Preprint
Article

Accuracy of a Model-Free Algorithm for Temporal InSAR Tropospheric Correction

Altmetrics

Downloads

237

Views

158

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

19 December 2020

Posted:

21 December 2020

You are already at the latest version

Alerts
Abstract
Atmospheric propagational phase variations are the dominant source of error for InSAR timeseries analysis, generally exceeding uncertainties from poor SNR or signal correlation. The spatial properties of these errors have been well studied, but their temporal dependence and correction have received much less attention to date. We present here an evaluation of the magnitude of tropospheric artifacts in derived time series after compensation using an algorithm that requires only the InSAR data themselves. The level of artifact reduction equals or exceeds that from many weather model based methods, while avoiding the need to access fine-scale atmosphere parameters globally at all times. Our method consists of identifying all points in an InSAR stack with consistently high correlation, and computing, then removing, a fit of the phase at each of these points with respect to elevation. Comparison with GPS truth yields a reduction of 3, from an rms misfit of 5-6 cm to ~2 cm over time. This algorithm can be readily incorporated into InSAR processing flows without need for outside information.
Keywords: 
Subject: Environmental and Earth Sciences  -   Geophysics and Geology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated