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Abstract: The general coupling between particle transport and ionization-recombination processes 
in hot plasma is considered on the key concept of equilibrium charge state (CS) transport. A 
theoretical interpretation of particle and CS transport is gained in terms of a two-dimensional (2D) 
Markovian stochastic (random) processes, a discrete 2D Fokker-Plank-Kolmogorov equation (in 
charge and space variables) and generalized 2D coronal equilibrium between atomic processes and 
particle transport. The basic tool for analysis of CS equilibrium and transport is the equilibrium cell 
(EC) (two states on charge and two on space), which presents (i) a unit phase volume, (ii) the 
characteristic scale of local equilibrium, (iii) a comprehensive solution for the simplest nonlinear 
relations between transport and atomic processes. The approach opens up new perspectives on 
transport studies: (i) the direct modelling of equilibrium and transport of impurity using the atomic 
data base, (ii) recovery of the complete recombination rate profile based on knowledge of density 
profiles and ionization rate profiles, (iii) the local transport analysis, based on the reduction of the 
equilibrium set to the single EC (in particular, central or edge), (iv) analysis of the reduced 
transport coefficients (diffusion and convection) on the density profile measurements.  

Keywords:  magnetically confined plasma; impurity, charge state, transport, coronal equilibrium; 
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1. Introduction 

Understanding the behavior and control of impurities as an inevitable component of 
magnetically confined plasmas continue to be a topic of considerable importance in fusion research 
programs. Steady state mode of operation with impurity equilibrium is of vital to the success in 
modern experimental studies of improved confinement and stability of standard H-modes on 
tokamaks and stellarators [1, 2].  

In these devices, the radial transport of plasma particles across the magnetic field is 
accompanied by random change in their charge states (CS’s) due to ionization-recombination 
processes. The probabilistic imposition of these atomic processes on the transport of impurity 
particles occurs in an unusual phase space, which includes the discrete space of (Z+1) CS’s. So, the 
resulting generalized transport turns out to be at least two-dimensional (2D), while its structure 
involving an intersection of statistically independent processes is unexpectedly complicated. A 
consistent approach to this 2D transport problem could suggest the use of multidimensional (mD) 
Fokker-Planck-Kolmogorov equation [3-5].  

Meanwhile, for more than 4 decades, the description of impurity transport remained implicitly 
simplified and was reduced to a 1D diffusive-convective model (DCM), represented in 1D impurity 
transport codes (see, for example, the STRAHL code [6]). Here, the standard 1D continuity equation 
was supplemented in the right-hand part with also a standard 1D flux balance of 
ionization-recombination processes interpreted as random sources and sinks of charged particles. 
So, the required 2D description was just replaced by sum of these 1D parts. The corresponding 
misinterpretation fell into a fatal contradiction with the systematic approach that the theory of the 
generalized FPKE could provide. Moreover, the formal discretization of the DCM equations 
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revealed and returned this 2D transport problem but only in the form of a 2D grid model (GM) in 
charge and radial variables (see discussion in [6] on page 6). 

In the practice of modeling medium and heavy impurities, that is, with an increase in the rates 
of ionization-recombination, it was found that the DCM sensitivity to the empirical transport 
coefficients remains extremely low [7-13] and just unacceptable for W impurity [14, 15].  

Nevertheless, the leading role in interpreting the behavior of impurities was assigned to various 
mechanisms of particle transport in the 6D phase space (of coordinates and velocities) in terms of the 
Boltzmann kinetic equation and its consequences carefully studied in the neoclassical transport 
theory [16]. But in the basic equations of neoclassical transport, the charge state as a mandatory 
variable was ignored along with impurity charge state space (see, e.g., Equation (2.2) in [16]). The 
essential cross terms (mixed derivatives) representing the coupling of atomic processes with particle 
transport were also lost.  

A new approach to this problem was based on the concept of impurity CS transport [17-21]. 
First of all, it was required to make a terminology distinction between particle and CS transports, 
which proved useful for clarifying the structure and probabilistic nature of transport. However, the 
main unresolved physical problem was that 1D (radial) transport of particles would have to be 
clearly distinguished from the generalized 2D transport in the proper 2D phase space, where the 
particle transport is only part of CS transport.  

Indeed, although, there is no particle without CS, as well as no CS of no particle, but there is a 
fundamental difference between the transport of particles and the transport of their CS’s due to 
ionization and recombination processes. In fact, let the probability of the transfer of CS’s by particles 
be H(P), and by atomic processes be H(A), then the probability of events P+A is expressed, as is 
known, by the general formula  

( ) ( ) ( ) ( ) ( )H P A H P H A H P H A     , (1)

which shows that the generalized transport includes three mandatory components: (i) CS transport 
by particles or p-transport, (ii) CS transport by atomic processes or a-transport, and, finally, (iii) CS 
transport represented by probabilistic intersection of a-transport and p-transport but irreducible to 
any of them. Note that the latter is the most represented case of events related to impurity transport 
in plasma and analyzed in Formula (1). However, it is also seen that DCM is limited to analyzing 
only the first two, implicitly (and erroneously) assuming that the P and A events are incompatible.  

The particle conservation law implied in the DCM is consistently generalized to the 
conservation of impurity CS’s moving in the 2D phase space. It is that results in a symmetric 
representation of transport in charge and radial variables on equal terms as suggested by the 
generalized FPKE. In addition, a 2D Markovian impurity equilibrium could be assumed, since it 
consistently follows from the so-called ergodic principle [3], while transport rates can be directly 
derived from the local balance of CS fluxes.  

Moreover, the concept of impurity CS transport allows one to draw an unexpected conclusion 
about the determining role of atomic processes in impurity transport [17]. Clear evidence of this 
interpretation can be revealed in experiments and related modelling practice. They are: 
- coronal equilibrium (CE) of heavy impurities indeed found in the early studies of Cr, Ni, and Mo 
impurities on the TFR tokamak [22, 23], and then confirmed by modelling practice for W on the 
ASDEX Upgrade tokamak [14, 15]. This meant that the equilibrium assumed by the DCM between 
1D particle transport and 1D balance of ionization-recombination processes could not be observed;  
– a noticeable drop in the diffusion coefficient D at the central impurity accumulation and a sharp 
difference between transport in the plasma core from that in the rest peripheral plasma (see, e.g., 
[24]) (that occurs due to the largest size in the central equilibrium cell (CEC) [17]);  
– the coupling found between central accumulation of impurities and diffusion coefficient D: the 
greater the accumulation of the impurity in the plasma core, the lower D [17, 25], and vice versa, that 
is, the "flat" distribution is systematically associated with an increase D to anomalous values (in the 
conventional comparison with neoclassical predictions) from the core to the plasma edge;  
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– two characteristic maxima on the total density profiles: impurity accumulation takes place 
simultaneously at the edge and in the plasma core, as found, e.g., for W in JET [1, 17].  

Meanwhile, the imposition of ionization-recombination on the particle transport results in a 
fundamental nonlinearity of transport analysis. So, the analysis of nonlinear equations of even a 
simplest 2D system of four charge states (two in space and two in charge called the equilibrium cell 
(EC)) – leads to a transcendental equation [17]. The proposed general solution can be developed 
based on a number of reducing 2D schemes and the use of the pseudo-state technique.  

In this paper, we analyze in detail the CS equilibrium and its main dimensionless scale, 
constant, λ, which turns out to be common to all emerging nonlinear problems and possible 
reducing schemes for a given GM [17]. So, a direct relationship is established between λ, the 
standard transport coefficients and the impurity confinement time p . An important generalization 
of the EC concept is developed in the form of the reduced equilibrium cell (REC). It is shown that the 
REC allows us to proceed directly to impurity equilibrium analysis based on a wide variety of total 
density profiles well known from experiments, while the impurity recombination rates are not well 
known as input of modeling.  

The structure of the paper is as follows. In the second part, we consider possible schemes for 
reducing GM to easy-to-analyze simplifications. The matrix description of the reducing distribution 
of the total impurity density is considered in detail, and its important relationship with the GM 
equilibrium is shown through the scale factor λ, which is analyzed in detail in part 3. The model and 
results of recovery of the relative density profile of hydrogen neutrals that determine the impurity 
charge exchange recombination rate are given in part 4. Part 5 presents the conclusions.  

2. Charge state equilibrium and transport 

In the classical review of Braginsky [26], an equation representing the impurity transport was 
given as follows 

     
,

, ,k
r k k

n r t
r t Q r t

t


  


, (2)

where  ,kn r t  is the density of impurity particles in k-th CS (k = 0, 1,..., Z),  ,k r t  is the particle 

flux of the k-th CS and  , 0k
k

Q r t  . All changes of  ,kn r t due to ionization-recombination 

processes are described in Equation (1) by the term  ,kQ r t , but the expression for it was not 
considered in the review. Nevertheless, it is clearly seen, that the proper phase space for Equation (2) 
has two independent variables, k and r (and time). Consequently, it would have to be considered in 
the 2D phase space of these k and r on equal terms using the system approach suggested by FPKE. In 
this case, the 2D transport represented in the Set (2) must also be consistently analyzed in a general 
series of discrete mD-Markovian processes.  

2.1. The discrete transport and equilibrium conditions  

In the general mD case, the differential probability distribution function  1 2, ,..., mg x x x with 
independent variables 1 2, ,..., mx x x  can be represented by the FPKE [3-5] 

   
2

,
i ij

i i ji i j

g
A g B g

t x x x

  
  

     , (3)

where iA  is a vector of convective fluxes, ijB  is a tensor of generalized coefficients of diffusion in 

the mD phase space, 1ig dx  . It is also assumed here that the variables xi and xj are changed 

almost continuously. The function  1 2, ,..., mg x x x  must satisfy the Smoluchowski Equation with 
integration over mD phase volume idx . The derivation of equation (3) can be found elsewhere [4, 

5].  ,kQ r t  given in Equation (2) can be directly found from comparing Equations (2) and (3). 
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To represent atomic processes in convenient discrete form, Equation (2) must obviously be 
modified. Consider the discrete 2D GM, which is usually used to discretize standard equations in 
transport codes [6]. We introduce a grid probability distribution function, kng , where k = 0, 1, 2, ..., Z 
and n is the radial index instead of r; n = 1, 2, ..., N, N=m+1, where m is the number of cells. Since kng  

is normalized as follows 
,

1kn
k n

g  , we get 
0

Z

kn n
k

g p


 , that is, the total local (on n) normalized 

particle density and 
1

N

kn k
n

g q


 , that is, the total normalized density of all ions with the same 

charge k. np  and kq  are related to kng  by the distribution functions knf  and kn  according to  

kn n kn k kng p f q    (4)

and normalizations: 
0

1
Z

kn
k

f


 , 
1

1
N

kn
n




 .  

The CS dynamics on the grid are considered as the random jumps to neighboring positions 
(grid nodes): by k due to a-transport and/or by n due to p-transport. The a-transport rates are knS  
and knR , that is, the rates of ionization and recombination. The p-transport rates (also in s-1) could be 
denoted as p

knw  if the CS motion by p-transport is directed from n to n+1 and as 1
p
knu   if the motion 

is directed from n+1 to n. 
The discrete 2D form of Equation (3) assumes the choice of the necessary system of pairwise 

incompatible events (in accordance with the general probability summation formula) associated 
with states without matching indices. Therefore, we consider pairs of diagonally conjugate states: (k, 
n) and (k+1, n+1); (k+1, n) and (k, n+1) and the corresponding diagonal rates 1 1,kn k nw u    and 

1 1,k n knw u   . Then the 2D equation (for example, for the first of the symmetric pairs) is obtained as 

 1 1 1 1 1 1 1 1
kn

k n k n kn kn kn k n k n

g
u g w u g w g

t        


    


, (5)

where the rate matrix is tridiagonal, Jacobian, singular (it has zero value in the spectrum of its real 
eigenvalues) and similar to some symmetric real matrix. At any time, t, of the temporal evolution of 
the Set (5), there is an ergodic limit (see [3]), which is determined by a complete set of these matrices. 
The stationary solution of Equation (5) is simultaneously the local equilibrium condition  

1 1 1 1

1 1 1 1

,

.
kn kn k n k n

k n k n kn kn

w g u g

w g u g
   

   


 

 (6)

The 2D equilibrium is symmetric, assuming the equalities of symmetric pairs of counter CS fluxes  

1 1

1 1

,

,

p p
kn kn kn kn

kn kn k n k n

w g u g

S g R g
 

 




 (7)

which can be proved strictly in general for any 2D structures (see in [17]). Therefore, note, that 
Equations (6) directly follow from these Equalities (7) and independent of Equation (5).  

The nonlinearity of the problems that arise in the analysis of the CS transport is directly follows 
from Equations (6) and (7). So, we get 

1 1 1 1 1 1 2 1

1 1 1 1 1 1 1 1 1 1 2 1 1 1

p p p p
k n k n kn kn kn k n kn kn kn

p p p p
kn k n k n kn k n k n k n kn k n

g w S w S c w S c w S

g u R u R c u R c u R
     

           


  


, (8)

where 1c  and 2c  are arbitrary constants to be found. By defining 

1 1 2 1

1 1 1 1 1 1 2 1 1 1

,

,

p p
kn k n kn kn kn

p p
k n k n k n kn k n

w c w S c w S

u c u R c u R

 

       

 

 
 (9)
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we obtain the general case of conditions (6) expressed in terms of products of conditional 
probabilities of particle and charge transport processes. Formally, using the normalization of kng  
with Equations (8-9), we obtain the set of rate equations. But even simplest expressions for the 
diagonal CS transport in the single EC give a strong nonlinear relationship between the probability 
distribution and transport rates (see, e.g., the Set (13) below or Formula (21) in [17]).  

Thus, the rates    ,p p
kn knw u  and    ,kn knS R  are related in a nonlinear way to    ,kn knw u  in 

accordance with Formulas (1) and (5-9). Using Formulas (4), Equalities (7) can be rewritten as 

1 1

1 1

,

.

p p
kn kn kn kn

kn kn k n k n

w u

S f R f

  

 




 (10)

where both distribution functions are normalized (see after Formula (4)), hence the double Set (10) 
can be interpreted as a generalized equilibrium or double coronal equilibrium (DCE). For each cell, 
there are symmetric pairs of such equalities that define the local DCE conditions. A local unit of 
phase volume has a pair of necessary transport ratios, as shown in Figure 1. 


k+1n


kn+1

kn


kn g

k, n+1

g
k+1,n+1

g
k+1,n

g
k, n

 

Figure 1. A separate cell of GM with the ratio of rates between nodes. 

Each impurity particle within a local unit of the discrete phase space is characterized by four 
states. Consider the relationships: 1 1/ /kn kn k n k n knS R g g     and 1 1/ /p p

kn kn kn kn knw u g g    . Using 
the entered relations, the conditions (7) and (10) can be rewritten again as follows 

1 1

kn kn

kn k n

 
  

 , (11)

where both values in the left part obviously depend only on the rates of ionization and 
recombination and relate only to a-transport, while in the right part – only to p-transport. Expression 
(11) defines the impurity equilibrium as the necessary local coupling of a- and p-transports within 
each cell. A transport that satisfies the condition (11) could be called an equilibrium transport.  

Whatever the mechanisms of p-transport in the plasma (collisional or turbulent), local 
equilibrium of impurities can only be provided by the equilibrium p-transport rates. Consequently, 
the local equilibrium transport is determined by statistically independent rates of ionization and 
recombination. Since the p-transport corresponds to the a-transport, that is, it turns out to be 
equilibrium, a generalized DCE of impurity (10-11) occurs.  

Thus, local EC is simultaneously: (i) a unit phase space volume and the characteristic scale of 
the local equilibrium, (ii) self-consistent equilibrium system, which provides a comprehensive 
analysis of the rate ratios of a- and p-transports, (iii) a crucial tool for analyzing a general equilibrium 
of impurity CS transport.  

The condition (11) couples only the rate ratios, which can be reproduced for impurities with 
different Z and with significantly different rates. But only they determine the equilibrium transport 
along with the resulting stationary density distributions. The corresponding similarities of the 
equilibrium rate ratios can be suspected in experiments, e.g., when there is an apparently similar 
stationary density profiles of the central accumulation of C [27, 28], Ar [29, 30] and W [1, 31].  

Contrary, the absolute values of the atomic rates determine the equilibrium scale, λ, that is, an 
equilibrium constant of steady state impurity [17]. It turns out to be the same to all cells and 
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reducing GM schemes, as will be shown below. Therefore, the difference in the equilibrium of 
impurities appears primarily as a function  Z , which strongly depends on the atomic structure 
and the rates of the most abundant ions. For light and mid-Z impurities, these are K- and L-shells of 
H-, He- and Li-like ions. Normalizing the atomic rates by this λ allows us to develop a generalized 
elementary 2D model of equilibrium that could be called a reduced equilibrium cell (REC). Formally 
the REC is just a special case of the EC with  =1.  

2.2. Reduced equilibrium cell  

The CS equilibrium and transport in the EC is completely determined by the rates of ionization 
and recombination processes, 1S , 2S  and 1R , 2R respectively. The EC scheme is shown in Figure 2.  

 

Figure 2. Scheme of the equilibrium cell. 

The relations 1 1 1/S R  , 2 2 2/S R  , 2 1/ Ss S , 2 1/r R R , 1 1 1/w u  , 2 2 2/w u   are either 
directly obtained from the given rates of atomic processes, or can be obtained from the equilibrium 
analysis. In particular, in the case of the EC the condition (11) is 

2 2

1 1

s

r

 


 
  


. (12)

Solutions of the equations describing the temporal evolution of densities 1/2 1/3 2/4p g g  , 

1/2 1/2 4/3q g g  , 1/3g , 2/4g (for short, the subscripts for pairs are changed) include non-zero 
eigenvalues of the EC matrix equations. As was shown in the EC analysis [17], these turn out to be 
equal, i.e. p q      , where w u   , w u     are the constants of the diagonal balance as 
follows from the FPKE adopted for the EC, p w u   , where    1 2 1 1/ 1w w w     , 

   1 2 2 2/ 1u u u     , and q S R   , where    1 2 1 1/ 1S S S      and    1 2 2 2/ 1R R R     . 
Now consider the REC, in which, as noted above, all rates are normalized to λ, that is, 

1 1 /S S  , 2 2 /S S  , 1 1 /R R  and 2 2 /R R  . From ratios we also get that 1 1 /w w  , 

2 2 /w w   and 1 1 /u u  , 2 2 /u u  . The definition of the REC is a set of equalities  
1p q       . The basic equations derived for the EC are the same for the REC also: 

