Preprint
Article

Formulation Of A Rational Option Pricing Model using Artificial Neural Networks

Altmetrics

Downloads

531

Views

170

Comments

0

This version is not peer-reviewed

Submitted:

15 December 2020

Posted:

17 December 2020

You are already at the latest version

Alerts
Abstract
This paper inquires on the options pricing modeling using Artificial Neural Networks to price Apple(AAPL) European Call Options. Our model is based on the premise that Artificial Neural Networks can be used as functional approximators and can be used as an alternative to the numerical methods to some extent, for a faster and an efficient solution. This paper provides a neural network solution for two financial models, the BlackScholes-Merton model, and the calibrated-Heston Stochastic Volatility Model, we evaluate our predictions using the existing numerical solutions for the same, the analytic solution for the Black-Scholes equation, COS-Model for Heston’s Stochastic Volatility Model and Standard Heston-Quasi analytic formula. The aim of this study is to find a viable time-efficient alternative to existing quantitative models for option pricing.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated