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Abstract: The application of signal-to-noise (SNR) observations from ground-based GNSS
Reflectometry is becoming an operational tool for coastal sea-level altimetry. As in all data analyses,
systematic influences must be reduced here too, to achieve reliable results. A prominent influence
results from atmospheric refraction. Different approaches exist to describe or to correct for this
influence. In our contribution we will revise the latest developments and suggest a simple
atmospheric interferometric delay model that takes into account ray bending as well as along-path
propagation delay. The findings are double-checked by numerical experiments based on a step-by-
step raytracing procedure.
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1. Introduction

In 1993, Martin-Neira [1] proposed first to use GNSS reflectometry (GNSS-R) for the observation
of sea surface heights. Since then, the basic concepts have been adopted for ground-based
applications by many groups, which developed various strategies to analyze in particular the
oscillating structure of the signal-to-noise ratio (SNR). The wide manifold of approaches to estimate
the height of a GNSS antenna above a water surface reach from the frequency analysis by means of
Lomb-Scargle Periodogram [2] over Wavelet Analysis Periodogram [3] to inverse modeling [4] of full
models even for moving platforms [5] or in real-time [6].

The latest results from an inter-comparison campaign [7] demonstrated an excellent agreement
and the capability to derive sea surface heights with a quality of better than 5 cm. Hence, ground-
based GNSS-R by means of SNR-analysis seems to be developing into an operational tool for coastal
sea-level altimetry, that could possibly reach the quality level of well-established observation
methods used by conventional tide gauges. This goal could only be achieved if the full potential of
the method can be utilized. For this, it is necessary to take into account as many systematic effects as
possible.

The analysis of SNR-data bases on the fact that the direct and the reflected signal from a GNSS
satellite interfere at the antenna. The relative phase between the direct and the reflected signal yield
an oscillation of the SNR for a moving satellite, that is a function of the interferometric delay between
both signals and the wave length of the signal [8]. In most approaches a multipath delay model
according to [9] is used (Figure 1).
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Figure 1. Simple sketch of the interferometric delay geometry. The signal from the satellite is reflected
at specular point (sp) and received at the antenna together with the direct signal. Dashed lines below
the water surface represent the mirrored antenna height H and the reflected signal for an elevation
angle e. The interferometric delay t is derived from the length difference between the reflected signal
and the orthogonal projection of the direct signal to the reflected signal.

From the geometry of Figure 1 the familiar equation for the relation between the height of an
GNSS antenna over the water surface, the reflector height H, and the interferometric delay t with
respect to the elevation angle e can easily be derived

T =2Hsin(e) 1)

The interferometric delay from eq. (1) governs the frequency of the SNR oscillation. Neglecting
trends, signal amplitudes and attenuations, the oscillation is commonly expressed as a function of a
phase offset ¢,and the wave length of the GNSS signal A by

SNR

oscillation — COS(% T+,) )

It is clear that Figure 1 presents a simplified model of the real geometry. Hence, eq. (1) will only
hold under the assumption of different approximations that might yield systematic errors in the
estimation of the reflector height. In the past, some of these approximations were examined and more
realistic models were derived, yielding an increased quality of the results.

As one of the major approximations, Figure 1 assumes a horizontal plane reflector. This seems
to be an adequate approximation for lower reflector heights and larger elevation angles. If low
elevation angles (for example less than 5°) should be used, at least a spherical reflecting surface
should be applied [10]. In this case, a more realistic incidence angle at the specular point can be
calculated from an iteration [5].

The interferometric delay is calculated from eq. (1) as the difference of the length of the reflected
signal path minus the one of the direct signal path, projected orthogonally to the direction of the
reflected signal. This is only valid under the assumption of parallel signal paths, what would require
a satellite at an infinite distance. In reality, the distance is finite and therefore the paths are not
parallel. Although the elevation angle at the antenna and the incidence angle at the specular point
are similar, they are not equal even for a plane reflector. The difference might be negligible for many
applications but it can become important if another major approximation, the assumption of a
rectilinear geometry, should be overcome.
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Figure 1 shows the geometry under pure vacuum conditions only. In reality, both paths pass
through the neutral atmosphere and are therefore refracted while the propagation velocity along the
pathsis retarded. Hence, atmospheric corrections are mandatory to derive high-quality results. In the
past, several studies considered atmospheric corrections in GNSS-R for example by using raytracing
[11], [12], by application of an adaptive mapping function [13] or simply by taking into account the
atmospheric effects below the antenna [14]. These corrections are not easy to integrate into the afore
mentioned SNR analysis based on eq. (2). That might be a reason why some groups using these
methods do not consider or even mention the atmospheric effect.

The authors of [15] suggested to correct for the atmospheric influence in a model based on eq.
(1) using a correction of the elevation angle due to the bending of the refracted ray. In [16] it was
remarked that this approach does not take into account the propagation delay and the authors
suggested to use an interferometric atmospheric delay derived from mapping functions for the wet
and the dry atmosphere together with a sophisticated atmospheric model. Lately, the authors of [17]
used a rigorous atmospheric raytracing procedure and found that the atmospheric interferometric
delay should be decomposed into an along-path delay, which results from the propagation delay
along the bent ray paths and a vacuum atmospheric delay, that accounts for the difference of the
interferometric delays from a vacuum ray path and a bent ray path. From numerical simulations, the
authors found similar values for both components. In order to derive a formalism that could be used
in practical SNR analysis, they developed a method based on rectilinear approximation of some of
the bent ray paths [18].

The aim of this investigation is to evaluate the latest developments with regard to atmospheric
corrections for SNR analyses that make use of eq. (2). Based on that, a simple model for the
atmospheric interferometric delay will be suggested that takes into account ray bending as well as
along-path propagation delay. In Section 2, we will revise the vacuum interferometric delay model
presented in Figure 1 under the assumption of intersecting direct and reflected ray paths. Based on
this, we will evaluate the geometric atmospheric delay from [17] in Section 3 by deriving a closed
formulation for the bent ray interferometric delay model and by comparing it to the vacuum
interferometric delay model. A simple interferometric delay model that incorporates ray bending and
propagation delay will be deduced in Section 4. Our model will be tested using numerical
experiments by means of a simple raytracing procedure in Section 5. Section 6 will conclude our
findings.

2. Vacuum Ray Paths

To derive the vacuum interferometric delay assuming a satellite at a finite distance, we will keep
to the idea of signals travelling in a pure vacuum. For the ease of understanding we will examine the
interferometric delay for ground-based GNSS-R with low reflector heights and elevation angles
larger than 5°, which allows us to deal with a planar reflector. Figure 1 must be modified so that the
paths of the direct and reflected signal intersects at the satellite. It is clear that the elevation angle at
the antenna e and the incidence angle at the specular point esy are not equal anymore. Therefore, we
cannot use the orthogonal projection of the direct single path to that one of the reflected signal to
calculate the interferometric delay. Instead, we have to rotate the direct signal by the intersecting
angle y of the paths (Figure 2), that is the difference of esp and e.
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Figure 2. In a pure vacuum the signals from the satellite at a finite distance show an intersecting angle
of v, that is the difference between the incidence angle esp at the specular point and the elevation angle
e at the antenna. The directed signal with length Da must be rotated by y and subtracted from the
length D: of the reflected path. The interferometric delay can also be calculated from the triangle build
by the chord (green straight line) of the arc (dashed red curve) with the center at the satellite and
radius D4 and twice the reflector height. The chord intersects the direct and the reflected path at an
angle of .

Due to the rotation, the end point of the direct path at the antenna describes an arc with a radius
equal to the length of the direct path Da. This arc intersects with the reflected path with length D,
and the interferometric delay can be calculated from the triangle spanned by the chord of the arc and
the reflector height H. The intersecting angle [ of the chord and the direct or reflected path is derived
from the intersecting angle of the signal paths at the satellite as

e e
ﬁ:90°—y/2:90°—SpT ®)

Using this angle, the vacuum interferometric delay t is simply calculated as

t=2H cos(e—P)
sin(p)
—-e

e 4)
=2Hsin(e)-| 1+ cot(e) tan[ Sp2 J

From eq. (4), it is obvious that eq. (1) only holds, if the elevation angle at the antenna and the
incidence angle at the specular point are equal because only in that case the factor in the bracket
becomes 1.

To quantify the influence of y, we can use typical values for the geometric elements. Let us
assume a satellite at a distance of 25,000 km at an elevation angle of 5° from the antenna and a reflector
height of 10 m. For these values we calculate an incidence angle esy of about 5.000045662° and from
eq. (4) a vacuum interferometric delay of 1.743123 m. If we would apply eq. (1), the resulting
interferometric delay would differ from the correct one by less than 1 um. Even for a reflector height
of 100 m and an elevation angle of 1° the difference would be smaller than 1 mm. Therefore, it is
reasonable to replace eq. (4) by the approximation from eq. (1) in the case of a pure vacuum.

For further evaluations it might be helpful to split the length of the reflected signal path into
components above (Dra) and below (Drb) the horizon of the antenna. From Figure 2 we find
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Here, we cannot neglect the difference between the elevation angle and the incidence angle
because the relation of the sin would become 1 if both angles would be equal. This could only be the
case for an satellite at an infinite distance, since only in that case Dr. would be equal to Dd. For the

component below the antenna horizon we find

1
=y ©)

P sin(e,,)

Hence, we can express the vacuum interferometric delay in very good approximation from eq.
(1) and eq. (6) as

t=D,, sin(esp)sin(e) (7)

3. Bent Ray Paths

The signals do not travel in a vacuum but in an atmosphere with variable density and will
therefore experience a refraction according to Snell’s law. If we assume a typical atmospheric
structure where the density decreases with an increasing altitude, the signals will travel along curved
paths. The length of the bent ray paths could be used to define and calculate a bent ray interferometric
delay toent, too. The authors of [17] defined a geometric atmospheric delay as the difference of this
delay and the vacuum interferometric delay from eq. (1) or (4). Since we assume an atmosphere for
the ray bending but no propagation delay along the ray path, a bent ray interferometric delay is
physical impossible [19], but might be useful in understanding the geometry.

The geometry of the bent ray paths is presented in Figure 3. The elevation angle and the
incidence angle refer to the tangent of the bent ray paths As described by [15], the elevation angle is
changed with respect to the vacuum conditions by a bending angle de of the direct signal. According
to [17], the difference between the bending angle at the antenna and the specular point Sesp is a
thousand times smaller than die bending angle itself and might be neglected so that Sesp could
possibly be replaced by Je.
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Figure 3. The bent ray paths from the satellite to the antenna and the specular point above the antenna
horizon are not shown. For the component below the antenna horizon we assume straight lines
instead of bent rays since the curvature is very small. The elevation angle e of the direct path between
the antenna and the satellite defers from the bent ray path by the bending angle e. The bent ray path
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of the reflected signal passes through the specular point and the end of the mirrored antenna below
the water surface. The bending angle 3esp at the specular point is spanned by the bent ray path of the
reflected signal and the connection from the specular point to the satellite. The bent ray
interferometric delay teent is derived similar to the vacuum case as the difference between the lengths
of bent ray path of the reflected signal and that of the rotated bent ray path of the direct signal.

From Figure 3 it can be seen that the elevation angle e and the incidence angle esp refer to the
straight lines connecting the satellite with the antenna and the specular point respectively. The bent
ray paths defer from these angles by the bending angle. Since the curvature of the bent rays is rather
similar because they pass through almost the same part of the atmosphere, we can derive the bent
ray interferometric delay from a rotation of the bent ray of the direct signal as in the vacuum case.
Again, we have to use the intersecting angle y of the strait line connections as the angle of rotation,
but the intersection of the arc with the bent reflected ray path and the straight line defer now. The
point of intersection of the arc with the bent reflected ray path can be found in very good
approximation by the elongation of the chord to that path line.

From Figure 3 and this assumption, we can find the relation

Tbent _ 2H
Sin(90°+e—p) _ sin(B—oe, ) ®)

Considering eq. (4), this relation yields the bent ray interferometric delay as

—e

1+ cot(e) tan [ S ]
sin(e) 2

COS(Sesp) eS —e (9)
1-tan(3e ;) tan p2

bent

Again, we can state as in the vacuum case that the influence of the difference between e and esp
is of minor order and the approximated bent ray interferometric delay reads
sin(e
~2H #

Tbent

cos(de,,) (10)
Here, we can calculate the component of the ray path of the reflected signal below the antenna
horizon from

1
D,,=2H——— (11)

sin(e,, +de,)
From eq. (10) and eq. (11) we find the relation between this component and the bent ray
interferometric delay as
sin(e)

Thent = D, , SiN(E,, +3€,)

cos(de,,) (12)

For a numeric evaluation we again use the setting from Section 2 and assume that the bending
angle desp could possibly be replaced by de. We used Bennett’s formula [20] and calculated the
bending angle for a temperature of 23° C and a pressure of 1013 hPa as 0.1596° for an elevation angle
of 5°. With these values, the bent ray interferometric delay from eq. (9) will become 1.743129 m. The
difference between the vacuum interferometric delay from Section 2 and the bent ray interferometric
delay is less than 7 um. A comparison of the interferometric delays from the approximation formulae
eg. (1) and (9) yields a very similar value. Even for a reflector height of 100 m and an elevation angle
of 1° the interferometric delay difference from eq. (1) and (9) is less than a tenth of a mm.

We can validate this result by a rough approximation. Let us replace the bent ray paths by arcs.
The arc’s chords should be the direct ray path Da and the reflected ray path D: respectively from the
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vacuum case. Let us further assume an angle between the arc’s chord and the tangent at the end of
the arc of twice the bending angle. The length of these arcs will be much larger than that of the bent
ray paths due to the larger curvature of the arcs. If we calculate the bent ray interferometric delay
from the approximating arcs, we get about 10 um for an elevation angle of 5° and a reflector height
of 10 m and less than 1 mm for an elevation angle of 1° and a reflector height of 100 m

Hence, we cannot confirm the results from [17] that shows values of about 6.5 cm for their
geometric atmospheric delay for a reflector height of 10 m and an elevation angle of 5°. It is
remarkable that a value of about 5.5 cm results with our setting, if we would apply the
aforementioned simplification of parallel ray paths. In that inaccurate case, we would have to project
the bent ray path of the direct signal orthogonal to that one of the reflected signal. To do so, we have
to use etde instead of e in eq. (1). Taking the bending angle of about 0.185° from [17], we end up with
a difference of 6.4 cm for parallel ray paths. However, it is important to take into account the
intersection of the bent ray paths at the satellite, although it has no major impact on the vacuum
interferometric delay.

4. Atmospheric Ray Paths

In Section 3, we derived the component of the bent ray path of the reflected signal below the
antenna horizon while neglecting the propagation delay. Because the component is commonly small
for low antenna heights, we already approximated them by a straight line. Hence, we can simply
account for the retardation of the propagation velocity of radio waves be multiplying this component
by an index of refraction nv for the atmosphere below the antenna horizon.

For the component above the antenna horizon as well as for the bent ray path of the direct signal,
we cannot use this simplification. As can be seen from Figure 3, the piercing point of the vacuum
path of the reflected signal at the antenna horizon defers from that one of the bent ray path of the
reflected signal. To avoid a break in the ray path, we have to follow the tangent of the bent ray path
of the reflected signal until it intersects with the tangent of the bent path of the direct signal. Again,
we have to project the direct path to the reflected path by a rotation. If we assume that the bending
angles at the antenna and the specular point are almost equal, we can once more use the intersecting
angle y of the strait line connections as the angle of rotation, but the center of rotation defers. Here,
we have to use the intersection of the tangents of the bent rays rather than the satellite. After that,
both path lengths might be multiplied by an average index of refraction and used for calculating the
atmospheric interferometric delay tatmo.

As we have seen from Section 2, for typical geometrical settings in GNSS-R we can map the
direct path by an orthogonal projection in very good approximation of rotational projection to the
reflected path and end up with an almost same value for the atmospheric interferometric delay tatmo.

For the geometry below the antenna horizon, the change of the center of rotation or the
orthogonal projection is likewise important. Figure 4 shows that we can calculate the interferometric
delay in the same way as in the vacuum case, but we do have to take into account the change of the
elevation angle and replace e by e+6e and in esp by esptdesp in eq. (4), (6) and (7).

antenna horizon

water surface
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Figure 4. Geometry below the antenna horizon. To avoid a break in ray paths above the antenna
horizon, the bent paths above the antenna horizon have to be rotated, whereby the center of rotation
results from the intersection of the tangents of the bent paths. Again, the interferometric delay can be
calculated from the triangle spanned by the chord (green line) and the reflector height H. It should be
mentioned, that the propagation delay is still neglected in this figure.

Hence, the atmospheric delay can be expressed by the component below the antenna horizon
from an adaptation of eq. (7)

Tomo =D, 1 sin(esp + 6esp )sin(e + oe) (13)

The component below the antenna horizon can likewise be derived from a modification of eq.
(6), but that was already done in eq. (11) in Section 3. Together with eq. (13) we can finally calculate
the atmospheric interferometric delay from

Tmo = Ny, 2Hsin(e +de) (14)

atmg

This is the well-known formulation from [15] but accounting for the propagation delay in
addition to the bending model. The modification might seem small but is important. Let us imagine
a theoretical observation with an elevation angle of 90°, at which the bending angle vanishes.
Although we would not observe any reflection in reality, we could calculate the theoretical
interferometric delays. The formulation from [15] would end up in the vacuum interferometric delay
from eq. (1) as simply twice the reflector height. Because the reflected signal would pass the
atmosphere twice, the atmospheric interferometric delay must be twice the reflector height,
multiplied by the index of refraction in the lower part of the atmosphere. That is exactly what eq. (14)
yields.

5. Numerical Experiment

We examined our findings a by numerical experiment based on a simple step-by-step raytracing
procedure as described in [19]. We assumed a spherical earth with a radius of 6378137 m and a
satellite at an altitude of 20,000 km above the earth. We defined a 2D coordinate system starting at
the center of the sphere. The vertical axis was set to pass through the antenna. The reflector height
was set to 10 m and the elevation angles range from 1° to 90°. From the altitude of the satellite and
the radius of the spherical earth we calculated the coordinates of the satellite for all elevation angles.

The atmosphere was approximated as a layered spherical structure with a layer increment of 10
m. The index of refraction was taken from the same CIRA-86 model [21] and calculated in the same
manner as in [17], whereby the pressure below 20 km was log-linear interpolated, so that it fits to the
CIRA-86 value at an altitude of 20 km and to 1013.15 hPa at the ground.

We applied an iterative computation of the raytracing. The rays were calculated in the inverse
direction, what means that we started at the antenna or specular point and computed step-by-step
the piercing point of the ray with the upper-nearest atmospheric layer, taking into account Snell’s
law to derive the deflection of the ray at this layer limit. Above the top layer of the atmospheric model
in an altitude of 120 km we assumed a constant index of refraction of 1, and therefore, a straight line
as the last ray.

The initial elevation angle of the bent path was set to the vacuum elevation angle. The
perpendicular distance of the satellite from the last ray was used to derive a correction for the initial
elevation angle and applied in the next iteration step. The iteration stopped when the last ray passed
the satellite within a range of a tenth of a millimeter.

For the ray path of the reflected signal we calculated the incidence angle according to [5] and
combined it with the bending angle from the raytracing of the direct signal to compute the
coordinates of the specular point. The 2D coordinate system was rotated so that the vertical axis
passes through the specular point and the same iteration as for the direct signal was conducted. After
the raytracing iteration was finished, the coordinate system was rotated back. The resulting elevation
angle of the bent path of the reflected signal was used to recalculate the position of the specular point
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and the iterative raytracing was repeated. The iteration of the coordinates of the specular point was
stopped when the change of coordinates was smaller than 1 millimeter.

The raytracing yields the geometric length of the paths. For the computation of the radio length,
we used the ray parts between two layers as finite differences and the mean index of refraction to
derive the radio length of the paths from numerical integration.

Hence, we obtained from the raytracing the bending angle, the vacuum interferometric delay,
the bent ray interferometric delay and the atmospheric interferometric delay. In a first step, the
bending angle from our raytracing was compared to that one from Bennett’s formula. Figure 5 depicts
that the bending angles agree very well for elevation angles above 5°. Larger discrepancy for lower
elevation angles may result from different atmospheric models applied here and in Bennett’s
development. Hence, it can be stated that the raytracing procedure yields reliable results.

%1073

LoL
o0 o O o O

bending angle difference in deg

_40 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

elevation angle in deg

Figure 5. Difference of the bending angle from raytracing and from Bennett’s formula plotted over
the elevation angle.

Next, we compared the bent ray interferometric delay and the vacuum interferometric delay,
both derived from raytracing. The differences (blue line presented in Figure 6) are less than 1 cm for
all elevation angles. This comparison confirms our findings from Section 3. For the lowest elevation
angle, this difference is more than ten times smaller than the difference between atmospheric
interferometric delay and the vacuum interferometric delay (orange line in Figure 6). The latter can
be compared to the along-path-delay from [17]. For an elevation angle of 5° the authors found an
along-path-delay of about 6.9 cm. The difference of the atmospheric interferometric delay and the
vacuum interferometric delay from our raytracing is about 5.2 for that elevation angle. The
discrepancy results from the difference in the bending angles. From our raytracing we derived a
bending angle of 0.149. The bending angle from [17] is about 0.185°. Applying eq. (14) for both
bending angles results in a difference of the atmospheric interferometric delays of about 1.3 cm.
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Figure 6. Differences of the bend ray interferometric delay and atmospheric interferometric delay
respectively to the vacuum interferometric delay from raytracing.

Finally, we compared the atmospheric interferometric delay from raytracing and that derived
from eq. (14) for the bending angle from raytracing as well as from Bennett’s formula. Figure 7
demonstrates the high quality of eq. (14) since the absolute differences are less than 1 mm for all
elevation angles if we use the bending angle from raytracing. The differences for the case when the
bending angle from Bennett’s formula is uses in eq. (14) are quite large for lower elevation angles.
They become less than 1 mm only for elevation angles larger than about 12°.

-3
12 %10 | |

T T
—— bending angle from raytracing
— hending angle from Bennett

-
o
T
1

=]
T
1

trap. delay differences inm
=N [e>]

[\V]
T
I

0 \\M_ —L R
0 10 20 30 40 50 60 70 80 90
elevation angle in deg

Figure 7. Absolute differences of the atmospheric interferometric delay from raytracing and from the
approximation from eq (14) using the bending angle from raytracing and Bennett’s formula
respectively.

The variation of the index of refraction of the atmosphere below the antenna is likewise
important. Figure 8 shows the difference between the atmosphere for an index of refraction from the
CIRA-96 model and pure vacuum for that part of the atmosphere only. The differences increase with
an increasing elevation angle with a maximum of 2H(ns-1) for an elevation angle of 90°. In the typical
range of the elevation angles used in ground-based GNSS-R of about 5° to 30°, the differences are
almost larger than that from Figure 7 for the bending angle from Bennett’s formula. This leads to the
conclusion that both the upper and the lower part of the atmosphere should be modeled well.
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Figure 8. Differences of the atmospheric interferometric delay from eq. (14) for different index of

refraction.

6. Conclusions

We examined the atmospheric modeling in relation to the analysis of SNR data from ground-
based GNSS-R observations from a geometric point of view. This was completed by a numerical test
applying a simple raytracing.

We revised the vacuum interferometric delay model and extended it for intersecting vacuum
ray paths. The quantification of the influence of the intersecting angle shows that the assumption of
parallel rays in a vacuum is appropriate for the typical settings of ground-based GNSS-R
observations.

We used the deductions from the vacuum case to evaluate the case of physically impossible
refracted rays in a vacuum. A closed formula for the bent ray interferometric delay, what is the
difference of the geometric lengths of the bent ray of direct and the reflected signal, was derived. The
comparison with the vacuum interferometric delay showed even for larger reflector heights and low
elevation angles non-significant differences. Hence, we cannot confirm the results from other groups.

Taking into account the retardation of the propagation velocity of radio waves in non-vacuum
conditions yields atmospheric ray paths. Based on the preceding findings we derived a relation
between the atmospheric interferometric delay and the component of the refracted ray path of the
reflected signal below the antenna horizon. The final formulation of the atmospheric interferometric
delay is an extension of a well-known formula.

We compared the theoretical results by calculating the various path lengths and delays from a
simple raytracing, using a typical atmospheric model. The comparison of the bending angle of the
direct signal path from this raytracing with a standard formula showed good agreement. Hence, it
seems reasonable to assume that the results from our raytracing are reliable. The atmospheric
interferometric delay from our formulation agrees very well with that resulting from the raytracing
for all elevation angles.

The evaluation of our formula for the atmospheric interferometric delay shows that both the
atmospheric layer above and below the antenna horizon should be modeled well. Since the layer
above the antenna horizon influence only the bending angle, the modelling of that part might be less
important for larger elevation angles. The layer below the antenna horizon influences the
atmospheric interferometric delay also for larger elevation angle. Hence, we recommend to include
the humidity besides temperature and pressure in the computation of the index of refraction similar
to [16] since it might show a strong variability, especially over water. In the future, studies on the
behavior of atmosphere over water surface as suggested by [22] might benefit from eq. (14), too.
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