    
  

 
   

   

1 2

1 1 2 1

1 1 2 12

2 1 1 1 2 1

1 ,

1 1 1
,

1

1 1
,

1 1 1 1

e e

x v
xv

x v

x v
s

x v

x v s



  
   

    
      

  

  
 

 

   
   

    

 (13)

where      0 1 /ev x v        ,      0 1 / 1ex v x        in the notations 

2 2 2 2/ /x u R u R   , 1 2 1 2/ /v u S u S   , 1s   ,    2 1 1 2 11 / / 1         and 1 1 1w u   
( 1 1 1w u ), 2 2 2w u   ( 2 2 2w u ). Then we add to Equations (13) two expressions for  1 1,p   and 
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 2 1,p  (where 2 1/p p p ) taken from the equation 1q S R     and the relation 

   1 2 11 / 1p       as follows 

 
  

 

2

1
1

1 1 2 1

2 1
1

1
1

1 1

1 1

p S S

p




 

 



 

   

  

 
. (14)

The final equation, which is obtained from the Set (13-14), has the form 

 1 2 1, , , 0P S S p    , (15)

where the values 1 2, ,S S p  are assumed to be given. Equation (15) differs from that for the EC [17] 

 1 2 1, , , 0S s    , (16)

which can be resolved with respect to 1  for a given 1 2,  , 2 1 2 1/ S / Ss S S    . An equilibrium 
with a given ionization base of the cell, s, could be called an S-equilibrium.  

The symmetric version of the EC can be based on recombination processes (for given 1  and 

2 ). This R-equilibrium is given by a triple 1 1
1 2, , r     with other final Equation  

 1 1
1 2 1, , , 0R r     . (17)

It is important to note that the solution 1  of Equations (15-17) is not a continuous function, since in 
general there are two equilibrium regions defined by the following inequalities 

1    , (18)

and 

1    . (19)

The transition between regions (18) and (19) occurs by a jumps in p , x and v  (see Figure 5 in [17]) 
at the bifurcation points of Equations (15-17). These points are the boundaries of the regions (18-19).  

For other elementary equilibrium schemes involving one or more cells, the solutions of the final 
problems (16) and (17) coincide in principle. However, real impurity equilibrium systems in a 
plasma with different equilibrium bases (S or R) can differ significantly by their equilibrium rate 
profiles and by the conditions that implement the equilibrium at the variable boundaries. The point 
is that any of the three options is possible: (i) when the equilibrium can have both bases and different 
profiles, (ii) when only one of the two equilibrium options is realized, and, finally, (iii) when there is 
no equilibrium for given distributions of parameters. Thus, the modelling shows that the complex 
cases turn out to have different bases of equilibrium and boundary conditions.  

Thus, the solution of problem (15) can be used to model the CS equilibrium, which exactly 
corresponds to the given (or known from experiments) profiles of the total impurity density with 
known ionization rates. The modelling using this approach are considered below. However, in 
contrast to the settings of the direct problems (16) and (17), which provide the constant scale λ, the 
problem (15) assumes that λ is already known, e.g., from approximate estimates (which are 
discussed below) or from a preliminary approximate calculation of the equilibrium.  

Direct calculations of the equilibrium of the Ar impurity in the JET tokamak showed [17] that 
the last cell in the CCs differ from the ithers in a number of important properties. So, for m-th cell we 
get    2 1jmEC CCs   in the region (19). We also obtain that 2 1/   >>1, s >> 1, 1 << 1. Typical 
values are γ = 20-100, s = 4-20, 1 1 1/w u   = 4 32 10 2 10    . In this case, the analysis can be 
simplified and, in fact, gives the position of the impurity equilibrium boundary. In the region (19), it 
turns out that 2  , 21 /v x R   ,  1 1/ 1S p  .  
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Further, the analysis of the equilibrium in the last EC allows us to calculate the limit values of 
the boundary densities that satisfy the simple criterion 0v   for several values of γ as a function 
 , 0p s v  . Figure 3 shows the dependence of the limit ratio of densities in the last EC. The 

equilibrium for a denoted value γ is possible only at densities higher than the calculated limit values.  
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0.00

0.02

0.04

100

70

40
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 p
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 / 

p
1

s=S
2
 / S

1  

Figure 3. Dependence of the limit ratio of densities in the boundary EC under the condition of the 
ionization rate gradient in this cell. 

2.3. Reduction schemes  

The Markovian equilibrium, assumed in GM for stationary plasma conditions, allows us to find 
the equilibrium transport by reducing GM by the pseudo-state technique. The main reducing 
schemes are shown in Figure 4.  

 

Figure 4. The main schemes of GM reduction by the pseudo-state technique: GM – the initial grid 
model of impurity distributions, CCs – coupled cells, HL and VL denote horizontal and vertical CS 
lines, respectively, EC - an equilibrium cell, SP - a separate pair. 

The most obvious reduction options are local summations of the initial grid distribution 
function kng  for each n and for each k. It is easy to find several reducing schemes where the nodes 
are convenient simple sums of CS’s that preserve the original density distribution  np  with the 
normalization. Thus, the formal algebraic procedure allows to reduce the analysis of nonlinear rate 
transport equations to the solution of a single transcendental equation of the form (15), (16) or (17). 
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So, the GM equilibrium can be successively reduced to a local equilibrium of just four pseudo-states 
of EC, which are the sums of the corresponding GM quadrants around the single nodes of local EC, 
that is i kni

G g , where i =1, 2, 3, 4 with normalization preserved 1ii
G  .  

Invariance of the resulting distributions can be illustrated by comparing densities, for example, 
in simple schemes HL, EC, and SP, where they are connected by obvious equalities 

 

 

1 1 1 2
1

1

2 2 3 4
1

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

n

i
i

m

i
i n

p HL P SP P EC G EC G EC

p HL P SP P EC G EC G EC





 

   

   




 (20)

So, for the CCs and HL, the density distribution  np  is common, i.e., a reduction invariant. In the 
same way, the horizontal (HL) and vertical (VL) lines of pseudo-states preserve  np  and  kq  
distributions common with the original GM (see Expressions (3) and (4)). Summation of Equations 
(5) results in the following set of the HL  

 1 1 1 1
n

n n n n n n n

p
u p u w p w p

t    


   


, (21)

where 
0

Z
p

n kn kn
k

u u f


  and 
0

Z
p

n kn kn
k

w w f


 , but for the VL to a similar set 

 1 1 1 1
k

k k k k k k k

q
R q R S q S q

t    


   


, (22) 

where 
1

N

k kn kn
n

R R 


  and 
1

N

k kn kn
n

S S 


 .  

