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To be or to have been lucky, that is the question 

 

A. Lesage1 and J-M. Victor2 

 

 

Abstract: Is it possible to measure the dispersion of ex-ante chances (i.e. chances “before the 

event”) among people, be it gambling, health, or social opportunities? We explore this question 

and provide some tools, including a statistical test, to evidence the actual dispersion of ex-ante 

chances in various areas with a focus on chronic diseases. 

 

 

 

Introduction.  

“That evening he was lucky”: what do we mean by this? And even weirder when we say: “the 

luck turned”. Does this mean that we could be visited by fortune? Or that some people are 

luckier than others on certain days? Of course, we cannot rule out the fact that some people 

may bias the chances of success simply by cheating. But is there any way to assess the 

dispersion of chances among gamblers (or just the fraction of cheaters)?  

 

This kind of question is part of the field of probability calculus, which aims at determining the 

relative likelihoods of events. The probability calculus started during summer 1654 with the 

correspondence between Pascal and Fermat precisely on elementary problems of gambling. 

Symmetry arguments are at the heart of this calculus: for example, for an unbiased coin, the 

two results, heads or tails, are a priori equivalent and therefore have the same probability of 

occurrence 1/2. This is why it is not anecdotal that Pascal wanted to give his treatise the 

“astonishing” title “Geometry of Chance”. Another illustration of the power of symmetry 

arguments is the tour de force of Maxwell who managed to calculate the velocity distribution 

of particles in idealized gases. At the time when he derived what is called since the Maxwell–

Boltzmann distribution, there was no possibility to measure this distribution. It was almost 60 

years before Otto Stern could achieve the first experimental verification of this distribution [1], 
around the same time when he confirmed with Walther Gerlach the existence of the electron 

spin, for which he won the Nobel Prize in 1944. The agreement between theoretical and 

experimental distributions was surprisingly good. 

  

In probability theory, events are usually associated to random variables that are measurable. 

For example, in the heads or tails game, heads may be associated with 1 and tails with 0. Then 

for a given number 𝑁 of draws, one can count the number of times the heads are flipped. This 

number 𝑘 is between 0 and 𝑁 and the ratio 𝑘/𝑁 is the frequency of the heads. If the coin is 

unbiased, this frequency fluctuates around 1/2 when the game (𝑁 draws for each game) is 

played many times. Importantly, the frequency is observed ex post, i.e. after the game is played, 

then the mean frequency is used as a measure of the probability of getting a head. This is the 

usual way of assessing probabilities in statistics. Remember that assessing probabilities for 

anticipating the outcome of future events is the very purpose of statistics. 

  

Dispersion of chances is far from being limited to gamblers. Disease risk is another area where 

people may be and actually are unequal for genetic or environmental reasons. In this case, the 

result of a "draw" is whether or not you have a disease 𝐷. Gambling is then limited to one 
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“draw” per “gambler” and only the mean probability that an individual in a given population 

will become ill can be observed. But can we assess the dispersion of disease risks? And if so, 

how can we? As a last emblematic example, we mention social opportunities. Measuring 

inequality of opportunity is a crucial issue with considerable political stakes, though it is 

extremely difficult to assess. On this last point, we postpone the in-depth study of the measure 

of inequal opportunities to a further work. 

 

In all these examples, be it gambling, disease, or social opportunity, the ex-ante chances are 

themselves random variables that cannot be deduced from frequency measurements nor be 

induced by symmetry arguments. They are hidden variables. We propose here some tools to 

assess the distribution of such hidden variables and we explore more specifically the relevance 

of those tools to and their consequences in the field of chronic diseases. 

 

 

I. A simple draw is not enough. 

Let us first assume that there is a sample of 𝑛 people tossing a coin and that each of them has a 

probability 𝑝𝑖 to win (hence 1-𝑝𝑖 to lose). In an unbiased game, all the 𝑝𝑖 are identical and equal 

to 1/2. Imagine that some gamblers are luckier, others less fortunate, hence some 𝑝𝑖 are > 1/2, 

others are < 1/2. This means that the 𝑝𝑖 are random variables that are drawn from a probability 

distribution f(𝑝) that is different from δ (𝑝 −
1

2
). Let Φ and Σ2 be the mean and variance of 

f(p). Let us assume now that each individual plays 𝑁 times. The result of each draw j of the 

individual i is a random variable 𝑋𝑖
𝑗
, either 1 in case of success or 0 in case of failure. This is a 

Bernoulli process: for each i the random variables 𝑋𝑖
𝑗
 are i.i.d. (independent, identically 

distributed, i.e. the probability of success 𝑝𝑖 is the same for the N draws of i). Let us define 𝑆𝑖 =

∑ 𝑋𝑖
𝑗𝑁

𝑗=1 . 𝑆𝑖 is a random variable that follows a binomial distribution B(𝑁, 𝑝𝑖). 𝑆𝑖 is the number 

of times the individual i has won. The mean of 𝑆𝑖 and its variance are 

 
〈𝑆𝑖〉 = 𝑁𝑝𝑖 (1) 

 

𝑉𝑎𝑟(𝑆𝑖) = 𝑁𝑝𝑖(1 − 𝑝𝑖) (2) 

 

Once every individual has played N times, we obtain an estimation of the distribution of the n 

random variables 𝑆𝑖 as a histogram over the N + 1 values k = 0,  1,  2, … 𝑁. These random 

variables 𝑆𝑖 are independent but non identically distributed as the 𝑝𝑖 are different from one 

individual to another. 

Just as the 𝑝𝑖 are drawn from the distribution 𝑓(𝑝), the 𝑆𝑖 are the realizations of a random 

variable 𝑆 (which takes the 𝑁 + 1 discrete values 𝑘 = 0,  1,  2, … 𝑁). The probability 

distribution function of 𝑆 is given as follows: 

 𝑘 = 0, 1, … 𝑁  𝑃𝑟𝑜𝑏(𝑆 = 𝑘) = ∫ 𝑑𝑝𝑓(𝑝)
1

0

𝐶𝑁
𝑘𝑝𝑘(1 − 𝑝)𝑁−𝑘 (3) 

The mean of 𝑆 is 

 

〈𝑆〉 = ∑ 𝑘𝑃𝑟𝑜𝑏(𝑆 = 𝑘)

𝑁

𝑘=0

= ∫ 𝑑𝑝𝑓(𝑝)
1

0

∑ 𝑘𝐶𝑁
𝑘𝑝𝑘(1 − 𝑝)𝑁−𝑘

𝑁

𝑘=0

= ∫ 𝑑𝑝𝑓(𝑝)
1

0

𝑁𝑝 = 𝑁〈𝑝〉 

 

hence 
〈𝑆〉 = 𝑁Φ (4) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 December 2020                   



 3 

 

 

and its variance is 

Var(𝑆) = 〈𝑆2〉 − 〈𝑆〉2 

where 

〈𝑆2〉 = ∑ 𝑘2𝑃𝑟𝑜𝑏(𝑆 = 𝑘)

𝑁

𝑘=0

= ∫ 𝑑𝑝𝑓(𝑝)
1

0

∑ 𝑘2𝐶𝑁
𝑘𝑝𝑘(1 − 𝑝)𝑁−𝑘

𝑁

𝑘=0

= ∫ 𝑑𝑝𝑓(𝑝)
1

0

[𝑁𝑝(1 − 𝑝) + (𝑁𝑝)2] 

hence 

 

〈𝑆2〉 = 𝑁(〈𝑝〉 − 〈𝑝2〉) + 𝑁2〈𝑝2〉 
and 

 

Var(𝑆) =  N(〈𝑝〉 − 〈𝑝2〉) + 𝑁2〈𝑝2〉 − 𝑁2〈𝑝〉2 

 

Now 
〈𝑝〉 = Φ 

and 

〈𝑝2〉 = Σ2 + Φ2 

so that 

𝑉𝑎𝑟(𝑆) =  𝑁(Φ(1 − Φ) − Σ2) + 𝑁2Σ2 (5) 

 

Note that within the limit 𝑁 → ∞, the probability distribution function of the reduced variable 

x =
𝑘

𝑁
 (where k = 0,  1,  2,   … 𝑁) converges to the distribution f(𝑝).  

