hypothesis H,: the variance Var(S) grows linearly with N;
(i) Alternative hypothesis H;: the variance Var(S) grows quadratically with N.

Figure 2 plots the variance of the two distributions f; and £, as a function of the number N of
draws for n = 100 gamblers. Then the Ramsey Regression Equation Specification Error Test
(RESET) is a relevant tool to conclude. To be more specific, when N > 2, one has to
calculate the F statistic given by

::(RSSL——RSSQ)

RSS,
(=9)

(13)

where RSS,, (resp. RSS,) is the residual sum of squares of the linear (resp. quadratic) regression.
Under the null hypothesis Hy, the F statistic has an F-distribution with (1, N — 1) degrees of
freedom. H, is rejected if the value of F calculated from the data is greater than the critical
value of the F-distribution for some fixed false-rejection probability (usually 0.01).
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Figure 2. Linear regression fits Var(S) for f;, witha = 0.251 4 0.005 in agreement with equation (5) when X2 = 0. Moreover
a agrees with the expected value @(1 — @) = 1/4. At odds with f;, the linear regression does not fit Var(S) for f, whereas
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the quadratic fit is excellent, with: @ = 0.244 + 0.006 and b = 0.01 + 0.01. Here a agrees with the expected value X2 = 1/4
and b with the expected value @(1 — ®) — 22 = 0.

I11. Dispersion of disease risks for twins.
Inequality of risk for disease is a major public health issue. Of course, part of this inequality is
known to depend on genetic and environmental factors. The mean frequency that an individual
will become ill in a given population specified by genetic and environmental factors can be
measured and as usual this frequency can be used as a measure of the probability to become ill.
But can we assess the dispersion of disease risk, if only it exists, in this specific population?
And more generally, is there any way to assess the dispersion of risk in a more objective
manner, without any a priori assumption on presumed risk factors? Here comes into play a
providential help from the existence of twins. Identical twins, also called monozygotic twins,
have the same genome, shared the same foetal environment and generally share the same living
conditions, so that they are most likely to share also the same probability to become ill, whatever
the disease. Identical twins are therefore like a player betting twice. This is much related to the
gambling question addressed above for N = 2 (two draws). Indeed, as both twins have the same
probability p to have disease D, the status - ill or healthy - of each of the two twins is equivalent
to the outcome — loss or gain — of each of the two draws by one and the same gambler. In this
situation probability p is called a risk. Let f(p) be the probability distribution function of the
risk to have disease D in the population. We define the random variable S as above, i.e. S =0
if both twins are healthy, S = 1 if only one of the two twins is ill and S = 2 if both twins are
ill. The mean @ and variance X2 of S are given by equations (4) and (5) respectively, hence for
N =2

(S) = 2d (14)

Var(s) = 2(®(1 — ®) — 32) + 432 = 20(1 — ) + 252 (15)

Then if Var(S) is significantly greater than (S) (1 —%)) which amounts to carry out the

hypothesis test presented in the above section for N = 2, we can conclude that there is some
dispersion of the disease risk. As we will see below the dispersion is in fact unusually large.
But before that, let us calculate the concordance rate of disease D for two persons A and B. We
note A, (resp. B;) the event “A has disease D” (resp. “B has disease D). In genetics,
concordance is the probability that a pair of individuals will both have a certain characteristic,
given that one of the pair has the characteristic. Concordance rate in a population is best
assessed by the probandwise rate [2], namely the conditional probability P(B;|A,) that B has
disease D, knowing that A has disease D.

Of course, for two unrelated persons, this conditional probability is

P(A4 and By) _ P(Aq)P(B,)
P(A4d)  P(Ad)

P(B4lAg) = =P(Bg) =p (16)

and then
(P(B4lA)) = (p) =@ (17)

Now for two identical twins A and B, equation (16) is still true, then a naive averaging of both
sides of equation (16) would necessarily lead to equation (17) as well. What is wrong? As a
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matter of fact, the conditioning on A, is not insignificant: in formula (17) it is indeed necessary
to average p by considering the fact that A, is realized, thus by using the probability density
function f;(p) in the population of affected people and not simply f(p). For identical twins,
equation (17) therefore becomes

1

(P(Baldg)) = f pfa(@)dp (18)

0

The probability density function f;(p) can be obtained as follows:
Q) The fraction of the population that has a risk p (up to dp) to become ill is f (p)dp;
(i)  Among these people, a fraction p will be actually affected,;
(iii))  Then the fraction of affected people that has a risk p (up to dp) to become ill is

pf(p)dp
so that
pf(p)dp
fa@)dp = 77— (19)
J, pf ®)dp
The probability density function f;(p) is therefore given by
_rf(p)
fa(p) = <p> (20)
and the mean conditional probability (P(B;|44)) is
1 1 1 2
rf (p) 1 (p°)
(PBlA) = [ proladdp = [ P2 Pap = [ vroan =0 @
alAa Opfpdp 0p<p> p <p)0pfpp )
We finally get the relative risk
P(BylA 2
g = PElAD) _ 9) 22)
(p) (p)
which can be expressed as a function of the mean ® and variance 2 of f(p):
_(pZ)_ZZ_I_cDZ_ ZZ
RR—(p)Z— o2 _1+E (23)
For Crohn disease, one of the most well documented chronic disease :
® = 0.0025 (24)
and
RR = 100 (25)
hence
22 = ®%(RR — 1) = 0.00062 (26)
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T = 0.025 (27)

which means that
=100 (28)

