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Abstract

The application of signal-to-noise ratio (SNR) observations from ground-based GNSS Reflectometry is
becoming an operational tool for coastal sea-level altimetry. As in all data analyses, systematic
influences must be reduced here too, to achieve reliable results. A prominent influence results from
atmospheric refraction. Different approaches exist to describe or to correct for this influence. In our
contribution we will revise the latest developments and suggest a simple atmospheric interferometric
delay model that takes into account ray bending as well as along-path propagation delay. The model
takes into account a spherical reflector and can therefore be applied for data from very low elevation
angles, too. The findings are double-checked by numerical experiments based on a step-by-step
raytracing procedure.
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1. Introduction

In 1993, Martin-Neira (Martin-Neira 1993)proposed first to use GNSS reflectometry (GNSS-R) for the
observation of sea surface heights. Since then, the basic concepts have been adopted for ground-based
applications by many groups, which developed various strategies to analyse in particular the oscillating
structure of the signal-to-noise ratio (SNR). The wide manifold of approaches to estimate the height of
a GNSS antenna above a water surface reach from the frequency analysis by means of Lomb-Scargle
Periodogram (Larson et al. 2013) over Wavelet Analysis Periodogram (Wang et al. 2020) to inverse
modelling (Strandberg et al. 2016) of full models even for moving platforms (Roggenbuck and Reinking
2019) or in real-time (Strandberg et al. 2019).

The latest results from an inter-comparison campaign (Geremia-Nievinski et al. 2020) demonstrated
an excellent agreement and the capability to derive sea surface heights with a quality of better than 5
cm. Hence, ground-based GNSS-R by means of SNR-analysis seems to be developing into an
operational tool for coastal sea-level altimetry, that could possibly reach the quality level of well-
established observation methods used by conventional tide gauges. This goal could only be achieved
if the full potential of the method can be utilized. For this, it is necessary to take into account as many
systematic effects as possible.

The analysis of SNR-data bases on the fact that the direct and the reflected signal from a GNSS satellite
interfere at the antenna. The relative phase between the direct and the reflected signal yield an
oscillation of the SNR for a moving satellite, that is a function of the interferometric delay between
both signals and the wave length of the signal (Axelrad et al. 2005). In most approaches a multipath
delay model according to (Elésegui et al. 1995) is used (Figure 1).
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Fig 1 Simple sketch of the interferometric delay geometry. The signal from the satellite is reflected at
specular point (sp) and received at the antenna together with the direct signal. Dashed lines below the
water surface represent the mirrored antenna height H and the reflected signal for an elevation angle
e. The interferometric delay 7 is derived from the length difference between the reflected signal and
the orthogonal projection of the direct signal to the reflected signal

From the geometry of Figure 1 the familiar equation for the relation between the height of an GNSS
antenna over the water surface, the reflector height H, and the interferometric delay t with respect to
the elevation angle e can easily be derived

T=2Hsin(e) (1)
The interferometric delay from eq. (1) governs the frequency of the SNR oscillation. Neglecting trends,

signal amplitudes and attenuations, the oscillation is commonly expressed as a function of a phase
offset ¢,and the wave length of the GNSS signal A by

SNR

2w
oscillation ZCOS(TT+¢O) (2)
It is clear that Figure 1 presents a simplified model of the real geometry. Hence, eq. (1) will only hold
under the assumption of different approximations that might yield systematic errors in the estimation
of the reflector height. In the past, some of these approximations were examined and more realistic
models were derived, yielding an increased quality of the results.

As one of the major approximations, Figure 1 assumes a horizontal plane reflector. This seems to be
an adequate approximation for lower reflector heights and larger elevation angles. If low elevation
angles (for example less than 5°) should be used, at least a spherical reflecting surface should be
applied (Semmling et al. 2016). In this case, a more realistic incidence angle at the specular point can
be calculated from an iteration (Roggenbuck and Reinking 2019).

The interferometric delay is calculated from eq. (1) as the difference of the length of the reflected
signal path minus the one of the direct signal path, projected orthogonally to the direction of the
reflected signal. This is only valid under the assumption of parallel signal paths, what would require a
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satellite at an infinite distance. In reality, the distance is finite and therefore the paths are not parallel.
Although the elevation angle at the antenna and the incidence angle at the specular point are similar,
they are not equal even for a plane reflector. The difference might be negligible for many applications
but it can become important if another major approximation, the assumption of a rectilinear geometry,
should be overcome.

Figure 1 shows the geometry under pure vacuum conditions only. In reality, both paths pass through
the neutral atmosphere and are therefore refracted while the propagation velocity along the paths is
retarded. Hence, atmospheric corrections are mandatory to derive high-quality results. In the past,
several studies considered atmospheric corrections in GNSS-R for example by using raytracing
(Anderson 2000), (Semmling et al. 2012), by application of an adaptive mapping function (Roussel et
al. 2014) or simply by taking into account the atmospheric effects below the antenna (Fabra et al.
2012). These corrections are not easy to integrate into the afore mentioned SNR analysis based on eq.
(2). That might be a reason why some groups using these methods do not consider or even mention
the atmospheric effect.

The authors of (Santamaria-Gomez and Watson 2017) suggested to correct for the atmospheric
influence in a model based on eq. (1) using a correction of the elevation angle due to the bending of
the refracted ray. In (Williams and Nievinski 2017) it was remarked that this approach does not take
into account the propagation delay and the authors suggested to use an interferometric atmospheric
delay derived from mapping functions for the wet and the dry atmosphere together with a
sophisticated atmospheric model. Lately, the authors of (Nikolaidou et al. 2020b) used a rigorous
atmospheric raytracing procedure and found that the atmospheric interferometric delay should be
decomposed into an along-path delay, which results from the propagation delay along the bent ray
paths and a vacuum atmospheric delay, that accounts for the difference of the interferometric delays
from a vacuum ray path and a bent ray path. From numerical simulations, the authors found similar
values for both components. In order to derive a formalism that could be used in practical SNR analysis,
they developed a method based on rectilinear approximation of some of the bent ray paths (Nikolaidou
et al. 2020a).

The aim of this investigation is to evaluate the latest developments with regard to atmospheric
corrections for SNR analyses that make use of eq. (2). Based on that, a simple model for the
atmospheric interferometric delay will be suggested that takes into account ray bending as well as
along-path propagation delay for a spherical reflector. In Section 2, we will revise the vacuum
interferometric delay model presented in Figure 1 under the assumption of intersecting direct and
reflected ray paths. Based on this, we will evaluate the geometric atmospheric delay from (Nikolaidou
et al. 2020b) in Section 3 by deriving a closed formulation for the bent ray interferometric delay model
and by comparing it to the vacuum interferometric delay model. A simple interferometric delay model
that incorporates ray bending and propagation delay will be deduced in Section 4. In Section 5 we will
extend the model for the use of data from very low elevation angles, assuming a spherical reflector.
Our model will be tested using numerical experiments by means of a simple raytracing procedure in
Section 6. Section 7 will conclude our findings.

2. Vacuum Ray Paths

To derive the vacuum interferometric delay assuming a satellite at a finite distance, we will keep to
the idea of signals travelling in a pure vacuum. For the ease of understanding we will examine the
interferometric delay for ground-based GNSS-R with low reflector heights and elevation angles larger
than 5°, which allows us to deal with a planar reflector. The case of a spherical reflector will be
discussed later in Section 5a. Figure 1 must be modified so that the paths of the direct and reflected
signal intersects at the satellite. It is clear that the elevation angle at the antenna e and the incidence
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angle at the specular point es, are not equal anymore. Therefore, we cannot use the orthogonal
projection of the direct single path to that one of the reflected signal to calculate the interferometric
delay. Instead, we have to rotate the direct signal by the intersecting angle y of the paths (Figure 2),
that is the difference of e, and e.

satellite

'

A}
antenna, antenna horizon

water surface

Fig 2 In a pure vacuum the signals from the satellite at a finite distance show an intersecting angle of
v, that is the difference between the incidence angle e, at the specular point and the elevation angle
e at the antenna. The directed signal with length Dy must be rotated by y and subtracted from the
length D; of the reflected path. The interferometric delay can also be calculated from the triangle build
by the chord (green straight line) of the arc (dashed red curve) with the centre at the satellite and
radius D4 and twice the reflector height. The chord intersects the direct and the reflected path at an
angle of B

Due to the rotation, the end point of the direct path at the antenna describes an arc with a radius equal
to the length of the direct path Dq. This arc intersects with the reflected path with length D;, and the
interferometric delay can be calculated from the triangle spanned by the chord of the arc and the
reflector height H. The intersecting angle 3 of the chord and the direct or reflected path is derived from
the intersecting angle of the signal paths at the satellite as

e, —e
3
5 (3)

B=90°-v/2=90°—

Using this angle, the vacuum interferometric delay t is simply calculated as

cos(e—p)

—H—=

sin(B)

6 _e (4)
:2Hsin(e)-[1+cot(e)tan( 5"2 D

From eq. (4), itis obvious that eq. (1) only holds, if the elevation angle at the antenna and the incidence
angle at the specular point are equal because only in that case the factor in the bracket becomes 1.

To quantify the influence of y, we can use typical values for the geometric elements. Let us assume a
satellite at a distance of 25,000 km at an elevation angle of 5° from the antenna and a reflector height
of 10 m. For these values we calculate an incidence angle es, of about 5.000045662° and from eq. (4)
a vacuum interferometric delay of 1.743123 m. If we would apply eq. (1), the resulting interferometric
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delay would differ from the correct one by less than 1 um. Even for a reflector height of 100 m and an
elevation angle of 1° the difference would be smaller than 1 mm. Therefore, it is reasonable to replace
eq. (4) by the approximation from eq. (1) in the case of a pure vacuum.

For further evaluations it might be helpful to split the length of the reflected signal path into
components above (D) and below (D) the horizon of the antenna. From Figure 2 we find

-D sin(e) (5)

‘ sin(e,,)

r,a

Here, we cannot neglect the difference between the elevation angle and the incidence angle because
the relation of the sin would become 1 if both angles would be equal. This could only be the case for
an satellite at an infinite distance, since only in that case Dr, would be equal to Dq. For the component
below the antenna horizon we find

1
sin(e,)

=2H

(6)

r,b

Hence, we can express the vacuum interferometric delay in very good approximation from eq. (1) and
eq. (6) as

=D, sin(e,)sin(e) (7)

3. Bent Ray Paths

The signals do not travel in a vacuum but in an atmosphere with variable density and will therefore
experience a refraction according to Snell’s law. If we assume a typical atmospheric structure where
the density decreases with an increasing altitude, the signals will travel along curved paths. The length
of the bent ray paths could be used to define and calculate a bent ray interferometric delay Tpent, too.
The authors of (Nikolaidou et al. 2020b) defined a geometric atmospheric delay as the difference of
this delay and the vacuum interferometric delay from eq. (1) or (4). Since we assume an atmosphere
for the ray bending but no propagation delay along the ray path, a bent ray interferometric delay is
physical impossible (Felipe G. Nievinski 2009), but might be useful in understanding the geometry.

The geometry of the bent ray paths is presented in Figure 3. The elevation angle and the incidence
angle refer to the tangent of the bent ray paths as described by (Santamaria-Gomez and Watson 2017),
the elevation angle is changed with respect to the vacuum conditions by a bending angle de of the
direct signal. According to (Nikolaidou et al. 2020b), the difference between the bending angle at the
antenna and the specular point des, is a thousand times smaller than the bending angle itself and might
be neglected so that des, could possibly be replaced by de.

d0i:10.20944/preprints202012.0564.v2
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Fig 3 The bent ray paths from the satellite to the antenna and the specular point above the antenna
horizon are not shown. For the component below the antenna horizon we assume straight lines instead
of bent rays since the curvature is very small. The elevation angle e of the direct path between the
antenna and the satellite defers from the bent ray path by the bending angle de. The bent ray path of
the reflected signal passes through the specular point and the end of the mirrored antenna below the
water surface. The bending angle des, at the specular point is spanned by the bent ray path of the
reflected signal and the connection from the specular point to the satellite. The bent ray
interferometric delay Tyent is derived similar to the vacuum case as the difference between the lengths
of bent ray path of the reflected signal and that of the rotated bent ray path of the direct signal

From Figure 3 it can be seen that the elevation angle e and the incidence angle e, refer to the straight
lines connecting the satellite with the antenna and the specular point respectively. The bent ray paths
defer from these angles by the bending angle. Since the curvature of the bent rays is rather similar
because they pass through almost the same part of the atmosphere, we can derive the bent ray
interferometric delay from a rotation of the bent ray of the direct signal as in the vacuum case. Again,
we have to use the intersecting angle y of the strait line connections as the angle of rotation, but the
intersection of the arc with the bent reflected ray path and the straight line defer now. The point of
intersection of the arc with the bent reflected ray path can be found in very good approximation by
the elongation of the chord to that path line.

From Figure 3 and this assumption, we can find the relation

Tbent _ 2H
sin(90°+e—P) sin(B—0oe,,)

(8)

Considering eq. (4), this relation yields the bent ray interferometric delay as

e —e
‘ (1+cot(e)tan[ sz D
_oH sin(e)

Tbent_ COS(SGS )( (e _e]J (9)
P’ 1-tan(de,,)tan 5"2

Again, we can state as in the vacuum case that the influence of the difference between e and es; is of
minor order and the approximated bent ray interferometric delay reads
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e, =oH—Sne) (10)
cos(oe,,)

Here, we can calculate the component of the ray path of the reflected signal below the antenna horizon
from

1
Dp=2H———— (11)
’ sin(e,, +0e,,)

From eqg. (10) and eq. (11) we find the relation between this component and the bent ray
interferometric delay as
sin(e)

Toent = Dr,b sin(esp +8€Sp)m (12)
p

For a numeric evaluation we again use the setting from Section 2 and assume that the bending angle
desp could possibly be replaced by de. We used Bennett’s formula (Bennett 1982) and calculated the
bending angle for a temperature of 23° C and a pressure of 1013 hPa as 0.1596° for an elevation angle
of 5°. With these values, the bent ray interferometric delay from eq. (9) will become 1.743129 m. The
difference between the vacuum interferometric delay from Section 2 and the bent ray interferometric
delay is less than 7 um. A comparison of the interferometric delays from the approximation formulae
eg. (1) and (9) yields a very similar value. Even for a reflector height of 100 m and an elevation angle
of 1° the interferometric delay difference from eq. (1) and (9) is less than a tenth of a mm.

We can validate this result by a rough approximation. Let us replace the bent ray paths by arcs. The
arc’s chords should be the direct ray path D4 and the reflected ray path D, respectively from the vacuum
case. Let us further assume an angle between the arc’s chord and the tangent at the end of the arc of
twice the bending angle. The length of these arcs will be much larger than that of the bent ray paths
due to the larger curvature of the arcs. If we calculate the bent ray interferometric delay from the
approximating arcs, we get about 10 um for an elevation angle of 5° and a reflector height of 10 m and
less than 1 mm for an elevation angle of 1° and a reflector height of 100 m

Hence, we cannot confirm the results from (Nikolaidou et al. 2020b) that shows values of about 6.5 cm
for their geometric atmospheric delay for a reflector height of 10 m and an elevation angle of 5°. It is
remarkable that a value of about 5.5 cm results with our setting, if we would apply the aforementioned
simplification of parallel ray paths. In that inaccurate case, we would have to project the bent ray path
of the direct signal orthogonal to that one of the reflected signal. To do so, we have to use e+6e instead
of e in eq. (1). Taking the bending angle of about 0.185° from (Nikolaidou et al. 2020b), we end up with
a difference of 6.4 cm for parallel ray paths. However, it is important to take into account the
intersection of the bent ray paths at the satellite, although it has no major impact on the vacuum
interferometric delay.

4. Atmospheric Ray Paths

In Section 3, we derived the component of the bent ray path of the reflected signal below the antenna
horizon while neglecting the propagation delay. Because the component is commonly small for low
antenna heights, we already approximated them by a straight line. Hence, we can simply account for
the retardation of the propagation velocity of radio waves be multiplying this component by an index
of refraction ny, for the atmosphere below the antenna horizon.

For the component above the antenna horizon as well as for the bent ray path of the direct signal, we
cannot use this simplification. As can be seen from Figure 3, the piercing point of the vacuum path of
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the reflected signal at the antenna horizon defers from that one of the bent ray path of the reflected
signal. To avoid a break in the ray path, we have to follow the tangent of the bent ray path of the
reflected signal until it intersects with the tangent of the bent path of the direct signal. Again, we have
to project the direct path to the reflected path by a rotation. If we assume that the bending angles at
the antenna and the specular point are almost equal, we can once more use the intersecting angle y
of the strait line connections as the angle of rotation, but the centre of rotation defers. Here, we have
to use the intersection of the tangents of the bent rays rather than the satellite. After that, both path
lengths might be multiplied by an average index of refraction and used for calculating the atmospheric
interferometric delay Tatmo.

As we have seen from Section 2, for typical geometrical settings in GNSS-R we can map the direct path
by an orthogonal projection in very good approximation of rotational projection to the reflected path
and end up with an almost same value for the atmospheric interferometric delay Tatmo.

For the geometry below the antenna horizon, the change of the centre of rotation or the orthogonal
projection is likewise important. Figure 4 shows that we can calculate the interferometric delay in the
same way as in the vacuum case, but we do have to take into account the change of the elevation
angle and replace e by e+de and in es, by esp+0es in eq. (4), (6) and (7).

antenna horizon

water surface

Fig 4 Geometry below the antenna horizon. To avoid a break in ray paths above the antenna horizon,
the bent paths above the antenna horizon have to be rotated, whereby the centre of rotation results
from the intersection of the tangents of the bent paths. Again, the interferometric delay can be
calculated from the triangle spanned by the chord (green line) and the reflector height H. It should be
mentioned, that the propagation delay is still neglected in this figure

Hence, the atmospheric delay can be expressed by the component below the antenna horizon from
an adaptation of eq. (7)

Tomo =MDy, SiN(E, +08€)sin(e +3e) (13)

atmo

The component below the antenna horizon can likewise be derived from a modification of eq. (6), but
that was already done in eq. (11) in Section 3. Together with eq. (13) we can finally calculate the
atmospheric interferometric delay from

=n, 2Hsin(e+0e) (14)

Tatmo

This is the well-known formulation from (Santamaria-Gomez and Watson 2017) but accounting for the
propagation delay in addition to the bending model. The modification might seem small but is
important. Let us imagine a theoretical observation with an elevation angle of 90°, at which the
bending angle vanishes. Although we would not observe any reflection in reality, we could calculate
the theoretical interferometric delays. The formulation from (Santamaria-Gomez and Watson 2017)
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would end up in the vacuum interferometric delay from eq. (1) as simply twice the reflector height.
Because the reflected signal would pass the atmosphere twice, the atmospheric interferometric delay
must be twice the reflector height, multiplied by the index of refraction in the lower part of the
atmosphere. That is exactly what eq. (14) yields.

5. Atmospheric Ray Paths for a Spherical Reflector

As mentioned before, the assumption of a plane reflector is no longer acceptable if data from very low
elevation angles below 5° are used. In many data analyses the restriction of elevation angles above 5°
might be applicable, but in particular under rough sea state conditions the attenuation of the SNR
oscillation might become strong, allowing to use data up to an elevation angle of 10° or 15° only. In
such situations it is necessary also to use low elevation data to provide a sufficient amount of data and
at least a spherical reflector should be assumed.