 

Equation (5) shows that, if N = 1, the variance Var(𝑆) = Φ(1 − Φ) does not depend on the 

variance Σ2 of f(𝑝). As a matter of fact, when 𝑁 = 1, the gains are either 0 or 1 so that the 

histogram of gains has only two bins, one at 0, the other at 1. The mean of gains is Φ and the 

variance is Φ(1 − Φ). Neither the mean nor the variance depends on the variance Σ2 of  𝑓(𝑝). 

Moreover, according to equation (3), the histogram of gains itself depends only on the mean of 

the distribution f(𝑝): 

 

𝑃𝑟𝑜𝑏(𝑆 = 0) = ∫ 𝑑𝑝𝑓(𝑝)(1 − 𝑝)
1

0

= 1 − Φ (6) 

 

𝑃𝑟𝑜𝑏(𝑆 = 1) = ∫ 𝑑𝑝𝑓(𝑝)𝑝
1

0

= Φ (7) 

 

The histogram of gains cannot therefore provide information on the dispersion of chances. For 

example, the two following distributions: 

 

𝑓1(𝑝) = 𝛿 (𝑝 −
1

2
) (8) 

and 

𝑓2(𝑝) =
1

2
[𝛿(𝑝) + 𝛿(𝑝 − 1)] (9) 
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have the same mean Φ =
1

2
, hence result in the same histograms (Figure 1 for 𝑁 = 1). However, 

the variance of 𝑓1 is null whereas the variance of 𝑓2 is 1/4. (Note that 1/4 is the maximal 

variance that a probability distribution 𝑓(𝑝) can take). This means that a simple draw is not 

enough to extract the variance of 𝑓(𝑝) from the histogram of gains; multiple draws are 

necessary, though are they sufficient? 

 

 
Figure 1. On the left-hand side 𝑓1(𝑝) = 𝛿 (𝑝 −

1

2
) and on the right-hand side 𝑓2(𝑝) =

1

2
[𝛿(𝑝) + 𝛿(𝑝 − 1)]. In  𝑒𝑎𝑐ℎ case, the 

histogram of success is plotted for increasing values of the number N of draws and for two numbers n of gamblers:  𝑛 = 10 

(in blue) and 𝑛 = 100 (in orange). 

 

 

II. A statistical test of the dispersion of chances. 

We first note that the histogram of gains for two draws has three bins, one at 0, the second at 1 

and the third at 2, with the following values (Figure 1 for 𝑁 = 2): 

 

𝑃𝑟𝑜𝑏(𝑆 = 0) = ∫ 𝑑𝑝𝑓(𝑝)(1 − 𝑝)2
1

0

= 〈(1 − 𝑝)2〉 = (1 − Φ)2 + Σ2 (10) 

 

𝑃𝑟𝑜𝑏(𝑆 = 1) = 2 ∫ 𝑑𝑝𝑓(𝑝)𝑝(1 − 𝑝)
1

0

= 2Φ(1 − Φ) − 2Σ2 (11) 

 

𝑃𝑟𝑜𝑏(𝑆 = 2) = ∫ 𝑑𝑝𝑓(𝑝)𝑝2
1

0

= Φ2+Σ2 (12) 

 

Hence the histogram of gains now depends on (and only on) both the mean and the variance 

of 𝑓(𝑝). For three or more draws, we could also have access to higher order moments of 𝑓(𝑝). 

Nevertheless, the minimum condition for the presence of a probability dispersion is that the 

variance of 𝑓(𝑝)is non-zero. We therefore propose to design a statistical test that will be able 

to discriminate between both following hypotheses: 

 

(i) Null hypothesis 𝐻0: everybody has the same probability Φ of gain. This means that 

 𝑓(𝑝) = δ(𝑝 − Φ) whose mean is 〈𝑝〉 =  Φ and variance Σ2 = 0; 
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(ii) Alternative hypothesis 𝐻1: f has the same mean Φ but some people are luckier than 

the others so that f has a non-zero variance Σ2. 

 

According to 𝐻0 the mean of 𝑁 draws is Φ and the variance is 𝑁Φ(1 − Φ), whereas according 

to 𝐻1 the mean of 𝑁 draws is also Φ but the variance is 𝑁(Φ(1 − Φ) − Σ2) + 𝑁2Σ2. Hence if 

the variance Var(𝑆) grows linearly with 𝑁, then all individuals have the same probability 𝑝 of 

success. If on the contrary Var(𝑆) grows quadratically with 𝑁 then not all individuals have the 

same chance of success. We can therefore rephrase our hypothesis test in the following 

alternative based on the dependence of the variance Var(𝑆) on the number 𝑁 of draws: 

 

(i) Null hypothesis 𝐻0: the variance Var(𝑆) grows linearly with 𝑁; 

(ii) Alternative hypothesis 𝐻1: the variance Var(𝑆) grows quadratically with 𝑁. 

 

Figure 2 plots the variance of the two distributions 𝑓1 and 𝑓2 as a function of the number 𝑁 of 

draws for 𝑛 = 100 gamblers. Then the Ramsey Regression Equation Specification Error Test 

(RESET) is a relevant tool to conclude. To be more specific, when N ≥ 2, one has to 

calculate the F statistic given by 

 

𝐹 =
(𝑅𝑆𝑆𝐿 − 𝑅𝑆𝑆𝑄)

(
𝑅𝑆𝑆𝑄

N − 1
)

(13)
 

 

 

where 𝑅𝑆𝑆𝐿 (resp. 𝑅𝑆𝑆𝑄) is the residual sum of squares of the linear (resp. quadratic) regression. 

Under the null hypothesis 𝐻0, the F statistic has an F-distribution with (1,  𝑁 − 1) degrees of 

freedom. 𝐻0 is rejected if the value of F calculated from the data is greater than the critical 

value of the F-distribution for some fixed false-rejection probability (usually 0.01). 

 
Figure 2. Linear regression fits 𝑉𝑎𝑟(𝑆) for 𝑓1, with 𝑎 = 0.251 ± 0.005 in agreement with equation (5) when 𝛴2 = 0. Moreover 

a agrees with the expected value 𝛷(1 − 𝛷) = 1 4⁄ . At odds with 𝑓1, the linear regression does not fit 𝑉𝑎𝑟(𝑆) for 𝑓2 whereas 
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the quadratic fit is excellent, with: 𝑎 = 0.244 ± 0.006 and 𝑏 = 0.01 ± 0.01. Here a agrees with the expected value 𝛴2 = 1 4⁄  

and b with the expected value 𝛷(1 − 𝛷) − 𝛴2 = 0. 

 

 

III. Dispersion of disease risks for twins. 

Inequality of risk for disease is a major public health issue. Of course, part of this inequality is 

known to depend on genetic and environmental factors. The mean frequency that an individual 

will become ill in a given population specified by genetic and environmental factors can be 

measured and as usual this frequency can be used as a measure of the probability to become ill. 

But can we assess the dispersion of disease risk, if only it exists, in this specific population? 

And more generally, is there any way to assess the dispersion of risk in a more objective 

manner, without any a priori assumption on presumed risk factors? Here comes into play a 

providential help from the existence of twins. Identical twins, also called monozygotic twins, 

have the same genome, shared the same foetal environment and generally share the same living 

conditions, so that they are most likely to share also the same probability to become ill, whatever 

the disease. Identical twins are therefore like a player betting twice. This is much related to the 

gambling question addressed above for 𝑁 = 2 (two draws). Indeed, as both twins have the same 

probability 𝑝 to have disease 𝐷, the status - ill or healthy - of each of the two twins is equivalent 

to the outcome – loss or gain – of each of the two draws by one and the same gambler. In this 

situation probability 𝑝 is called a risk. Let  𝑓(𝑝) be the probability distribution function of the 

risk to have disease 𝐷 in the population. We define the random variable 𝑆 as above, i.e. 𝑆 = 0 

if both twins are healthy, 𝑆 = 1 if only one of the two twins is ill and 𝑆 = 2 if both twins are 

ill. The mean Φ and variance Σ2 of 𝑆 are given by equations (4) and (5) respectively, hence for 

𝑁 = 2 
〈𝑆〉 = 2Φ (14) 

 

𝑉𝑎𝑟(𝑆) =  2(Φ(1 − Φ) − Σ2) + 4Σ2 =  2Φ(1 − Φ) + 2Σ2 (15) 

 

Then if Var(𝑆) is significantly greater than 〈𝑆〉 (1 −
〈𝑆〉

2
), which amounts to carry out the 

hypothesis test presented in the above section for 𝑁 = 2, we can conclude that there is some 

dispersion of the disease risk. As we will see below the dispersion is in fact unusually large. 