Another important invariant of the reduction is the CS fluxes between the original neighboring 
states and their reducing pseudo-states. In this case, the changed transition rates between all new 
nodes must correspond to the pseudo-state densities. The equalities of probabilistic fluxes determine 
these rates between pseudo-states. The SP and EC rates are related to each other as follows 

1 1 1 2 2

2 1 4 2 3

,

.

w P w G w G

u P u G u G

  

  
. (23)

Obviously, in the case of the CCs scheme, the proper equilibrium is generally provided by the 
correct choice of the j and j+1 levels of ionic charge k. It is seen that the choice is determined by the 
most abundant impurity ions in the plasma, i.e. their corresponding charge and external atomic 
levels. These j and j+1 could be called the equilibrium levels of steady state impurity.  

The first stage of the GM reduction to the CCs is the summation along vertical lines below and 
above the levels / 1j j   respectively. The resulting CCs pseudo-states are the following sums  

1
0 1

,
j Z

jn kn j n kn
k k j

G g G g
  

   . (24)

The fluxes between levels / 1j j   in the original and reducing schemes are assumed to remain 
unchanged, which allows us to find the rates  

1 1 1 1/ , /jn kn kn jn j n k n k n j nS S g G R R g G     . (25)

The sequence of ratios (25) from the sums (24) can be called the equilibrium function  

1 1/ /jn j n jn jn j nG G S R    , (26)

which determines   jn jnf   and similarly the function   jn jn  , since 

1 /jn jn jnG G  . (27)
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Besides the density distribution and CS fluxes between neighboring states of original scheme 
there is another important reduction invariant. It is the equilibrium constant λ discussed in detail in 
the next section.  

3. Equilibrium constant 

The reduction invariants allow us to obtain a general solution to the original transport 
nonlinear problem. But there is a common for all reducing schemes and, therefore, the most 
important equilibrium invariant given by the value λ, which should be considered in detail.  

Averaging the atomic rates and its ratios over the corresponding φ functions for the n-th 
reducing EC and for levels / 1j j   of CCs, we get  

       
 

       
     

         
 

1
1 1 2

11

1
1 1 2

1 1
11 2 1

1 2 1

1

,
1

,

/ .
1

m

jn jn
n

m

j n j n
n

S n n S n
S n S

n

S n n S n
R n R

n n n

n n n
S n R n

n









  

  










 



 




 




 





  (28)

It is seen that  S n  and  R n  remain the same for all reducing cells of the CCs. Then the sum  

     n S n R n    (29)

is also a common constant. The same conclusions can be drawn in the symmetric case  

     k w k u k   . (30)

The intersection of vertical and horizontal reducing lines and imposed of the EC’s (with the 
corresponding pairs of n and k) reveals that for any reducing local EC there is only a single common 
constant    n k    . Note that the non-zero eigenvalues of all reducing SP are also equal to λ. 
In other words, λ is a constant, that determines all possible cases of impurity equilibrium in GM.  

The important relationship between λ and the equilibrium transport rates, density 
distributions,  np , and, finally, the characteristic times of the impurity confinement, p , can be 
found as follows.  

3.1. Time scale of transport rates 

In the case of steady state equilibrium ( / 0np t   ), the solution of the set (21) is determined by 
the equalities of the same particle fluxes from neighboring pseudo-states. Comparing these fluxes for 
HL and SP and using Equation w u   , we obtain equalities correspond to the conservation of 
fluxes for each pair of n and n+1 states of HL and the sequence of pseudo-states of SP: 

   

   
1

1 1
1 1

1 ,

1 ,
n m

n n i n n i
i i n

w n u n

p w p w n p u p u n




 
  

  

      
, (31)

that gives a complete set of equations. The solution can be expressed as follows 

1 1

n n

n n

w w

u u


 

 

 




, (32)

where nw  and 1nu   are the reduced particle transport rates:  
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1 1

1 1
1 1

1 / ,

1 / .

n n

n i i n
i i

n n

n i i n
i i

w p p p

u p p p

 

 
 

   
 
    
 

 

 





 (33)

Using Expressions (32), Equation (25) can be rewritten  

p
N p N p

t


    



  , (34)

where N is the matrix of Equation (25), N  is the reduced matrix combined from the elements (33): 

    
1 2

1 2 2 3 11

1

1

0 0 0 0 ... 0

... 0 ... 0

... ... ... ... ... ... 0

0 ... 0 ... 0

t
n

m

m m m

w u

w w u u
N p B T T B

u

w u












  

   

 

 

   




 

, (35)

where  1 20, , ,..., m    is the spectrum of its absolute eigenvalues (let 1 20 ... m      ), 
determined by the density profile according to Formula (33), the matrix B is diagonal, and T is 
orthogonal, and Tt is the transposed orthogonal matrix (see, e.g., in [19]).  

Thus, the value λ determines the scale t    of temporal evolution   np  . The 

eigenvalues of N  is related only to the stationary profile  np , as follows from Formulas (33-35).  

3.2. Impurity equilibrium and transport coefficients 

The discrete structure of СS transport, finite equilibrium regions, and bifurcations during 
transitions between them strongly limit the possibility of describing impurity transport by 
differential equations that require continuity of the corresponding functions along with their 
derivatives in the entire domain of definition. On the contrary, the proposed matrix approach uses a 
minimum of input information to analysis and most closely corresponds to the physical nature of 
probabilistic (random) CS transport. Indeed, Equations (21) and (34) represent a matrix analogue of 
the standard 1D continuity equation for the total impurity density  

   
,

, 0Z
r Z

n r t
r t

t


  


, (36)

where    , ,Z kr t r t   . Note that for a stationary impurity profile  Zn   obtained in 
experiment, the corresponding discrete profile  np  is also well known, since 

ln / ln /n Zp n      , where /r a  , a  is the minor radius of the plasma column. Next, we note 
that in the accepted cylindrical geometry, it is convenient to set 2 /n N   in accordance with 
Equation (21), and then  2 1N m  . Comparing the coefficients before the second derivatives in 
expressions (21) (after expanding by n as a continuous parameter, see, e.g., in [17]) and (36) and 
using the relations (32), we obtain the particle diffusion coefficient, D, in the form 

 

2

3
8 1

a
D D

m



 , (37)

where      / 2n n nD p w u     is a reduced diffusivity, which is easily calculated on Formulas (33). 

