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 Abstract: Although cancers account for over 16% of all global deaths annually, at present, 

no reliable therapies exist for most types of the disease. As protein folding facilitators, heat 

shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps 

are among leading anticancer drug targets. Generally, Hsp70s are divided into two main 

subtypes: canonical Hsp70 (E. coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 

and Grp170) members. These two main Hsp70 groups are delineated from each other by 

distinct structural and functional specifications.  Non-canonical Hsp70s are considered as 

holdase chaperones, while canonical Hsp70s are refoldases. This distinct characteristic 

feature is mirrored by the distinct structural features of these two groups of chaperones. 

Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their 

substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair 

share of attention, the roles of non-canonical Hsp70s in cancer development has received less 

attention in comparison. In the current review, we discuss the structure-function features of 

non-canonical Hsp70s members and how these features impact on their role in cancer 

development. We further mapped out their interactome and discussed the prospects of 

targeting these proteins in cancer therapy. 
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1. Introduction  

Cancer accounts for approximately one sixth of total global annual deaths [1]. It is estimated 

that approximately 9.6 million cancer-related deaths were recorded in 2018, and the majority 

of these were attributed to lung cancer, hepatocellular carcinoma, breast cancer and colorectal 

cancer [1]. Approximately 70% of all cancer-related deaths occur in low to middle income 

countries (LMICs) where cancer causing infections such as hepatitis and human papilloma 

viruses are prevalent [1]. The most widely used interventions against cancer, such as 

chemotherapy and radiotherapy, are not always effective due to treatment-induced cellular, 

genetic and biochemical changes that often confer treatment resistance [2]. This, therefore, 

urgently necessitates the need to identify novel anticancer targets. Apart from their role as 

molecular chaperones, heat shock proteins (Hsps) play an important role in various cancer 
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signalling pathways such as tumourigenesis, carcinogenesis and apoptosis [3-4]. As such, the 

role of Hsps as cancer biomarkers is increasingly becoming apparent.  

Key hallmarks of tumourigenesis include: (i) unregulated proliferative signalling; (ii) escape 

from apoptosis; (iii) evasion of antigrowth signals; (iv) avoidance of cell senescence; (v) de 

novo angiogenesis; and (vi) cell invasion and metastasis [5]. Several proteins play crucial roles 

in facilitating each of these tumourigenesis stages (Figure 1). In addition, genome instability 

and inflammation can also trigger tumourigenesis [6]. It is therefore not surprising that upset 

of cellular proteostasis is one of the several factors that could drive tumour cell proliferation 

and metastasis. Deregulation of growth facilitates cell proliferation which occurs under the 

control of growth factors [7]. Growth factors bind onto extracellular receptor proteins of tumour 

cells with high affinity to facilitate signal transduction into the interior of the cell through a series 

of relay proteins, ultimately resulting in cell proliferation [8]. Cancer cell proliferation thus 

depends on the role of receptors and proteins which constitute an oncogenic cascade 

pathway. Further to this, cancer cells deploy several proteins towards evading apoptosis which 

would be prompted by cytotoxicity (e.g. induced by therapeutic interventions) as well as by the 

accumulation of oncogenic proteins ([9], Figure 1). As signalling molecules, Hsps are 

intimately linked to cancer progression. For example, a small Hsp (sHsp), Hsp27, and Hsp70 

inhibit release of cytochrome c, caspase 3 and 9 from the mitochondria, thus causing cells to 

evade apoptosis [10-11] 

  

Figure 1. The proteomic landscape of the hallmarks of cancer 

The processes of metastasis, uncontrolled angiogenesis, evasion of anti-growth signals, escape from apoptosis, 
cell proliferation and evasion of senescence are all crucial to tumour cell growth. Each of these processes is 
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regulated by several proteins that play important roles in the respective signalling pathways. As chaperones, 
Hsp70, Hsp90 and Hsp60 associate with several proteins that regulate cancer signalling pathways. 

 

Another important characteristic feature of cancer cells is their ability to evade senescence by 

deploying telomerase, whose role is to shorten the ends of telomeres [12]. Several other 

proteins, such as p53 are also implicated in senescence. p53 promotes senescence by 

transcriptionally upregulating the cell cycle protein p21, leading to arrest of cell proliferation 

[13] . Thus, by ensuring sustained high levels of telomerase coupled to low levels of p53, 

cancer cells evade senescence leading to tumourigenesis. Kinases such as ErbB2 and MET 

also play an important role in metastasis of cancer cells [14]. Tumour cells therefore rely on a 

robust protein folding machinery to provide functional proteins to meet their physiological 

requirements.  

Since they are constantly in a state of proteotoxic stress, cancer cells largely exploit Hsps to 

protect themselves against the toxic effects of aberrant oncoproteins, genomic instability, 

hypoxia, and acidosis [15-16]. High Hsp expression levels are associated with poor prognosis 

and treatment resistance in cancer patients, since Hsps protect tumour cells from therapeutic 

stressors such as radiation and cytotoxic chemotherapy [17]. Indeed, overexpression of Hsps 

has been observed in a wide range of cancers, including breast, endometrial, ovarian, gastric, 

colon, lung and prostate cancer [17-20]Due to their ability to oversee proteostasis, Hsps 

facilitate the folding and maturation of proteins involved in cancer signalling pathways (Figure 

1). Therefore, elevated Hsp levels are associated with tumour progression [21].  

It has been demonstrated that, inhibition of Hsp90, induces degradation of oncogenic proteins 

[22-23]. Additionally, the expression of some oncogenes in the absence of Hsp70 may result 

in cell inactivation [24]. This underscores the importance of Hsps in modulating oncogenic 

processes. Remarkably, Hsp70 and Hsp27 have both been shown to interact directly with 

protein intermediates of the apoptosis pathway [25-26]. Since it is highly expressed in 

malignant tumours and on the surface of tumour cells, Hsp70 typically serves as a biomarker 

of poor prognosis in cancer patients. Notably, the roles of the Hsp70 and Hsp90 in cancer 

development are well established [27-28]. Consequently, most Hsp-targeted anti-cancer 

treatment efforts have primarily focused on Hsp70 and its ER homologue, Grp78 as well as 

Hsp90 [29-31]. The kinase inhibitor, Sorafenib, used in the treatment of renal cell carcinoma 

and hepatocellular carcinoma, is an example of an Hsp70 targeting anti-cancer drug which 

functions to reduce the expression of Grp78 in cancer cells [32]. Thus, small molecules that 

modulate Hsp expression as well as those that inhibit their activity constitute possible 

anticancer agents. 
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2. Hsp110/Grp170 

The human genome encodes a total of 17 Hsp70s; 4 of which are Hsp110 or Grp170protein 

homologues ([33]; Table 1). Grp170 proteins are closely related to the Hsp110 family of 

proteins which occur in the endoplasmic reticulum (ER) and are primarily induced by glucose 

deprivation [34]. Both Grp170 and Hsp110 proteins constitute non-canonical clade of the 

Hsp70 family. Hence, in our narrative, except where it distinguishes the function of these two 

proteins within their distinct cellular localisation, we use the terms Hsp110 and Grp170 

interchangeably as the two chaperone are generally similar in structure and function.  