But before that, let us calculate the concordance rate of disease 𝐷 for two persons A and B. We 

note 𝐴𝑑 (resp. 𝐵𝑑) the event “ A has disease 𝐷” (resp. “ B has disease 𝐷”). In genetics, 

concordance is the probability that a pair of individuals will both have a certain characteristic, 

given that one of the pair has the characteristic. Concordance rate in a population is best 

assessed by the probandwise rate [2], namely the conditional probability P(𝐵𝑑|𝐴𝑑) that B has 

disease 𝐷, knowing that A has disease 𝐷. 

 

Of course, for two unrelated persons, this conditional probability is 

 

𝑃(𝐵𝑑|𝐴𝑑) =
𝑃(𝐴𝑑 𝑎𝑛𝑑 𝐵𝑑)

𝑃(𝐴𝑑)
=

𝑃(𝐴𝑑)𝑃(𝐵𝑑)

𝑃(𝐴𝑑)
= 𝑃(𝐵𝑑) = 𝑝 (16) 

 

 

and then 
〈𝑃(𝐵𝑑|𝐴𝑑)〉 = 〈𝑝〉 = Φ (17) 

 

Now for two identical twins A and B, equation (16) is still true, then a naive averaging of both 

sides of equation (16) would necessarily lead to equation (17) as well. What is wrong? As a 
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matter of fact, the conditioning on 𝐴𝑑 is not insignificant: in formula (17) it is indeed necessary 

to average 𝑝 by considering the fact that 𝐴𝑑 is realized, thus by using the probability density 

function 𝑓𝑑(𝑝) in the population of affected people and not simply 𝑓(𝑝). For identical twins, 

equation (17) therefore becomes 

 

〈𝑃(𝐵𝑑|𝐴𝑑)〉 = ∫ 𝑝𝑓𝑑(𝑝)𝑑𝑝
1

0

(18) 

 

The probability density function 𝑓𝑑(𝑝) can be obtained as follows: 

(i) The fraction of the population that has a risk 𝑝 (up to 𝑑𝑝) to become ill is 𝑓(𝑝)𝑑𝑝; 

(ii) Among these people, a fraction 𝑝 will be actually affected; 

(iii) Then the fraction of affected people that has a risk 𝑝 (up to 𝑑𝑝) to become ill is 

𝑝𝑓(𝑝)𝑑𝑝 

 

so that 

𝑓𝑑(𝑝)𝑑𝑝 =
𝑝𝑓(𝑝)𝑑𝑝

∫ 𝑝𝑓(𝑝)𝑑𝑝
1

0

 (19) 

 

The probability density function 𝑓𝑑(𝑝) is therefore given by 

 

𝑓𝑑(𝑝) =
𝑝𝑓(𝑝)

< 𝑝 >
 (20) 

 

 

and the mean conditional probability 〈𝑃(𝐵𝑑|𝐴𝑑)〉 is 

 

〈𝑃(𝐵𝑑|𝐴𝑑)〉 = ∫ 𝑝𝑓(𝑝|𝐴𝑑)𝑑𝑝
1

0

= ∫ 𝑝
𝑝𝑓(𝑝)

〈𝑝〉
𝑑𝑝 =

1

〈𝑝〉
∫ 𝑝2𝑓(𝑝)𝑑𝑝 =

〈𝑝2〉

〈𝑝〉

1

0

1

0

(21) 

 

We finally get the relative risk 

𝑅𝑅 =
〈𝑃(𝐵𝑑|𝐴𝑑)〉

〈𝑝〉
=

〈𝑝2〉

〈𝑝〉2
(22) 

 

which can be expressed as a function of the mean Φ and variance Σ2 of f(𝑝): 

 

𝑅𝑅 =
〈𝑝2〉

〈𝑝〉2
=

Σ2 + Φ2

Φ2
= 1 +

Σ2

Φ2
(23) 

 

For Crohn disease, one of the most well documented chronic disease : 

Φ ≅ 0.0025 (24) 

 

and 

𝑅𝑅 ≅ 100 (25) 

 

hence 

Σ2 = Φ2(𝑅𝑅 − 1) ≅ 0.00062 (26) 
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Σ ≅ 0.025 (27) 

 

which means that 

Σ ≅ 10Φ (28) 

 

For Crohn disease, but this is also true for most chronic diseases, the dispersion of the risk to 

be affected is therefore huge indeed. The distribution 𝑓(𝑝) may then be approximated by a beta-

distribution: 

𝑓(𝑝; 𝛼, 𝛽) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝑝𝛼−1(1 − 𝑝)𝛽−1 (29) 

 

The parameters α and β can be expressed as a function of Φ and Σ2: 

 

𝛼 =  Φ [
Φ(1 − Φ)

Σ2
− 1] (30) 

 

 

𝛽 =  (1 − Φ) [
Φ(1 − Φ)

Σ2
− 1] (31) 

 

For Crohn disease we get: 

𝛼 ≅ 0.0076 (32) 

 

𝛽 ≅ 3 (33) 

 

Both probability distribution functions 𝑓(𝑝) and 𝑓𝑑(𝑝) for Crohn disease are plotted in Figure 

3. Now the mean risk in the affected population is 

 

Φ𝑎 =
∫ 𝑝[𝑝𝑓(𝑝)]𝑑𝑝

1

0

∫ [𝑝𝑓(𝑝)]𝑑𝑝
1

0

=
〈𝑝2〉

〈𝑝〉
=

Σ2 + Φ2

Φ
(34) 

 

 

As Σ ≅ 10Φ the mean risk in the affected population is therefore 

 

Φ𝑎 ≅ 100Φ (35) 

 

 

and the relative risk of affected people as compared to controls is 

 
Φ𝑎

Φ
≅ 100 (36) 

 

 

which means that affected people are much more predisposed to the disease than controls. Note 

that 
Φ𝑎

Φ
 is equal to the relative risk RR computed above for twins. 

 

At this stage we remark that affected people did not really have bad luck to become ill but 

actually had a large predisposition to become ill. 
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Figure 3. The risk distribution 𝑓(𝑝) among the population (in blue) is approximated by a Beta distribution of parameters 𝛼 ≅

0.0076, 𝛽 ≅ 3 and diverges in 0. The risk distribution 𝑓𝑑 =
𝑝𝑓(𝑝)

〈𝑝〉
 among affected individual𝑠 ( )﷩〈 〉﷩ is also a Beta 

distribution of parameters 𝛼 + 1 , 𝛽. 

 

 

IV. A modular approach of chronic diseases. 

Chronic diseases occur at various ages and persist throughout life. At the turn of the 2000s a 

new approach, called genome wide association studies (GWAS) was designed to characterize 

the genetic predisposition to a chronic disease. GWAS are supposed to find in particular the 

genes involved in a given disease, and among these genes the variants most at risk, i.e. the DNA 

sequences of a given gene that are more represented in the people affected by the disease. Such 

variants characterize the genetic predisposition to the disease. However the relative risk of most 

predisposition genes is hardly larger than 1, which leads to think that it is rather combinations 

of predisposition genes that are involved. But then a new difficulty arises, namely genetic 

redundancy, i.e. the fact that a given biochemical function is redundantly encoded by two or 

more genes. Genetic redundancy has been evidenced by knockout experiments. Knockout 

animals are genetically modified animals in which an existing gene has been inactivated by 

replacing it or disrupting it with an artificial piece of DNA. Such model animals have been 

created for studying the role of genes whose functions is unknown. By causing a specific gene 

to be inactive, and observing any differences from normal behaviour, one can infer its probable 

function. However knockout animals often exhibit no physiological alteration, thus evidencing 

that many biological functions are redundant [5]: inactivating a gene has generally no 

consequence on the function the gene is known to code for. This means that other genes can, 

and actually do implement an equivalent function. Paralagous genetic redundancy is often cited 

as a mechanism to account for lack of a knockout phenotype. 