For Crohn disease, but this is also true for most chronic diseases, the dispersion of the risk to
be affected is therefore huge indeed. The distribution f (p) may then be approximated by a beta-
distribution:

F'(a+p)

fa,p) =

The parameters o and B can be expressed as a function of ® and x2:

_ [—q’(l —9)_ 1] (30)
ZZ
d(1 - D)
B = (1—¢)IT—1l (31)
For Crohn disease we get:
a = 0.0076 (32)
B=3 (33)

Both probability distribution functions f(p) and f;(p) for Crohn disease are plotted in Figure
3. Now the mean risk in the affected population is

_ fyplof®@ldp _ (p?) 2%+ 97

= = (34)
a 1

, Iof@ldp @) ¢

As X = 109 the mean risk in the affected population is therefore
d, =1000 (35)

and the relative risk of affected people as compared to controls is
Pa 100 (36)

q) =

which means that affected people are much more predisposed to the disease than controls. Note
that % is equal to the relative risk RR computed above for twins.

At this stage we remark that affected people did not really have bad luck to become ill but
actually had a large predisposition to become ill.
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Figure 3. The risk distribution f (p) among the population (in blue) is approximated by a Beta distribution of parameters a =
0.0076, B = 3 and diverges in 0. The risk distribution f; = o) among affected individuals ( )B( )@ is also a Beta

(»)
distribution of parametersa + 1, 3.

IV. A modular approach of chronic diseases.

Chronic diseases occur at various ages and persist throughout life. At the turn of the 2000s a
new approach, called genome wide association studies (GWAS) was designed to characterize
the genetic predisposition to a chronic disease. GWAS are supposed to find in particular the
genes involved in a given disease, and among these genes the variants most at risk, i.e. the DNA
sequences of a given gene that are more represented in the people affected by the disease. Such
variants characterize the genetic predisposition to the disease. However the relative risk of most
predisposition genes is hardly larger than 1, which leads to think that it is rather combinations
of predisposition genes that are involved. But then a new difficulty arises, namely genetic
redundancy, i.e. the fact that a given biochemical function is redundantly encoded by two or
more genes. Genetic redundancy has been evidenced by knockout experiments. Knockout
animals are genetically modified animals in which an existing gene has been inactivated by
replacing it or disrupting it with an artificial piece of DNA. Such model animals have been
created for studying the role of genes whose functions is unknown. By causing a specific gene
to be inactive, and observing any differences from normal behaviour, one can infer its probable
function. However knockout animals often exhibit no physiological alteration, thus evidencing
that many biological functions are redundant [5]: inactivating a gene has generally no
consequence on the function the gene is known to code for. This means that other genes can,
and actually do implement an equivalent function. Paralagous genetic redundancy is often cited
as a mechanism to account for lack of a knockout phenotype.

Suppose now that a disease D is the result of the impairment of K redundant functions, so that
people become ill when and only when the whole set of K functions is impaired [3]. In other
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words, as long as at least one function is performed, there is no disease. This kind of modelling
has been developed recently to fit the incidence of various chronic diseases as a function of the
age of onset [4]. We assume that these redundant functions are independent, i.e. the network of
functions is organized in a modular way. To be more specific, each function is achieved as a
module of the global physiological network (including most notably the regulatory gene
network, the metabolic network and the cell signalling network) and modules operate in an
independent way. The probability p to become ill is thus the product of the K probabilities p;,
p =[1X,p;, that each redundant function i is impaired. Importantly, when the function
performed by module i is impaired, this module is permissive for disease D, but this does not
mean that module i is not functioning at all. On the contrary, we suggest that module i is then
switched to another functional mode which can be protective against another disease D'. More
generally we suggest that modules may be bifunctional, i.e. that the genes that make up a
module may be wired in two different ways, one being associated with a function that is
protective against some disease D, the other with a function that is protective against some other
disease D'.