In (Semmling et al. 2016) the application of a spherical reflector was suggested, for which the incidence
angle at the specular point should be calculated. Figure 5a shows the geometry for the computation
of the incidence angle at the specular point for a spherical reflector with curvature radius R, reflector
height H and height of the satellite above the sphere of Hsat. The angles t; and t, must be equal for a
reflected signal and the angle a must calculated while 3 is known from the satellite and antenna
position. The approach presented in (Roggenbuck and Reinking 2019) to derive a is only valid under
vacuum conditions since the bending angle des, at the specular point was omitted. Figure 5b presents
the angles t; and t, as a combination of the pure geometric part t and the bending angle Sesp.

5a 5b
satellite

satellite
antenna -

antenna

R+H

Fig 5 General geometry for reflection at a spherical reflector (5a) and in consideration of the bending
angle desp, at the specular point (5b). The angle t; and t; are a combination of the pure geometric
elevation angle e, and the bending angle desp

The combination from Figure 5 for both angles i=1,2 is
t =90°+e, +0e, =t +3de, (15)
For the pure geometric part, the formulae from the vacuum approach can be applied

sina tant = . sin(p—a) (16)

—cos(p—a)

tant =

——Cosa
R+H R+H

sat

Using the angle addition theorem for tangent, the unknown angle o can be obtain from an optimisation
of eq. (17)

ant. _tant tant +tande,, tant, +tande,, 0
ant, —tant, = — - = = 17
' ’ 1-tant tande, 1-tant, tande, (17)
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Fig 6 For a spherical reflector the height correction AH must be derived from the angle a and the radius
of the curvature R. The reflected signal path below the horizon of the antenna D,y is derived simply
from H+AH, the angle o and the incidence angle e, plus bending angle des,

The reflected signal path below the horizon of the antenna D:, can now be calculated. Figure 6 shows
the geometric situation for a spherical reflector. The height correction AH is simply obtained from

AH=R(1-cosa) (18)
From Figure 6 we find for D,

H+AH
D,, =2— (19)
" sinfateg, +3e,)

The atmospheric interferometric delay for a spherical reflector can now be derived in the same way as
in the case of a plane reflector by a rotation of the direct signal path. Figure 7 shows that we can
calculate the delay from the triangle spanned by the chord of rotation arc and the outgoing reflected
pathway.

antenna

atmo,sphere

water surface

Fig 7 The atmospheric interferometric delay for a spherical reflector can be derived again from rotation
of the direct signal path to the reflected signal path. Using the chord (green straight line) of the arc of
rotation, the delay can be calculated from the triangle spanned by the cord and the outgoing part of
Dr,b

Hence, the atmospheric delay can be expressed in consideration of the index of refraction ny, for the
atmosphere below the antenna horizon by

D 1_sm(B+2ww+6qﬁ)

b

2 sinf3

T =n,

atmo,sphere

(20)
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As before we assume that the influence of the difference between e and e, is of minor order and the
approximated atmospheric interferometric delay reads

T

atmo,sphere

D
=n, ﬂ(l—cosZ(esp +8esp))
2 (21)

=n,D,, sin’(e,, +3e,,)
Finally, we can derive the atmospheric interferometric delay for a spherical reflector with eq. (19) from

sin’(e,, +8e,,)
=n, 2(H+AH)— (22)
sin(a.+e,, +0e,,)

T

atmo,sphere

For increasing elevation angles and incidence angles, a would become very small. Hence, AH might
become negligible and the incidence angle would become equal to the elevation angle. Therefore, eq.
(22) would end up in eq. (14) for large elevation angle and could be stated as general form of the
atmospheric interferometric delay for all elevation angles.

6. Numerical Experiment

We examined our findings a by numerical experiment based on a simple step-by-step raytracing
procedure as described in (Felipe G. Nievinski 2009). We assumed a spherical earth with a radius of
6378137 m and a satellite at an altitude of 20,000 km above the earth. We defined a 2D coordinate
system starting at the centre of the sphere. The vertical axis was set to pass through the antenna. The
reflector height was set to 10 m and the elevation angles range from 1° to 90°. From the altitude of
the satellite and the radius of the spherical earth we calculated the coordinates of the satellite for all
elevation angles.

The atmosphere was approximated as a layered spherical structure with a layer increment of 10 m.
The index of refraction was taken from the same CIRA-86 model (Fleming et al. 1990) and calculated
in the same manner as in (Nikolaidou et al. 2020b), whereby the pressure below 20 km was log-linear
interpolated, so that it fits to the CIRA-86 value at an altitude of 20 km and to 1013.15 hPa at the
ground.

We applied an iterative computation of the raytracing. The rays were calculated in the inverse
direction, what means that we started at the antenna or specular point and computed step-by-step
the piercing point of the ray with the upper-nearest atmospheric layer, taking into account Snell’s law
to derive the deflection of the ray at this layer limit. Above the top layer of the atmospheric model in
an altitude of 120 km we assumed a constant index of refraction of 1, and therefore, a straight line as
the last ray.

The initial elevation angle of the bent path was set to the vacuum elevation angle. The perpendicular
distance of the satellite from the last ray was used to derive a correction for the initial elevation angle
and applied in the next iteration step. The iteration stopped when the last ray passed the satellite
within a range of a tenth of a millimetre.

For the ray path of the reflected signal we calculated the incidence angle according to (Roggenbuck
and Reinking 2019) and combined it with the bending angle from the raytracing of the direct signal to
compute the coordinates of the specular point. The 2D coordinate system was rotated so that the
vertical axis passes through the specular point and the same iteration as for the direct signal was
conducted. After the raytracing iteration was finished, the coordinate system was rotated back. The
resulting elevation angle of the bent path of the reflected signal was used to recalculate the position
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of the specular point and the iterative raytracing was repeated. The iteration of the coordinates of the
specular point was stopped when the change of coordinates was smaller than 1 millimetre.

The raytracing yields the geometric length of the paths. For the computation of the radio length, we
used the ray parts between two layers as finite differences and the mean index of refraction to derive
the radio length of the paths from numerical integration.

Hence, we obtained from the raytracing the bending angle, the vacuum interferometric delay, the bent
ray interferometric delay and the atmospheric interferometric delay. In a first step, the bending angle
from our raytracing was compared to that one from Bennett’s formula. Figure 8 depicts that the
bending angles agree very well for elevation angles above 5°. Larger discrepancy for lower elevation
angles may result from different atmospheric models applied here and in Bennett’s development.
Hence, it can be stated that the raytracing procedure yields reliable results.
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Fig 8 Difference of the bending angle from raytracing and from Bennett’s formula plotted over the

elevation angle

Next, we compared the bent ray interferometric delay and the vacuum interferometric delay, both
derived from raytracing. The differences (blue line presented in Figure 9) are less than 1 cm for all
elevation angles. This comparison confirms our findings from Section 3. For the lowest elevation angle,
this difference is more than ten times smaller than the difference between atmospheric
interferometric delay and the vacuum interferometric delay (orange line in Figure 9). The latter can be
compared to the along-path-delay from (Nikolaidou et al. 2020b). For an elevation angle of 5° the
authors found an along-path-delay of about 6.9 cm. The difference of the atmospheric interferometric
delay and the vacuum interferometric delay from our raytracing is about 5.2 for that elevation angle.
The discrepancy results from the difference in the bending angles. From our raytracing we derived a
bending angle of 0.149. The bending angle from (Nikolaidou et al. 2020b) is about 0.185°. Applying eq.
(14) for both bending angles results in a difference of the atmospheric interferometric delays of about
1.3 cm.
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respectively to the vacuum interferometric delay from raytracing