 

Suppose now that a disease D is the result of the impairment of K redundant functions, so that 

people become ill when and only when the whole set of K functions is impaired [3]. In other 
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words, as long as at least one function is performed, there is no disease. This kind of modelling 

has been developed recently to fit the incidence of various chronic diseases as a function of the 

age of onset [4]. We assume that these redundant functions are independent, i.e. the network of 

functions is organized in a modular way. To be more specific, each function is achieved as a 

module of the global physiological network (including most notably the regulatory gene 

network, the metabolic network and the cell signalling network) and modules operate in an 

independent way. The probability p to become ill is thus the product of the K probabilities 𝑝𝑖, 

𝑝 = ∏ 𝑝𝑖
𝐾
𝑖=1  , that each redundant function 𝑖 is impaired. Importantly, when the function 

performed by module 𝑖 is impaired, this module is permissive for disease D, but this does not 

mean that module 𝑖 is not functioning at all. On the contrary, we suggest that module 𝑖 is then 

switched to another functional mode which can be protective against another disease 𝐷′. More 

generally we suggest that modules may be bifunctional, i.e. that the genes that make up a 

module may be wired in two different ways, one being associated with a function that is 

protective against some disease 𝐷, the other with a function that is protective against some other 

disease 𝐷′. 
 

For the sake of simplicity, we assume that all the K redundant functions have the same 

probability distribution function g(𝑝). Now we can relate the mean Φ and variance Σ2 of f(𝑝) 

to the mean φ and variance σ2 of g(𝑝): 

 

Φ = 𝜑𝐾 (37) 

 

Σ2 = (𝜑2 + σ2)𝐾 − 𝜑2𝐾 (38) 

 

It has been shown in [4] that the number of redundant functions is K ≅ 10 for various “not so 

rare” chronic diseases. By this we mean chronic diseases that have a typical prevalence, i.e. the 

fraction of the population that is affected by the disease, between 0.5 per 1000 and 5 per 1000. 

We recall that in Europe, a disease is considered to be rare when it affects less than 1 person 

per 2000. Hence the mean risk for “not so rare” chronic diseases is Φ ≅ 10−3. Equations (37) 

and (38) then give the mean φ and variance σ2 of the risk distribution function g(𝑝) for one 

module: 

 

log(𝜑) =
log(Φ)

𝐾
≅ −0.3 (39) 

 

hence 

𝜑 ≅
1

2
 (40) 

 

and according to equation (28) and (38) 

 

100𝜑2𝐾 ≅ (𝜑2 + σ2)𝐾 − 𝜑2𝐾 (41) 

hence 

σ2 ≅ (100
1
𝐾 − 1) 𝜑2 (42) 

As K ≅ 10 we finally get 

σ ≅ 0.4 (43) 
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Redundancy would thus allow an amazing variability in the combinations of possible fates of 

the 𝐾 redundant modules involved in disease 𝐷, namely 2𝐾 states, among which only one is 

permissive to disease 𝐷. 

 

Note that σ cannot exceed 0.5, which is the maximum standard deviation that a probability 

distribution function 𝑓(𝑝) can take: in this extreme case, 𝑓(𝑝) is equal to 𝑓2(𝑝) as given above 

in equation (9), which is the sum of two symmetric Dirac delta functions, one in 0 (protective 

state against disease D), the other one in 1 (permissive state for disease D). More generally, for 

a given module 𝑀 with a mean risk 𝜑, the maximum variance of the risk distribution 𝑔(𝑝) is 

𝜑(1 − 𝜑). Whenever the variance is less than 𝜑(1 − 𝜑) there is some stochasticity in the fate 

of module 𝑀. The degree of stochasticity may then be defined as 𝜉 = 1 − 𝑥 where 𝑥 is the ratio 

of the actual variance over the maximal variance: 

𝜉 = 1 −
σ2

𝜑(1 − 𝜑)
 (44) 

 

Note that the maximal dispersion σ2 = 𝜑(1 − 𝜑) corresponds to the minimal degree of 

stochasticity 𝜉 = 0. In general, the degree of stochasticity ranges between 0 and 1, from a 

completely deterministic behavior to a completely random one, namely: 

(i) 𝜉 = 1 corresponds to 𝑔(𝑝) = 𝛿(𝑝 − 𝜑) where 𝜑 is the common probability of 

failure of the module 𝑀, shared by the whole population. This means that a fraction 

1 − 𝜑 of the population will happen to have the module 𝑀 wired in the state that is 

protective against disease 𝐷 while the remaining fraction 𝜑 of the population will 

happen to have the module 𝑀 wired in the state that is permissive to disease 𝐷, 

hence protective against some other disease 𝐷′. This completely random behavior 

mimics the bet-hedging strategy that some plants adopt in climates that change 

significantly from one year to the next [6]: it is indeed advantageous for such plants 

to "hedge their bets", thus producing some seeds that germinate immediately in case 

of a rainy season and other seeds that lie dormant in case of a drought. This strategy 

allows these plants and their offspring to adapt to rapidly changing environments. 

(ii) 𝜉 = 0 corresponds to 𝑔(𝑝) = (1 − 𝜑)𝛿(𝑝) + 𝜑𝛿(𝑝 − 1). In this case, a fraction 1-

 𝜑 of the population is determined to be at no risk of having disease 𝐷 while the 

remaining fraction 𝜑 is determined to be at no risk of having some other disease 𝐷′. 
This deterministic behavior is well adapted to a stable environment where the two 

states of the module 𝑀 have equal fitness. 

 

For “not so rare” chronic diseases, Equation (43) shows that the risk distribution function 𝑔(𝑝) 

of one module has a wide dispersion. This suggests that the degree of stochasticity 𝜉 of one 

module is rather low, and even close to 0. However 𝜉 is not zero, because otherwise twins 

would be much more alike. Why is it so? So far we have overlooked changes of the 

environment. However many chronic diseases have recently emerged or even exploded as a 

result of changes in food quality, or eating habits, or home furnishings such as a refrigerator 
[7]. Equation (37) shows that the mean risk 𝜑 per module must change if the prevalence Φ 

changes. But of course, it is more probable that only one module among the 𝑁 redundant 

modules involved in disease 𝐷 is affected by the environmental change. As the degree of 

stochasticity 𝜉 of any module is low, the risk distribution 𝑔(𝑝) is close to (1 − 𝜑)𝛿(𝑝) +
𝜑𝛿(𝑝 − 1), hence this is practically the fraction 𝜑 of the population at risk for disease 𝐷 that 

changes. In other words, a fraction of people with almost no risk become at very high risk, 

practically determined to be ill. How 𝜑 changes under environmental pressure remains to be 

explicited. But anyway, we speculate that evolution may have shaped the modules of the 
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physiological network to make them function in a rather deterministic way in stable 

environments but to be versatile enough so as to allow individuals and their progeny to adapt 

to rapidly changing environments. 

 

 

Conclusion. 

 

We have seen that hidden variables such as ex-ante chances can be actually assessed whenever 

multiple draws are available. Twins provide a unique means to play twice at the lottery of 

diseases. Of course twins are all the more relevant to assess ex-ante chances as they share the 

same environmental factors.  In the same vein, “social twins” or more generally “social clones” 

would be of great help in assessing inequality of opportunities. However, controlling the 

environment of such social clones would be rather challenging as the issue of choice comes 

into play which may change people’s lives with the same opportunities. Assessing the 

inequality of opportunities is therefore one of the most delicate, almost completely open, issues. 

 

Since its invention in the middle of the 17th century, the probability calculus has accompanied 

most if not all new fields of science, especially since the beginning of the 20th century with the 

burst of genetics and quantum physics up to the most recent developments of quantum cognition 
[8], not to mention the countless applications to finance and economy. 

 

Pascal could never complete his treatise “Geometry of Chance”. This never-ending treatise is 

still being written, as evidenced in this special issue. 
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