Hsp70s are typically characterised by an N-terminal nucleotide binding domain (NBD) and a 

C-terminal substrate binding domain (SBD), connected by a linker (Figure 2). Although the 

NBDs of canonical and non-canonical Hsp70s exhibit relatively high sequence conservation, 

their SBDs are more divergent [35]. In spite of their high conservation, members of the Hsp70 

family are characterised by unique signature motifs that define their functional specialization 

within cells.  Notably, Hsp110s are marked by extended acidic insertions located within their 

substrate binding domain, SDB-β and SBD-α subunits (Figure 2 A; [36]). Additionally, Hsp110s 

possess linker segments that are distinct from canonical Hsp70s [37-38].  

 

 Table 1. Hsp110/Grp170 proteins of human origin 

Protein 

(Accession 
number) 

Size 

(kDa) 

Localization Stress 
Inducible 

(Yes/No) 

Cellular functions References 

1. HspH1 

(Q92598) 

97 Cytosol, nucleus, 
endocytic vesicle  

Yes Apoptosis suppression, aggregation 
suppression, NEF  

[39] 

2. HspH3  

(O95757) 

95 Cytosol, nucleus Yes Ellicits humoral immune responses in 
leukemia patients 

[40] 

3. HspH2 

(P34932) 

95 Cytosol, extracellular 
exosome 

N.D Implicated in spermatogenesis [41] 

4. Grp170 

(Q9Y4L1) 

111 E.R Yes Aggregation suppression, NEF [42] 

ND: not determined 

 

Hsp110s possess seven β strands in the SBD, while canonical Hsp70s possess eight β 

strands [36]. Using three-dimensional models, we also observed structural variations within 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 December 2020                   doi:10.20944/preprints202012.0434.v1

https://www.uniprot.org/uniprot/Q9Y4L1
https://doi.org/10.20944/preprints202012.0434.v1


5 
 

the loop regions L1,2 and L4,5 of a human canonical Hsp70 (HspA1A) and Hsp110 (HspH1) 

(Figure 2).  Structural variations arising within these SBD sections potentially account for the 

functional delineations of Hsp110s in comparison to canonical Hsp70s.  Generally, the SBD 

of Hsp110s preferentially binds peptide substrates harbouring aromatic residues in contrast to 

canonical Hsp70s which preferentially bind substrates enriched with aliphatic residues [43]. 

Furthermore, P. falciparum Hsp110 was also previously shown to exhibit unique substrate 

binding preferences in comparison to its canonical form [44]. Structural variations in loops of 

Hsp70 are important for the function of the chaperone. For example, loops L1,2 and L3,4 located 

in SBDβ and are thought to regulate substrate binding specificity [45]. It was recently reported 

that most variations in the SBD segments of Hsp70s not only occur within the loop regions of 

the substrate binding cleft but also in the helical lid (SBDα) sections [35]. Indeed, the SBDα 

segment of Hsp110 is endowed with acidic insertions that are absent in the canonical isoform 

(Figure 2). This suggests that the lid regulates functional specificity of Hsp70 [44]. Hsp110 is 

reported to possess significantly higher substrate binding efficiency than canonical Hsp70 [44, 

46]and this can be attributed to its longer SBDα lid segment Furthermore, the yeast Hsp110 

homologue, Sse1 was shown to exhibit unique peptide-binding preferences from the canonical 

Hsp70 homologue (Ssa1), suggesting that Hsp70 and Hsp110 substrates are do not serve  

entirely overlapping functions [46]. 

Using three-dimensional structural modelling tools (Biova Discovery Studio 4.5), we noted 

some structural differences between the four human Hsp110 isoforms (HspH1, HspH2, 

HspH3, Grp170). Generally, the NBD segments of the 4 non-canonical Hsp70s exhibit high 

conservation (Figure 2C). Conservation of the NBD of these non-canonical Hsp70s is 

important in light of the role of this motif in regulating nucleotide exchange of their canonical 

Hsp70 counterparts. However, notable variations in their substrate binding domains [45]. It is 

therefore conceivable that, these variations observed within the individual loop segments may 

account for differences in the preferred substrate clientomes. As such, each of the Hsp110s 

may play distinct roles in chaperoning proteins involved in cancer signalling pathways. In 

comparison to Hsp110, Grp170 is exhibits a unique alpha helical section within L4,5 and L5,6 

(Figure 2C). Thus, as an endoplasmic reticulum based chaperone, Grp170 is possibly 

functionally adapted for its role in the ER. Consequently, it is also conceivable that Grp170 

chaperones a specialized set of oncogenic proteins located within the ER.  

Functionally, Hsp110/Grp170 subfamily members bind misfolding polypeptides, to prevent 

their aggregation[37, 47-48]). This way they maintain denatured protein substrates in a 

soluble, folding-competent state before handing them over to canonical Hsp70 for folding into 

native state [49-50]. In addition, canonical Hsp70 releases its substrate in the presence of 

ATP; and stably bind substrate in the ADP-bound state [51]. On the other hand, the chaperone 
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function of Hsp110/Grp170 chaperones is not regulated by nucleotides [43]. Thus, 

Hsp110/Grp170 are more effective holdase chaperones than their canonical Hsp70 

counterparts [37]. Hence canonical Hsp70s serve as a refoldase while Hsp110/Grp170 

members are buffers against proteostatic stress [37].Hsp110/Grp170 also function as NEFs 

of canonical Hsp70 [52-53]. 

 

 

Figure 2. General structural features of human Hsp110s 

(A) Structure of Hsp110 showing major features including the unique acidic insertions in the SBDα region. (B) 
Comparative structural analyses of a canonical Hsp70 (HspA1, purple) and an Hsp110 (HspH1, grey). Variations 
are predicted to occur within L1,2 and L4,5. (C) The NBDs of human HspH1 (cyan), HspH2 (purple), HspH3 (grey) 
and Grp170 (blue) show high conservation. (D) The SBDs of human HspH1 (cyan), HspH2 (purple), HspH3 (grey) 
and Grp170 (blue) show variation within the SBDβ segments. (E) Major variations are predicted to occur at loops 
L4,5 and L5,6 of the SBDβ segments of human HspH1 (cyan), HspH2 (purple), HspH3 (grey) and Grp170 (blue). 
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3. Hsp110 roles in cancer pathogenesis 

Several factors that upset proteostasis such as drug pressure, pH and temperature changes 

threaten the survival of malignant cells. In response to physiological stress, cancer cells 

activate cyto-protective adaptive pathways in which Hsp110 expression is upregulated. 