Finally, we compared the atmospheric interferometric delay from raytracing and that derived from eq.
(22) for the bending angle from raytracing as well as from Bennett’s formula. Figure 10 demonstrates
the high quality of eq. (22) even for very low elevation angles since the absolute differences are about
0.1 mm for all elevation angles if we use the bending angle from raytracing. The differences for the
case when the bending angle from Bennett’s formula is uses in eq. (22) are quite large for lower
elevation angles. They become less than 1 mm only for elevation angles larger than about 12°.
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Fig 10 Absolute differences of the atmospheric interferometric delay from raytracing and from the

approximation from eq. (22) using the bending angle from raytracing and Bennett’s formula
respectively

The variation of the index of refraction of the atmosphere below the antenna is likewise important.
Figure 11 shows the difference between the atmosphere for an index of refraction from the CIRA-96
model and pure vacuum for that part of the atmosphere only. The differences increase with an
increasing elevation angle with a maximum of 2H(ny-1) for an elevation angle of 90°. In the typical
range of the elevation angles used in ground-based GNSS-R of about 5° to 30°, the differences are
almost larger than that from Figure 7 for the bending angle from Bennett’s formula. This leads to the
conclusion that both the upper and the lower part of the atmosphere should be modelled well.
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7. Conclusions

We examined the atmospheric modelling in relation to the analysis of SNR data from ground-based
GNSS-R observations from a geometric point of view. This was completed by a numerical test applying
a simple raytracing.

We revised the vacuum interferometric delay model and extended it for intersecting vacuum ray paths.
The quantification of the influence of the intersecting angle shows that the assumption of parallel rays
in a vacuum is appropriate for the typical settings of ground-based GNSS-R observations.

We used the deductions from the vacuum case to evaluate the case of physically impossible refracted
rays in a vacuum. A closed formula for the bent ray interferometric delay, what is the difference of the
geometric lengths of the bent ray of direct and the reflected signal, was derived. The comparison with
the vacuum interferometric delay showed even for larger reflector heights and low elevation angles
non-significant differences. Hence, we cannot confirm the results from other groups.

Taking into account the retardation of the propagation velocity of radio waves in non-vacuum
conditions yields atmospheric ray paths. Based on the preceding findings we derived a relation
between the atmospheric interferometric delay and the component of the refracted ray path of the
reflected signal below the antenna horizon. The final formulation of the atmospheric interferometric
delay is an extension of a well-known formula.

We compared the theoretical results by calculating the various path lengths and delays from a simple
raytracing, using a typical atmospheric model. The comparison of the bending angle of the direct signal
path from this raytracing with a standard formula showed good agreement. Hence, it seems
reasonable to assume that the results from our raytracing are reliable. The atmospheric
interferometric delay from our formulation agrees very well with that resulting from the raytracing for
all elevation angles.

The evaluation of our formula for the atmospheric interferometric delay shows that both the
atmospheric layer above and below the antenna horizon should be modelled well. Since the layer
above the antenna horizon influence only the bending angle, the modelling of that part might be less
important for larger elevation angles. The layer below the antenna horizon influences the atmospheric
interferometric delay also for larger elevation angle. Hence, we recommend to include the humidity
besides temperature and pressure in the computation of the index of refraction similar to (Williams
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and Nievinski 2017) since it might show a strong variability, especially over water. In the future, studies
on the behaviour of atmosphere over water surface as suggested by (Hobiger et al. 2017) might benefit
from eq. (14) and eq. (22), too.

It should be emphasized here that the effects of an incorrect modelling of the atmospheric
interferometric delay will be a source of smaller errors in altimetry studies as long as other effects have
minor impact. Signal reflections from other objects near the antenna like passing ships, rough sea state
conditions or mismodelling of hardware effects could yield much larger errors in the final product.
Hence, even if a correct atmospheric modelling is applied, a further analysis of the signal structure and
a rigorous outlier detection is unavoidable.
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