For the sake of simplicity, we assume that all the K redundant functions have the same
probability distribution function g(p). Now we can relate the mean @ and variance 22 of f(p)
to the mean ¢ and variance o2 of g(p):

P = o (37)
72 — ((pz + o)k — (pZK (38)

It has been shown in [4] that the number of redundant functions is K = 10 for various “not so
rare” chronic diseases. By this we mean chronic diseases that have a typical prevalence, i.e. the
fraction of the population that is affected by the disease, between 0.5 per 1000 and 5 per 1000.
We recall that in Europe, a disease is considered to be rare when it affects less than 1 person
per 2000. Hence the mean risk for “not so rare” chronic diseases is ® = 10~3. Equations (37)
and (38) then give the mean ¢ and variance o2 of the risk distribution function g(p) for one

module:
log(®
log(g) = g,g )2 03 (39)
hence
- (40)
¢ = 2
and according to equation (28) and (38)
100¢2K = (@? + 62)K — 2K (41)
hence
0? = (100% — 1) ? (42)
As K = 10 we finally get
o=04 (43)

10
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Redundancy would thus allow an amazing variability in the combinations of possible fates of
the K redundant modules involved in disease D, namely 2K states, among which only one is
permissive to disease D.

Note that o cannot exceed 0.5, which is the maximum standard deviation that a probability
distribution function f(p) can take: in this extreme case, f (p) is equal to f,(p) as given above
in equation (9), which is the sum of two symmetric Dirac delta functions, one in O (protective
state against disease D), the other one in 1 (permissive state for disease D). More generally, for
a given module M with a mean risk ¢, the maximum variance of the risk distribution g(p) is
@ (1 — ¢). Whenever the variance is less than ¢ (1 — ¢) there is some stochasticity in the fate
of module M. The degree of stochasticity may then be defined as ¢ = 1 — x where x is the ratio
of the actual variance over the maximal variance:

fo1-—2 (44)

o(1-¢)

Note that the maximal dispersion o2 = @ (1 — ¢) corresponds to the minimal degree of
stochasticity ¢ = 0. In general, the degree of stochasticity ranges between 0 and 1, from a
completely deterministic behavior to a completely random one, namely:
Q) & =1 corresponds to g(p) = 6(p — @) where ¢ is the common probability of
failure of the module M, shared by the whole population. This means that a fraction
1 — ¢ of the population will happen to have the module M wired in the state that is
protective against disease D while the remaining fraction ¢ of the population will
happen to have the module M wired in the state that is permissive to disease D,
hence protective against some other disease D’. This completely random behavior
mimics the bet-hedging strategy that some plants adopt in climates that change
significantly from one year to the next [6]: it is indeed advantageous for such plants
to "hedge their bets", thus producing some seeds that germinate immediately in case
of a rainy season and other seeds that lie dormant in case of a drought. This strategy
allows these plants and their offspring to adapt to rapidly changing environments.
(i) & =0correspondsto g(p) = (1 — @)d(p) + 5(p — 1). In this case, a fraction 1-
@ of the population is determined to be at no risk of having disease D while the
remaining fraction ¢ is determined to be at no risk of having some other disease D'.
This deterministic behavior is well adapted to a stable environment where the two
states of the module M have equal fitness.

For “not so rare” chronic diseases, Equation (43) shows that the risk distribution function g(p)
of one module has a wide dispersion. This suggests that the degree of stochasticity ¢ of one
module is rather low, and even close to 0. However ¢ is not zero, because otherwise twins
would be much more alike. Why is it so? So far we have overlooked changes of the
environment. However many chronic diseases have recently emerged or even exploded as a
result of changes in food quality, or eating habits, or home furnishings such as a refrigerator
[7]. Equation (37) shows that the mean risk ¢ per module must change if the prevalence @
changes. But of course, it is more probable that only one module among the N redundant
modules involved in disease D is affected by the environmental change. As the degree of
stochasticity ¢ of any module is low, the risk distribution g(p) is close to (1 — ¢)é(p) +
@6(p — 1), hence this is practically the fraction ¢ of the population at risk for disease D that
changes. In other words, a fraction of people with almost no risk become at very high risk,
practically determined to be ill. How ¢ changes under environmental pressure remains to be
explicited. But anyway, we speculate that evolution may have shaped the modules of the

11
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physiological network to make them function in a rather deterministic way in stable
environments but to be versatile enough so as to allow individuals and their progeny to adapt
to rapidly changing environments.

Conclusion.

We have seen that hidden variables such as ex-ante chances can be actually assessed whenever
multiple draws are available. Twins provide a unique means to play twice at the lottery of
diseases. Of course twins are all the more relevant to assess ex-ante chances as they share the
same environmental factors. In the same vein, “social twins” or more generally “social clones”
would be of great help in assessing inequality of opportunities. However, controlling the
environment of such social clones would be rather challenging as the issue of choice comes
into play which may change people’s lives with the same opportunities. Assessing the
inequality of opportunities is therefore one of the most delicate, almost completely open, issues.

Since its invention in the middle of the 17" century, the probability calculus has accompanied
most if not all new fields of science, especially since the beginning of the 20™" century with the
burst of genetics and quantum physics up to the most recent developments of quantum cognition
[8], not to mention the countless applications to finance and economy.

Pascal could never complete his treatise “Geometry of Chance”. This never-ending treatise is
still being written, as evidenced in this special issue.
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