The reduced convective velocity, v , is obtained by a standard way / ln /nv D a p    .  

The strong dependence   3
1D m

   occurs in Formula (37) for several reasons. First, using 
the expansion in series on n of the Set (21) we get the second derivative depending on n with 
corresponding coefficient (see, e.g., in [17-19]). Second, the comparison can only be made using the 
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initially accepted cylindrical coordinate system with argument  2 / 1n m   , which provides a 
correct description of the radial states (layers) with equal plasma volumes. Third, unlike (36), the sets 
(21) and (34) are linear on n. But the argument 2  appears before the second derivative in the 
steady state solution of Equation (36), that is, in the confluent hypergeometric equation to be solved 
(see, for example, in [21, 33-35]). Then, to convert the original coefficient before second derivative of 
linear expression (21) into that of the standard Equation (36) with that required 2 , it is necessary to 

include the correcting scale factor   1
1m

  into the expression of D, since the factor n  is just 

included in the diffusivity profile  D n .  

Now we can directly calculate the reduced transport profiles D  and v  together with the 
profiles  nw  and  nu  corresponding to the given profile  Zn  . We can directly derive 

 nw and nu ,  nw  and  nu  using the invariance of pseudo-state fluxes of HL and EC systems:  

       
       

1 1 2 2

1 1 3 2 4 1

n n

n n

p w G n w n G n w n

p u G n u n G n u n 

 

 
, (38)

where for each n we can use the following obvious expressions 

   
   

1 1 1 2 1 2 1 1 1 2 1

3 2 1 1 1 2 1 4 1 1 1 2 1

1/ 1 , / 1 ,

/ 1 , / 1 ,

G G

G G

        

          

       

       
, (39)

2 1
1 2 1 2

1

2
1 2 2

1

v, ,

v, ,

S
w S w x

S
u S u x








   

   
, (40)

then from Equation (13) and (38-40) we get the relations of the HL and EC values 

 
 

 
 

2 1

1 1 2 1

2 1
1

1 1 1 2 1

,
1

.
1

n
n

n
n

S x v
w

p

S x v
u

p


   


   






  




  

 (41)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

 
 = r / a

(a)

F

A
2

A
1

H

 

d
en

si
ty

, 
ar

b
. u

n.

   
0.0 0.2 0.4 0.6 0.8 1.0
0

4

8

~ 
   

 ~

(b)

 = r / a

 

H

F

A
2

A
1w

n
 , 

u
n
 , 

a
.u

.

 

Figure 5. (a) Typical total impurity density profiles (A1 , A2 denote accumulation, F – almost flat, H – 
hollow) obtained in experiments on the DIII-D [27] (A1 for C), JT-60 [28] (A2 for C) and JET [29, 30, 32] 
(A1, A2, F, H for Ar) tokamaks; (b) reduced velocity profiles nw  (dashed) and nu  (dotted) 

calculated using Formulas (33).  

Typical profiles  Zn  , for example, of C and Ar are well known from experiments (see, e.g., in 
[27-32]). The profiles  Zn  can be (i) peaked in the plasma core, (ii) almost flat, or (iii) slightly 
hollow. Figure 5 (a) shows these typical profiles observed in experiments, and Figure 5(b) shows the 
corresponding profiles  nw  and  nu  calculated on Formulas (33).  
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Numerically nw  and nu  close to each other in almost the entire profile. So, we conclude that 

n nD w u     (see Formula (37)). The closer to the center of the plasma, the better the approximate 
ratio is reproduced. The profiles A1 and A2 with central accumulation correspond to a decrease in D 
in the plasma core, which is in qualitative agreement with the experiments [25] and modelling [17].  

3.3. Impurity equilibrium and confinement time 

The confinement time of impurity particles, p , is conventionally determined by the smallest of 
the eigenvalues of the divergence operator [33, 34], which represents the particle transport in the 
standard Equation (36). In the proposed matrix case, the analogue of this value, as follows from 
Formulas (34-35), is the product 1  . We denote 1E   the smallest (non-zero) absolute 

eigenvalue of the spectrum of the matrix N  (see explanation to Formula (35)). Then E  can be 

found from the spectral decomposition  1 20, , ,..., m    of the matrix   nN p  constructed by 

Formulas (32-33). Using this matrix approach, we obtain a relationship between E  and m. Figure 6 
shows the calculations of these dependencies  E m  for the profiles  Zn   shown in Figure 5 (a). 
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16
(b)


E
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A
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A
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F

 E

-1

m  

Figure 6. Dependences of the smallest (in absolute value) non-zero eigenvalue of the matrices N , 
corresponding to the profiles  Zn   in Figure 5 (a), on the number of m cells. 

From the definition of p , Formulas (34-35) and calculations shown in Figure 6, we get, that  

 1/ /p E m      , (42)

where the last approximate ratio is performed within a good accuracy, especially for flat (F) density 
profiles. From Formulas (37) and (42) we conclude that 1

pD     . The resulting estimates of the 
value p  for the various cases of equilibrium of C and Ar impurities are presented below.  

3.4. Types of impurity CS equilibrium  

The atomic structure of impurity ions is directly manifested in their CS equilibrium. From 
Formulas (28-29), it is seen that change in the equilibrium levels / 1j j   can affect both λ and jn . 
An additional factor here is, as mentioned above, the type of the equilibrium base – ionization (S) or 
recombination (R). This can be shown by modelling of impurity equilibrium.  

Figure 7 shows calculations (by the TICS code [17]) of the argon impurity equilibrium for the 
temperature and density profiles typical for a variety of discharge conditions in JET [29, 30, 32], in 
particular, for a plasma with  0 4eT   keV,  0 4iT   keV, and  0en   4.5 1019 m-3. The selected 
profiles of temperatures, electron density, and relative density of hydrogen neutrals /n n en n   
remain the same as previously used for modeling Ar transport in JET.  
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Figure 7. The equilibrium of Ar calculated with a recombination (R, Rf curves) and ionization (S 
curves) equilibrium base: (a) profiles with and without central accumulation; (b) profiles of the 
diffusivity calculated by Formula (37); (c) S- and R-equilibrium regions determined by the relative 
profiles of hydrogen neutrals /n n en n   separated by dash-dotted curves showing the limits of the 

transition region; (d) abrupt change in the equilibrium constant depending on the average impurity 
charge with a gradual transition between the R and S regions due to changes in the profiles  n  . 

The dash-dotted curves on (d) show the same limits of the transition region.  

Figure 7 (a) shows the profiles of the total argon density for three typical cases of the 
equilibrium observed in experiments. Here, discrete data points are connected by splines. The first 
profile, denoted by S, is a strongly peaked and obtained in the case of S-equilibrium with the 
base / 1j j   for He/H - like ions. The next profile denoted by R has two maxima (at the center and at 
the edge), calculated for R-equilibrium with the base 1/j j  for He/Li - like ions. Finally, that 
denoted by Rf, calculated for almost flat in the core and peaked at the plasma edge, also related to 
R-equilibrium (with He/Li – like ions). The calculations shown in Figure 7(b) show that a change of 
the levels He/Li (in R-equilibrium) to He/H (in S-equilibrium) leads to a significant decrease in D. 
This is obviously due to the low ionization and recombination rates of He-like and H-like ions.  

Figure 7 (c) shows the profiles /n n en n   that determine the rate profiles of recombination 
through charge-exchange of impurity ions on hydrogen neutrals and, hence, their corresponding 
equilibrium functions (26). Two regions of these equilibrium profiles for S-equilibrium (He/H) and 
for R-equilibrium (He/Li) are separated from each other by a narrow transition region depending on 
the plasma parameters that provide equilibrium. The gradual transition of impurity from 

R-equilibrium to S-equilibrium related to an increase in the average charge 
0

Z

k
k

Z k f


   .  

This transition requires a noticeable decrease in the charge-exchange rates across the entire 
plasma cross-section, and especially at the periphery. Even small fluctuations in the plasma 
parameters (e.g., /n n en n  ) at the equilibrium boundary can cause a transition between the S- and 
R-equilibrium regions along with a significant change in the values of D and p . But since this is a 
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transition from region (22) to (21), it can only occur in a jump. Figure 7 (d) shows how the 
corresponding changes in λ occurs when trying to gradually vary the parameters.  

The modeling calculations of CS equilibrium of Ar were performed for a variety of  0eT , 

 0iT  and profiles  n   close to the modelled [17] conditions at JET [29, 30, 32]. Thus, the studied 
CS equilibrium of the types discussed above can be represented in a very wide range of these plasma 
parameters, revealing the corresponding range of λ and p .  
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Figure 8. Model calculations of equilibrium constant (a) and confinement time (b) calculated for Ar 
by Formula (42) with m=12, various / 1j j   (as denoted), the equilibrium base (for S-equilibrium – 

full symbols and for R– equilibrium – open symbols),  0eT  and  0iT  varying within 1.5-8 keV, 

corresponding  n  , 19 3(4 9) 10en m   . The points denoted by JET correspond to the 

modelling data from JET [17].  

Figures 8 summarizes these variations of equilibrium values λ (a) and p  (b) caused by the 

change in the temperatures  0eT  and  0iT  from 1.5 to 8 keV and by the corresponding (to 

equilibrium) variations of  n   (from the core to the equilibrium boundary) at an almost constant 

plasma density profile with   19 30 4.5 10en m  . Full symbols correspond to S- , and open symbols 

to R-equilibrium type. The growth of  0eT  leads to a noticeable increase in λ along with the 

increase  eT . Increase  0n  changes a lot  1/ 0тR     , but it does not change much 

 1 1/S   , since 4  . An increase in  0eT  results in an increase      , /e i e iT T S T R T  , 
that is, to a shift of the obtained points on Figures 8 to the right. Figure 8 (b) shows the 
corresponding calculations of p  on Formula (42). 

These estimations of p  generally correspond to the measurements and known p  scaling for 
L-, I- and H-modes [36, 37]. In particular, the estimates 5 20p   ms for j / j+1 = 15/16 (Li- and He- 
like Ar) (see in Figure 8(b)) turns out to be in good agreement with scaling for L-mode plasmas [36] 
and for I-mode in Alcator C-Mode [37], but taking into account its higher plasma density 

  20 30 2 10en m . Moreover, the calculated dependence  p eT  clearly shows the same tendency of 

slow decreasing with strongly increase in  0eT  from 1.5 up to 4 keV (see, e.g., Figure 4 in [37]). The 
transition from L- to H-mode plasmas results in a stepwise increase in 50 1000p   ms [36-38] and 
corresponds to impurity equilibrium (both S- and R-type) for higher levels / 1j j  = 16/17 (He- and 
H- like Ar) and / 1j j  = 17/18 (H-like and full stripped Ar ions).  

3.5. The radial scale of the CS equilibrium 

As follows from Formulas (37) and (42), the radial number of equilibrium cells m plays a 
significant role in the scale factors of the impurity CS transport. The number of radial cells m was 
initially determined by the number of times on average the particle changes its CS moving from the 
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center to the grid boundary. However, there is an inevitable contribution in m of the other transport 
processes. Therefore, it is not entirely clear how m is defined. Indeed, it could be assumed that 
collisional and/or turbulent transport in the plasma can contribute to m along with atomic processes, 
e.g., as a simple sum at coll turbm m m m   . The simulations of the CS equilibrium transport show that 
it is necessary 10m   for C, 12 14m    for Ar and 22 24m    for W. But for C, the largest excess 
over the reasonable estimates 2 3atm    ( 6  at least) is obtained, whereas for medium and heavy 
impurities, it can be assumed that 2 5coll turbm m   . It is worth noting that en  . But in 

accordance with Formula (42) pm  . So, if we assume that coll em n , then from  3
/ 1D m  , 

we can get a slowly decreasing dependence  eD n  as observed in experiments with light 
impurities (see, e.g., in [12, 40]).  