Indeed, Hsp110 expression is upregulated in various cancers including melanoma, 

prolactinoma, pituitary adenoma, breast cancer, colorectal cancer, pancreatic cancer, thyroid 

cancer, oesophageal cancer, lung cancer, bladder cancer, islet cell tumour, gastric cancer, 

lymphoma, seminoma, and hepatocellular carcinomas [54-59]. Furthermore, high Hsp110 

expression is a poor prognostic factor for patients with melanoma, oesophageal cancer, 

gastric cancer, tongue squamous cell carcinoma, colorectal cancer, non-Hodgkin lymphoma, 

MDS, or AML [54, 60-61].  

In cancer cells, Hsp110 may possibly facilitate protein stability and function by preventing 

aggregation of misfolded proteins as well as in maintaining protein conformation to enable 

ligand binding. Recent evidence has implicated the involvement of, Hsp110 (HspH1) in the 

aggregation suppression of alpha-synuclein [62]. The upregulation of α-synuclein is thought 

to contribute to aggressive phenotypes of meningiomas via the Akt/mTOR pathway, thus 

highlighting a key role for HspH1 in the development of malignant meningiomas [63]. It is thus 

possible that interception of the function of HspH1 could possibly present intervention against 

malignant meningiomas. 

Hsp110 is a crucial component of the primary protection/repair pathway for denatured proteins 

and thermotolerance in mammalian cells [36]. Furthermore, Hsp110 is involved in STAT3 

phosphorylation in the cytosol, thereby promoting cell proliferation (Figure 3; [59]).  It has been 

proposed that STAT3 is constitutively activated in many cancer types and plays a 

crucial role in tumour growth and metastasis [64-67]STAT3 also regulates several signalling 

pathways such as cellular proliferation, invasion and angiogenesis which are all critical for 

metastasis [68-69]. Hsp110s may play a major role in cancer development since they are 

implicated in apoptosis regulation. Indeed, Hsp110 has been shown to protect cells from 

stress-induced apoptosis [58, 70]. RNA interference targeting Hsp110 was demonstrated to 

induce apoptosis in cancer cells thus further pointing to an indirect role of this chaperone in 

the inhibition of apoptosis [71]. 
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Figure 3. Roles of Hsp110 in cancer cells.  

Hsp110 family members co-operate with Hsp70 and Hsp40 to facilitate folding of nascent polypeptides in tumour 
cells. They also suppress aggregation of oncogenic proteins and are also involved in STAT3 phosphorylation 
thereby promoting tumour cell proliferation.   
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Aberrant cell migration is a major determinant of metastasis leading to the development of 

malignant tumours [72]. As such, metastasis is the leading cause of cancer related deaths 

[73]. Cancer cell migration and invasion into surrounding vasculature is a crucial initial step in 

metastasis [74]. Cell migration is a complex process characterised by several steps, which 

include, epithelial mesenchymal transition (EMT), abnormal angiogenesis and immune 

evasion (Figure 3, [75]). During metastasis, cancer cells break free from the primary tumour 

to join the circulatory system, thus enabling colonization of distant organs. Interestingly, 

several protein molecules within the tumour microenvironment are associated with metastasis 

(Figure 3). Notably, Hsp110/Grp170 proteins play important roles in regulating protein activity 

of some proteins involved in these signalling pathways. Hsp110 association with the pro-

inflammatory cytokines IL-6 and TNF-α that are also involved in EMT has previously been 

demonstrated [76]. Upon EMT activation, tumour epithelial cells lose their cell polarity and 

adhesion properties to gain migratory and invasive properties, becoming mesenchymal cells 

[77-78]. Interestingly, the role of EMT in different cancers including prostate, lung, liver, 

pancreatic, and breast cancers has been established [79-80]. Since Hsp110 is implicated in 

modulating proteins involved in EMT, its potential role in the development of metastasis could 

be inferred.  

Angiogenesis is important in metastasis as the growth and spread of neoplasms largely 

depends on the establishment of an adequate blood supply. Notably, Hsp110 potentially 

modulates angiogenesis. It has been established that Hsp110 co-operates with sHsps to 

suppress protein aggregation under stress conditions [81]. sHsp family members are known 

to modulate activity of the pro-angiogenic factor, VEGF, which induces structurally and 

functionally abnormal vasculature formation [82]. Hsp110 may therefore indirectly play a 

central role in angiogenesis, and may be a rational target for novel anticancer therapy. T cells, 

monocytes and other immune cells are known to exert anti-metastatic functions [83]. During 

the metastasic cascade, crosstalk between tumour cells and immune cells triggers in immune 

evasion. This pathway is modulated by several anti-inflammatory cytokines such as 

transforming growth factor β (TGFβ), IL10, and IL35 [84-85]. Although the direct association 

of these cytokines wit Hsp110 is yet to be experimentally validated, Hsp110 likely plays a key 

role in the folding of these proteins by canonical Hsp70s. Indeed, it has previously been 

reported that Hsp70s, associates with and modulate these anti-inflammatory cytokines [86].  

Hsp110 generally confers cytoprotection by functioning as a stress buffer which prevents 

stress-induced apoptosis. Previous studies have suggested that Hsp110’s anti-apoptotic and 

chaperone roles are crucial for survival of  tumour cells against the action of anticancer drugs 

or hypoxia [71]. Furthermore, Hsp110 upregulation suppresses cancer cell apoptosis by 

inhibiting the activation of caspase 9 and caspase 3 by blocking cytochrome c release from 
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mitochondria [71, 87-88]. Interestingly, the role of Hsp110 in activated B-cell diffuses large B-

cell lymphoma (ABC-DLBCL) survival mechanisms has been also been established [89]. 

Hsp110 overexpression in ABC-DLBCL cell lines induces increased NF-kB signalling thereby 

suggesting a tight interplay between Hsp110 and the NF-kB pathway [89]. This is particularly 

important since ABC-DLBCL tumours rely on sustained NF-kB activation for survival. At the 

intracellular level, Hsp110 possesses anti-aggregation properties and also participates in the 

folding of nascent polypeptides or misfolded proteins in cells (Figure 3, [37]). Further studies 

to elucidate the roles for Hsp110/Grp170 in cancer development are thus urgently required.  

 

3. The role of the ER resident, Grp170 chaperone in cancer pathogenesis 

Since the ER is a critical organelle that facilitates several aspects of protein synthesis including 

post-translational modification and proper folding of client proteins, Grp170 plays a particularly 

significant role in cellular proteostasis. Like other Hsp110s, Grp170 generally exhibits dual 

functions as an NEF for Grp78 (the ER Hsp70) and in aggregation suppression of secretory 

or transmembrane proteins in the ER [29]. The cytoprotective activity of intracellular Grp170 

provides a survival benefit in cancer cells during tumour progression or metastasis [29]. 

Accumulating evidence demonstrates that Grp170 can directly bind to a variety of incompletely 

folded protein substrates in vivo in a nucleotide-independent fashion [90-91]. As such Grp170 

remains tightly bound to peptide substrates in both the ATP and ADP states, making it an 

efficient buffer against cellular stress [91]  

Stress factors including glucose and oxygen deprivation within the tumour microenvironment 

are known to activate a Grp170-mediated unfolded protein response (UPR) to promote tumour 

cell survival [92]. Grp170 is thought to be a potential prognostic factor of breast cancer, since 

altered Grp170 levels correlate with different stages of tumour invasiveness [93-94]. Due to 

its ability to chaperone several proteins associated in cancer signalling pathways, Grp170 

appears to possess pro-tumour activity (Figure 3; [95-96]). In addition, Grp170 involvement in 

angiogenesis of tumours has been described through its ability to chaperone the major pro-

angiogenic factor vascular endothelial growth factor (VEGF) [97-98]Similarly, an antisense 

approach was used to demonstrate Grp170’s ability to reduce tumourigenicty in a prostate 

cancer model by blocking secretion of matured VEGF [98]. Grp170 has also been shown to 

associate with matrix metalloproteinase-2 (MMP-2) thereby promoting tumour invasion [99].   

In as much as additional studies are necessary to glean a better understanding of the precise 

mechanistic contribution of the non-canonical Hsp70s in tumourigenesis, their chaperoning 

property appears to be a major underlying mechanism involved in their pro-tumour activity. 
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Complete proteomic studies on the involvement of Hsp110/rp170 in cancer pathophysiology 

are worth exploring. Notably Hsp110/Grp170 are predicted to interact with a large complement 

of proteins that are implicated in cancer development (Figure 3; Table S1). 

 

4. The unique proteomic signatures of Hsp110/Grp170 

We predicted the interactome of Hsp110/GRP170 homologues  established using the STRING 

10.5 database (http://string-db.org/,[100]). The predicted interactomes of the proteins revealed 

possible associations of these chaperones with several proteins implicated in tumourigenesis 

(Table S1).  Generally, while there were overlapping interaction partners between the various 

Hsp110 forms, we noted that the chaperones are also marked with unique interactomes 

(Figure 4). For instance, HspH2 and Grp170 are predicted to interact with a large complement 

of protein modifying enzymes as opposed to HspH1 and HsapH3 (Figure 4). Additionally, 

Grp170 also seems to interact with a large complement of proteins that are involved in several 

other roles including protein translocation. The observed variations in interactomes may 

possibly arise from the structural variations and ER-localization of Grp170 which makes it 

functionally specialized for binding ER proteins. Seemingly, the different Hsp110 isoforms play 

unique roles in chaperoning proteins involves in the different cancer signalling pathways as 

described below. 

Notably, all the Hsp110 isoforms (HspH1, HspH2, HspH3 and Grp170) are predicted to 

associated with the cyclin G dependent kinase, GAK (Table S1). Cyclin dependent kinases 

are key regulatory enzymes that are involved in cell proliferation which is an important hallmark 

of tumorigenesis. Previously, it has been established that GAK enhances the androgen 

receptor (AR) transcriptional response in androgen-independent prostate cancer [101]. 

Furthermore, GAK has been proposed as a druggable anticancer candidate that has broad 

therapeutic applications across numerous tumour types including breast and colorectal 

cancers [102]. Given its important role in maintaining GAK in a functional state, it is therefore 

conceivable that Hsp110s have a crucial role in promoting tumourigenesis.  

Intriguingly, Hsp110 isoforms, HspH3 and HspH2, are predicted to interact with a large 

complement of nucleoporins as opposed to Grp170 and HspH1. Nucleoporins are 

components of nuclear pore complexes (NPCs) which are huge macromolecular assemblies 

in the nuclear envelope, through which bidirectional cargo movement between the nucleus 

and cytoplasm occurs [103]. Several nucleoporins are linked to cancer, mostly in the context 

of chromosomal translocations, which encode nucleoporin chimeras [104]. Tumour cells are 

thought to exploit specific properties of nucleoporins to deregulate transcription, chromatin 
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boundaries, and essential transport-dependent regulatory circuits [104]. The nucleoporin 

POM121, which is predicted to interact with HspH3 and Hsp2, has reportedly been linked with 

prostate cancer [105]. POM121 has also been reported as a novel prognostic marker of oral 

squamous cell carcinoma [106]. It is therefore plausible that, HspH3 and HspH2 play crucial 

roles in chaperoning POM121 in cancer progression. Several other nucleoporins including 

translocated promoter region (TPR), Nup98 and Nup214 are also predicted to interact with 

HspH3 and HspH2 (Table S1). These proteins have previously been described as 

‘promiscuous nucleoporins’ due to their unique ability to associate with various partners to 

produce a variety of oncogenic fusion proteins [107]. Thus, HspH3- and HspH2-directed 

therapies may also hold prospects in prostate cancer intervention. 

It is also predicted that HspH3 and Grp170 interact with EDEM3, whose upregulation is linked 

to thyroid cancer (Table S1). It remains to be established if the enhanced expression of 

EDEM3 associated with thyroid cancer is accompanied with a concomitant increase in HspH3 

levels. The possibility of HspH3 as a biomarker for thyroid cancer is therefore worth exploring. 

Previous evidence suggests that, SUMOylation is implicated in cancer cell signalling and gene 

networks that regulate carcinogenesis, proliferation, metastasis and apoptosis [108]. 

Interestingly, HspH3 is predicted to interact with the SUMO protein, RANBP2 (Figure 4, Table 

S1). This implies that the chaperone potentially modulates SUMOylation in cells, possibly 

resulting in tumourigenesis.  

Sec proteins form part of the heterotrimeric Sec61 and the dimeric Sec62/Sec63 complexes 

located in the ER membrane [109]. These complexes are thought to play a central role in the 

translocation of nascent and newly synthesized precursor polypeptides into the ER. Notably, 

Sec overexpression has been linked to cancer. Interestingly, several Sec proteins are 

predicted to interact with Hsp110 and Grp170 chaperones (Table S1). In a study conducted 

by Diwadkar et al [110], interbreeding of Sec tRNA transgenic mice with a model of prostate 

cancer resulted in accelerated development of prostatic intraepithelial neoplasia (PIN) and 

more aggressive high-grade lesions. 
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Figure 4. Predicted clientome of Hsp110 and Grp170 members 

The predicted clientele of HSP110 and Grp170 members is largely comprised of nucleoporins and protein 
modifying enzymes. Client proteins that are unique to each Hsp110/Grp170 type are shown highlighted in blue 
(HspH1), purple (HspH2), green (HspH3) and green (Grp170). Client proteins that are shared by more than 1 
Hsp110/Grp170 type are not highlighted. Predictions were conducted using STRING database at a cut off score of 
0.75. The complete data table listing all the proteins is shown in Table S1. 
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metabolic consequences of mutations or they may also expose them. More intriguingly, Hsps 

are thought to serve as buffers of protein mutations, i.e. they enable otherwise mutated 

proteins to fold into their functional conformations [111]. In this way, depending on the pathway 

that their respective substrates are implicated in, Hsps may promote or obstruct cancer 

development.  However, on the balance it appears that malfunctioning of chaperones leads to 

general deregulation of several metabolic pathways, including those involved in signal 

transduction [111]. 

Hsp110s are involved in the proliferation and survival of tumour cells [59]. Hsp110s likely play 

multiple roles in cancer cells since their chaperone function involves the stabilization of 

oncogenic proteins and those involved in cancer signalling pathways. The emerging role of 

Hsp110 in immunomodulation has been described [59, 76] and may trigger inflammatory 

responses that propagate tumour growth. It therefore suggests that Hsp110 may play key 

roles in chaperoning oncogenic proteins that are critical in tumourigenesis. Recent evidence 

demonstrates that ER-stressed tumours propagate stress signals to the neighbouring cells 

through secretion of soluble mediators triggering an exaggerated inflammatory response that 

facilitates tumour progression [112]. Although it is not clear as to whether Grp170 directly 

contributes to this inflammatory response induced pro-tumour effect, it’s involvement in this 

pathway is highly probable. 

Previous studies have shown that Hsp110s and Grp170 are immunogenic chaperones( [29, 

113]). As such, these chaperones pose as promising cancer vaccine candidates. In a murine 

cervical cancer model, Hsp110 was demonstrated to not only improve the antitumour efficacy 

of the cytotoxic T-lymphocyte epitope E7 but also significantly inhibit tumour growth [114]. In 

addition, Hsp110 and carbonic anhydrase IX, of which the latter is the renal cell carcinoma 

specific tumour protein, were shown to inhibit growth of renal cell carcinoma in mice [115] . 

This may imply that Hsp110 plays important roles in ensuring the functionality of carbonic 

anhydrase IX. Hsp110-HER2 complex based vaccines also induce immune protection against 

spontaneous breast tumours in a transgenic mice model [116]. Studies have also been 

conducted on the development of Grp170-based anticancer immunotherapy. It has been 

demonstrated that a complex of Grp170 and tumour protein antigens activated the immune 

response leading to inhibition of tumour growth in a melanoma mouse model [117]. 

Furthermore, mouse prostate cancer cells engineered to effectively secrete Grp170 exhibited 

enhanced tumour immunogenicity and cytolytic activity of distant tumours [118]. These studies 

provide evidence of the immunomodulatory roles of Grp170 possibly presenting them as 

potential vaccine candidates.  
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Hsp110 has the capability to inhibit immune activation of dendritic cells through scavenger 

receptor binding [95]. Notably, Hsp110 has been described as the main chaperone involved 

in colorectal tumorigenesis and the presence of an Hsp110 inactivating mutation is directly 

associated with a good prognosis [119]. Interestingly, increased Hsp110 expression has been 

linked to tumour immunosurveillance [59]. A study by Berthenet et al [59] demonstrated that 

Hsp110 overexpression in colorectal cancer cells induces the formation of macrophages with 

an anti-inflammatory profile. Although the precise mechanisms underlying extracellular 

release of Hsps (active vs. passive) remain speculative, increased Hsp levels are generally 

observed in the tumour microenvironment [120]. Indeed, several studies have indeed 

demonstrated the anti-inflammatory role of extracellular Hsp, and depending on their levels, 

Hsps could either promote inflammation or suppress it [121]). In this regard, Hsp110/Grp170 

may thus play a signal transducer role. It would therefore be interesting to conduct proteomic 

analyses to monitor variations in extracellular Hsp110/Grp170 levels towards using it as a 

biomarker of specific cancers. 

 

5. Could Hsp110/Grp170 be targeted in cancer therapy? 

Owing to their prominent role as chaperones, Hsp110 and Grp170 could serve as novel 

chemotherapeutic targets against cancer. Small molecule inhibitors such as polymyxin B 

(PMB) and epigallocatechin gallate (EGCG) possess great potential in this regard, as they 

have been successfully used to inhibit the activity of the Plasmodium falciparum Hsp110 

protein (PfHsp70-z) in vitro [37]. These two compounds bind to the NBD, thus abrogating the 

basal ATPase activity of the Hsp110. However, since the holdase chaperone function of 

Hsp110/Grp170 is not modulated by nucleotides, targeting the Hsp110 NBD using nucleotide 

mimetics might not interfere with their direct chaperone role. However, NBD-targeted drugs, 

may disrupt the NEF function of these chaperones which in turn would adversely impact on 

fold and function of several proteins implicated in cancer development. Selectively targeting 

the SBD of Hsp110/Grp170 using peptide substrate mimetics may be an alternative approach 

Two drugs targeting the SCD of Hsp70, targeted drug 2-phenylethynesulfonamide (PES) and 

the TKD-motif directed peptide inhibitor, cmHsp70.1 have entered clinical trials stage [122, 

123, 124]. The design of domain specific inhibitory compounds may prove useful in Hsp110 

targeted anticancer therapy. Since Hsp110/Grp170 functions in co-operation with several 

other Hsps, their inhibition may impact on the folding fate of the protein compliment that drives 

cancer development and progression.  In a recent study, Gozzi and colleagues (2019) [125] 

designed a novel NBD-binding small molecule inhibitor which compromises Hsp110 

chaperone function, thereby inhibiting STAT3 phosphorylation and colorectal cancer cell 
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proliferation. There is therefore an urgent need for further screening of novel compounds that 

target Hsp110/Grp170 chaperones in the fight against cancer. Apart from chemical 

compounds, antibodies and aptamers could alternatively be designed towards abrogating 

Hsp110/Grp170 functions. In a colon cancer murine model, an Hsp70 monoclonal antibody 

based inhibitor, cmHsp70.1, which binds the TKD motif was shown to significantly reduce 

tumour weight and improve survival rate [126]. One of the main challenge in the design of anti-

cancer agents is to come up with compounds that are safe. The varied proteomic composition 

of cancer cells compared to normal cells make the inhibition of Hsps promising in light of their 

role as custodians of proteostasis.  

 

 

Figure 5. Proposed strategies for targeting Hsp110 

Small molecule inhibitors that possess the ability to bind and block Hsp110 NBD and SBD segments possess 
potential in Hsp110-directed therapy.  
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6. Conclusion: 

Recently, Hsp110/Grp170 chaperones have emerged to a focal point in prospecting for novel 

chemotherapeutic targets, mainly due to their central roles in both proteostasis and signalling 

pathways. As nucleotide-independent holdase chaperones, Hsp110/Grp170 are regarded as 

cellular buffers against proteostatic stress. It is thus not surprising that their role in the 

cytoprotection of tumour cells, particularly in response to both drug- and hypoxic-stress is 

becoming apparent. This review explored the possible interactome of these proteins and 

established that molecules involved in cancer development, are amongst some of their most 

distinct clientele. This, coupled to their correlated expression with cancer prognosis, suggest 

a crucial role for these chaperones in cancer development. It is thus envisaged that targeting 

these group of chaperones has potential as an intervention tool against cancer.  
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Supplementary section 

Table S1. Predicted interaction of Hsp110/Grp170 with cancer-associated proteins 

HspH1 interaction partners 

Protein Function Score 

1.GAK-cyclin G 
(kinase) 

Associates with cyclin G and CDK5 and is involved in the uncoating 
of clathrin- coated vesicles by Hsc70  

0.879 

2.CPS1(Carbamoyl-
phosphate synthase) 

Involved in the urea cycle and plays an important role in removing 
excess ammonia from the cell  

0.874 

3.EDEM3 (ER degradation-
enhancing alpha-
mannosidase-like protein 3 

Accelerates ER-associated degradation (ERAD) of glycoproteins by 
proteasomes  

0.757 

4.CHORDC1 (Cysteine and 
histidine-rich domain-
containing protein 1) 

Regulates centrosome duplication, probably by inhibiting the kinase 
activity of ROCK2. Proposed to act as co-chaperone for HSP90. 
Prevents tumourigenesis. 

0.747 

HspH3 interaction partners 

1.NUP188 (Nucleoporin) May function as a component of the nuclear pore complex (NPC) 0.937 

2.C11 orf73 Acts as a specific nuclear import carrier for HSP70  0.931 

3.NUP37 (Nucleoporin) Component of the Nup107-160 subcomplex of the nuclear pore 
complex (NPC) required for normal kinetochore microtubule 
attachment, mitotic progression and chromosome segregation 

0.926 

4.RANBP2 (E3 SUMO-
protein ligase) 

Facilitates SUMO1 and SUMO2 conjugation, (Ran-GTP, 
karyopherin)-mediated protein import. Component of the nuclear 
export pathway.  

0.924 

5.TPR (Nucleoprotein TPR) Essential for normal nucleocytoplasmic transport of proteins and 
mRNAs, plays a role in the establishment of nuclear-peripheral 
chromatin compartmentalization in interphase, and in the mitotic 
spindle checkpoint signalling during mitosis.  

0.917 

7.RAE1 (mRNA export factor) Plays a role in mitotic bipolar spindle formation. May function in 
nucleocytoplasmic transport  

0.908 

8.NUP155 (Nuclear pore 
complex protein) 

May be essential for embryogenesis. Nucleoporins may be involved 
both in binding and translocating proteins during nucleocytoplasmic 
transport  

0.907 
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9.NUP153 (Nuclear pore 
complex protein) 

Essential for normal nucleocytoplasmic transport of proteins and 
mRNAs. Involved in the quality control and retention of unspliced 
mRNAs in the nucleus 

0.904 

10.NUP214 (Nuclear pore 
complex protein) 

May serve as a docking site in the receptor-mediated import of 
substrates across the nuclear pore complex 

0.904 

11.NUP62 (Nuclear pore 
glycoprotein) 

Plays a role in mitotic cell cycle progression by regulating 
centrosome segregation, centriole maturation and spindle 
orientation. It might be involved in protein recruitment to the 
centrosome after nuclear breakdown 

0.904 

12.NUP93 (Nuclear pore 
complex protein) 

During renal development, regulates podocyte migration and 
proliferation through SMAD4 signalling 

0.904 

13.NUP43 (Nucleoporin) Component of the Nup107-160 subcomplex of the nuclear pore 
complex (NPC) required for normal kinetochore microtubule 
attachment, mitotic progression and chromosome segregation 

0.903 

14.NUP88 (Nuclear pore 
complex protein) 

Essential component of nuclear pore complex 0.903 

15.NUP133 (Nuclear pore 
complex protein) 

Involved in poly(A)+ RNA transport 0.903 

16.NUP50 (Nuclear pore 
complex protein) 

Interacts with regulatory proteins of cell cycle progression including 
CDKN1B.  

0.902 

17.NUP107 (Nuclear pore 
complex protein) 

Required for the assembly of peripheral proteins into the NPC.  0.902 

18.NDC1 (Nucleoporin) Plays a key role in de novo assembly and insertion of NPC in the 
nuclear envelope. Required for NPC and nuclear envelope 
assembly, possibly by forming a link between the nuclear envelope 
membrane and soluble nucleoporins, thereby anchoring the NPC in 
the membrane  

0.902 

19.NUP210 (Nuclear pore 
membrane glycoprotein) 

Essential for nuclear pore assembly and fusion, as well as structural 
integrity 

0.901 

20.NUP35 (Nucleoporin) Can play the role of both NPC structural components and of 
docking or interaction partners for transiently associated nuclear 
transport factors.  

0.901 

21.POM121 (Nuclear 
envelope pore membrane 
protein) 

Essential component of the nuclear pore complex (NPC). May be 
involved in anchoring components of the pore complex to the pore 
membrane. 

0.900 

22.POM121C (Nuclear 
envelope pore membrane 
protein) 

Essential component of the nuclear pore complex (NPC). May be 
involved in anchoring components of the pore complex to the pore 
membrane. 

0.900 

23.NUP160 (Nucleoporins) Involved in poly(A)+ RNA transport 0.900 

24.NUPL2 (Nucleoporin-like 
protein ) 

Required for the export of mRNAs containing poly(A) tails from the 
nucleus into the cytoplasm.  

0.900 

25.AAS (Nucleoporin) Plays a role in the normal development of the peripheral and central 
nervous system 

0.900 

26.GAK (Cyclin-G-
associated kinase) 

Involved in the uncoating of clathrin- coated vesicles by Hsc70 in 
non-neuronal cells.  

0.874 

27.STIP1 (Stress-induced-
phosphoprotein) 

Mediates the association of the molecular chaperones 
HSPA8/HSC70 and HSP90  

0857 

28.EDEM3 (ER degradation-
enhancing alpha-
mannosidase-like protein 3) 

Involved in endoplasmic reticulum-associated degradation (ERAD) 
of glycoproteins by proteasomes, by catalyzing mannose  

0.792 

HspH2 interaction partners 

4.SNCA (Alpha-synuclein) Induces fibrillization of microtubule-associated protein tau. Reduces 
neuronal responsiveness to various apoptotic stimuli, leading to a 
decreased caspase-3 activation 

0.965 

5.C11 orf73 Acts as a specific nuclear import carrier for HSP70  0.964 

6.NUP62 (Nuclear pore 
glycoprotein) 

Plays a role in mitotic cell cycle progression by regulating 
centrosome segregation, centriole maturation and spindle 
orientation. It might be involved in protein recruitment to the 
centrosome after nuclear breakdown 

0.944 

7.RANBP2 (E3 SUMO-
protein ligase) 

Facilitates SUMO1 and SUMO2 conjugation, transport factor (Ran-
GTP, karyopherin)-mediated protein import via the F-G repeat-
containing domain which acts as a docking site for substrates. 
Component of the nuclear export pathway 

0.940 

8.TPR (Nucleoprotein) Essential for normal nucleocytoplasmic transport of proteins and 
mRNAs, plays a role in the establishment of nuclear-peripheral 

0.935 
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chromatin compartmentalization in interphase, and in the mitotic 
spindle checkpoint signalling during mitosis.  
 

9.NUP37 (Nucleoporin) Component of the Nup107-160 subcomplex of the nuclear pore 
complex (NPC) required for normal kinetochore microtubule 
attachment, mitotic progression and chromosome segregation 

0.929 

10.OLR1 (Oxidized low-
density lipoprotein receptor) 

Mediates the recognition, internalization and degradation of 
oxidatively modified low density lipoprotein (oxLDL) by vascular 
endothelial cells.  

0.927 

11.NUP155 (Nuclear pore 
complex protein) 

Essential for embryogenesis. Nucleoporins may be involved both in 
binding and translocating proteins during nucleocytoplasmic 
transport. 

0.925 

12.NUP54 (Nucleoporin p54) Component of the nuclear pore complex, a complex required for the 
trafficking across the nuclear membrane 

0.921 

13.CCT2 (T-complex protein 
1 subunit beta) 

Molecular chaperone; assists the folding of proteins upon ATP 
hydrolysis. Known to play a role, in vitro, in the folding of actin and 
tubulin 

0.917 

14.RAE1 (mRNA export 
factor) 

Plays a role in mitotic bipolar spindle formation. Binds mRNA. May 
function in nucleocytoplasmic transport 

0.916 

15.NUP107 (Nuclear pore 
complex protein) 

Required for the assembly of peripheral proteins into the NPC. May 
anchor NUP62 to the NPC 

0.916 

16.NUP214 (Nuclear pore 
complex protein) 

May serve as a docking site in the receptor-mediated import of 
substrates across the nuclear pore complex 

0.915 

17.NUP88 (Nucleoporins) Essential component of nuclear pore complex 0.915 

18.NUP93 (Nuclear pore 
complex protein) 

During renal development, regulates podocyte migration and 
proliferation through SMAD4 signalling 

0.914 

19.AHSA1 (Activator of 
Hsp90 ATPase) 

Activates the ATPase activity of HSP90AA1 leading to increase in 
its chaperone activity. 

0.913 

20.NUP153 (Nuclear pore 
complex protein) 

Essential for normal nucleocytoplasmic transport of proteins and 
mRNAs. Involved in the quality control and retention of unspliced 
mRNAs in the nucleus 

0.912 

21.NDC1 (Nucleoporin) Plays a key role in de novo assembly and insertion of NPC in the 
nuclear envelope.  

0.907 

23.NUP205 (Nuclear pore 
complex protein) 

Plays a role in the nuclear pore complex (NPC) assembly and/or 
maintenance.  

0.907 

24.NUP160 (Nuclear pore 
complex protein) 

Involved in poly(A)+ RNA transport 0.907 

25.NUP50 (Nuclear pore 
complex protein) 

Interacts with regulatory proteins of cell cycle progression  0.906 

26.NUP35 (Nucleoporin) Can play the role of both NPC structural components and of docking 
or interaction partners for transiently associated nuclear transport 
factors.  

0.903 

27.AAAS (Nucleoporins) Plays a role in the normal development of the peripheral and central 
nervous system 

0.903 

28.FKBP4 (Peptidyl-prolyl 
cis-trans isomerase) 

Immunophilin protein with PPIase. Plays a role in the intracellular 
trafficking of heterooligomeric forms of steroid hormone receptors 
between cytoplasm and nuclear compartments. Acts also as a 
regulator of microtubule dynamics by inhibiting MAPT/TAU ability to 
promote microtubule assembly.  
   

0.903 

29.NUPL2 (Nucleoporin-like 
protein) 

Required for the export of mRNAs containing poly(A) tails from the 
nucleus into the cytoplasm.  

0.903 

30.NUP85 (Nuclear pore 
complex protein) 

Required for spindle assembly during mitosis.  
 

0.903 

31.NUP188 (Nucleoporin) May function as a component of the NPC 
 

0.903 

32.NUP210 (Nuclear pore 
membrane glycoprotein) 

Nucleoporin essential for nuclear pore assembly and fusion, nuclear 
pore spacing, as well as structural integrity 

0.902 

33.POM121C (Nuclear 
envelope pore membrane 
protein) 

Essential component of the nuclear pore complex (NPC).  0.902 

34.POM121 (Nuclear 
envelope pore membrane 
protein) 

Essential component of the nuclear pore complex (NPC).  0.902 

35.GAK (Cyclin-G-
associated kinase) 

Involved in the uncoating of clathrin- coated vesicles by Hsc70 in 
non-neuronal cells.  

0.893 
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36.CPS1 (Carbamoyl-
phosphate synthase) 

Involved in the urea cycle; plays an important role in removing 
excess ammonia from the cell 
 

0.891 

37.CLPB (Caseinolytic 
peptidase B protein) 

May function as a regulatory ATPase and be related to 
secretion/protein trafficking process 

0.889 

38.AKT1 (RAC-alpha 
serine/threonine-protein 
kinase) 

Regulates many processes including metabolism, proliferation, cell 
survival, growth and angiogenesis. AKT is responsible of the 
regulation of glucose uptake  

0.883 

39.CCT5 (T-complex protein 
1 subunit epsilon) 

Known to play a role, in vitro, in the folding of actin and tubulin 
 

0.881 

40.TP53 (Cellular tumour 
antigen p53) 

Acts as a tumour suppressor in many tumour types; induces growth 
arrest or apoptosis depending on the physiological circumstances 
and cell type. Involved in cell cycle regulation as a trans-activator 
that acts to negatively regulate cell division by controlling a set of 
genes required for this process.  

0.881 

41.CCT3 (T-complex protein 
1 subunit gamma) 

Known to play a role, in vitro, in the folding of actin and tubulin 
 

0.856 

42.EEF1A1 (Elongation 
factor 1-alpha 1)  

Promotes the GTP-dependent binding of aminoacyl-tRNA to the A-
site of ribosomes during protein biosynthesis. Forms a complex that 
acts as a T helper 1 (Th1) cell-specific transcription factor and binds 
the promoter of IFN-gamma to directly regulate its transcription, and 
is thus involved importantly in Th1 cytokine production  

0.853 

43.CCT4 (T-complex protein 
1 subunit delta) 

Known to play a role, in vitro, in the folding of actin and tubulin 0.851 

44.CCT6A (T-complex 
protein 1 subunit zeta) 

Known to play a role, in vitro, in the folding of actin and tubulin 0.848 

45.NR3C1 (Glucocorticoid 
receptor) 

Has transcriptional repression activity 0.845 

46.APAF1 (Apoptotic 
protease-activating factor 1) 

Mediates the cytochrome c-dependent autocatalytic activation of 
pro-caspase-9 (Apaf-3), leading to the activation of caspase-3 and 
apoptosis. 

0.841 

47.CFTR (Cystic fibrosis 
transmembrane conductance 
regulator) 

Regulation of epithelial ion and water transport and fluid 
homeostasis. Mediates the transport of chloride ions across the cell 
membrane.  

0.836 

48.SGT1 May play a role in ubiquitination and subsequent proteasomal 
degradation of target proteins 

0.820 

49.OLA1 (Obg-like ATPase) Hydrolyzes ATP, and can also hydrolyze GTP with lower efficiency.  0.820 

Grp170 interaction partners 

1.PDIA4 (Protein disulphide-
isomerase) 

Belongs to the protein disulphide isomerase family 
 

0.993 

2.SIL1 (Nucleotide exchange 
factor) 

Functions as a nucleotide exchange factor for the ER lumenal 
chaperone HSPA5 

0.989 

3.SEC63 (Translocation 
protein) 

Required for integral membrane and secreted preprotein 
translocation across the endoplasmic reticulum membrane 

0.962 

4.P4HB (Protein disulphide-
isomerase) 

May therefore cause structural modifications of exofacial proteins. 
Inside the cell, seems to form/rearrange disulphide bonds of nascent 
proteins.   

0.954 

5.CALR (Calcium-binding 
chaperone) 

Promotes folding, oligomeric assembly and quality control in the 
endoplasmic reticulum (ER) via the calreticulin/calnexin cycle. 
Interacts transiently with almost all of the monoglucosylated 
glycoproteins that are synthesized in the ER.  

0.954 

6.PDIA6 (Protein disulphide-
isomerase A6) 

Negatively regulates the unfolded protein response (UPR) through 
binding to UPR sensors such as ERN1, which in turn inactivates 
ERN1 signalling.  

0.950 

7.MANF (Mesencephalic 
astrocyte-derived 
neurotrophic factor) 

Inhibits cell proliferation and endoplasmic reticulum (ER) stress-
induced cell death (182 aa) 
 

0.946 

8.CANX (Calcium-binding 
protein) 

May act in assisting protein assembly and/or in the retention within 
the ER of unassembled protein subunits. It seems to play a major 
role in the quality control apparatus of the ER by the retention of 
incorrectly folded proteins 

0.934 

9.PDIA3 (Protein disulphide-
isomerase A3) 

Belongs to the protein disulphide isomerase family  0.924 

10.SEC61A1 (Protein 
transport protein) 

Plays a crucial role in the insertion of secretory and membrane 
polypeptides into the ER. Required for assembly of membrane and 
secretory proteins.  

0.906 
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11.CRELD2 Cysteine rich with EGF like domains  0.901 

12.SLC9C2 Sodium/hydrogen exchange; Involved in pH regulation 0.876 

13.ANKRD45 Ankyrin repeat domain-containing protein 0.876 

14.ERLEC1 (Endoplasmic 
reticulum lectin 1) 

May function in endoplasmic reticulum quality control and 
endoplasmic reticulum-associated degradation (ERAD) of both non-
glycosylated proteins and glycoproteins 

0.876 

16.CLGN (Calmegin) Functions during spermatogenesis as a chaperone for a range of 
client proteins that are important for sperm adhesion onto the egg 
zona pellucida and for subsequent penetration of the zona pellucida 

0.868 

17.DDOST (Dolichyl-
diphosphooligosaccharide-
protein glycosyltransferase) 

Essential subunit of the N-oligosaccharyl transferase (OST) 
complex which catalyzes the transfer of a high mannose 
oligosaccharide from a lipid-linked oligosaccharide donor to an 
asparagine residue Required for efficient N-glycosylation 

0.866 

18.SEC61A2 (Protein 
transport protein) 

Plays a crucial role in the insertion of secretory and membrane 
polypeptides into the ER. It is required for assembly of membrane 
and secretory proteins.  

0.826 

19.OS9 Functions in endoplasmic reticulum (ER) quality control and ER-
associated degradation (ERAD).  

0.803 

20.SYVN2 (E3 ubiquitin-
protein ligase synoviolin) 

Component of the endoplasmic reticulum quality control (ERQC) 
system. Protects cells from ER stress-induced apoptosis.  

0.786 

21.SDF2L1 Stromal cell derived factor 2 like 1  0.783 

22.SEL1L Plays a role in the endoplasmic reticulum quality control (ERQC) 
system. Plays a role in LPL maturation and secretion. Required for 
normal differentiation and survival of pancreatic cells.  

0.783 

23.CDNF (Cerebral 
dopamine neurotrophic 
factor) 

Prevents the 6- hydroxydopamine (6-OHDA)-induced degeneration 
of dopaminergic neurons. Also prevents the degeneration of 
dopaminergic neurons. 

0.777 

24.EDEM3 (ER degradation-
enhancing alpha-
mannosidase-like protein 3) 

Involved in endoplasmic reticulum-associated degradation (ERAD). 
Accelerates the glycoprotein ERAD by proteasomes.  

0.773 

25.SLC35B2 May indirectly participate in activation of the NF- kappa-B and MAPK 
pathways.   

0.768 

26.GAK (Cyclin-G-
associated kinase) 

Is involved in the uncoating of clathrin- coated vesicles by Hsc70 in 
non-neuronal cells.  

0.752 

*Cut off score 0.75 
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