Meanwhile, the simulation results are very weakly dependent on the value of m. For example, 
Figure 9 (a) shows calculations of the dependence  m  for two types of equilibrium that differ in 
the total density profile (see Figure 7 (a)). So, λ is weakly sensitive to m, that is, to the radial 
dimensions of EC’s over a wide range. Similarly, the value λ is weakly sensitive to  0eT , while 

maintaining the shape of the profile  eT  . It should be remembered that the ionization rates 
usually vary slowly near their maxima, depending on the temperature.  
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Figure 9. The equilibrium constant of Ar in dependence on (a) the number of cells m; (b) on the 
central plasma electron temperature  0eT . 

4. The recovery of CS equilibrium on the density profile 

As noted above, it is possible to change the formulation of the problem of equilibrium 
modelling to use the total density profile,  Zn  , usually known from experiments (or assumed to 
be given) with the data about ionization rates. Then, the recombination rates could be recovered 
along with the equilibrium transport rates. Such a formulation can be based on solving Equation (15) 
after reducing GM to a set of separate REC’s. However, to solve it, it is necessary to have at least 
approximate data on λ as an input parameter, while the exact value is calculated as follows 

 
1

1 1
1

m

jn jn j n j n
n

S R  


 


  , (43)

where, initially, knowledge of the functions jn  and 1j n   is required. Nevertheless, the estimates 

show that using the total density profile  np  (i.e. the profile  Zn  taken form the experiment), 
the approximation est   can be found by the following formula 

 
1

1
1

m

est jn j n n
n

S R p





   . (44)
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Figure 10. A comparison of the calculations using the exact Formula (43) and the approximate 
Formula (44) in the various equilibrium cases of C and Ar. Points shown with open symbols are 
related to He/Li equilibrium of Ar, while full symbols are of the He/H equilibrium type. Carbon data 
( / 1j j   are H-like ions and nucleous) are shown in black triangles.  

Calculations of λ using Formulas (43) and (44) for C and Ar are compared in Figure 10. It is seen 
that all these data can be represented within a good accuracy by two approximate relations. For 
impurity equilibrium within the K-shell, choosing / 1j j   of He- and H-like ions, we get 

  0.68est K    for both C and Ar, whereas within / 1j j   of He- and Li-like ions we obtain 

  0.87est KL   . So, a reasonable approximation est   to the exact equilibrium value depends 
on knowledges of (i) the basis of the equilibrium and (ii) the atomic structure of the most abundant 
impurity ions. Even rough estimates of the rates of ionization-recombination processes, normalized 
by an approximate value est , provide the necessary input data for modelling using Formula (15) to 
reduce GM to REC.  

Experiments with carbon pellet injection on the LHD stellarator [41] were chosen for modeling, 
since a large variety of carbon density profiles was observed there. The direct calculation of carbon 
equilibrium and its quasi-stationary temporal evolution was performed in [17]. These data turn out 
to be helpful when setting up the proposed recovery model of the profile  n  . So, the recovery 

model directly uses as input data and reproduces exactly the profiles  Сn   observed in the LHD. 

The calculated profiles  n   (and the corresponding charge-exchange recombination rates) are 
found by an iterative procedure from the calculations of equilibrium. The convergence of iteration 
procedure in the recovery case is achieved in 8-10 iterations, which is noticeably faster compared to 
TICS, where it is achieved in only 30-40 iterations.  

Figure 11 (a) shows the experimental profiles  Сn  adopted to discrete case, that is,  np  at 

1 1.83t  s, 2 2.03t   s, 3 2.23t   s, 4 2.54t  s, which are the input data of the model under 
consideration, except for the profile with carbon accumulation in the center, denoted by the letter A. 
As noted in [17], this A profile was modelled using data from the L-mode at 1 1.83t  s. Figure 11 (b) 
shows the diffusion coefficient profiles  D   calculated on Formula (37). Here we obtain the main 
feature of equilibrium CS transport in the plasma core, also found in experiments [25], in modelling 
[17] and revealed by the calculations of the profiles  nw  and  nu presented above in Figure 5 (b): 

the lower the relative impurity density in the core, the higher  0D . Conversely, the more impurity 

accumulates in the center, the smaller  0D  required for such an equilibrium.  
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Figure 11. The calculated quasi-stationary equilibrium of C in L-mode at 1 1.83t   s-1 along with 
modelled central accumulation (curves A) and in H-mode at 2 2.03t   s-1, 3 2.23t   s-1, 4 2.54t   

s-1: (a) input total density profiles measured in the experiment [41]; (b) the profiles of diffusion 
coefficient, calculated according to Formula (37); (c) the equilibrium functions; (d) calculated profiles 
of the relative density of hydrogen neutrals. 

Figure 11 (c) shows the calculation of the quasi-stationary temporal evolution of the equilibrium 
function, its successive noticeable flattening and displacement of the sharp edge to the periphery of 
the plasma column along with the maximum of the density profile  Сn  . The resulting profiles 

 n   also change sequentially showing a flattening in the plasma core and a decrease in the 

density of neutrals at the plasma periphery, where the maximum of  Сn   shifts. It should be 
noted that, in general, the obtained novel results are in reasonable agreement with the data of direct 
modeling of the equilibrium CS transport by the TICS code [17].  

5. Conclusions 

The impurity CS transport is a typical transport process in plasma, which finds its place in a 
range of other transport processes. This fundamentally 2D transport is consistently represented by 
symmetric differential and discrete forms of FPKE. The concept of impurity CS equilibrium 
transport provides an understanding of the crucial role of atomic processes in the behavior of 
plasma impurities. The impurity equilibrium observed in experiments together with a large variety 
of impurity density profiles, both total and partial, in a stationary plasma is essentially a double 
coronal equilibrium (DCE). DCE is a direct consequence of the symmetric properties of the discrete 
FPKE (7) and of the conservation law of CS’s moving in the proper phase space. 

Nonlinear problems of analysis of 2D CS equilibrium and transport are significantly simplified 
by reducing the original GM to a whole set of simple schemes (see Figure 4) using the pseudo-state 
technique together with reduction invariants. The most important of them is the equilibrium 
constant, λ, which determines the general time scale of the impurity equilibrium in a stationary 
plasma. It provides crucial information to understand the scale of equilibrium transport rates and 
confinement time of impurities in hot plasmas. 
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In particular, the difference of the behavior and transport of impurities in plasma is determined 
by their ionization-recombination rates values that is, by the dependence  Z , analysis of which is 
the immediate task. Naturally, the impurity equilibrium and transport in hot plasma depend on the 
atomic structure of impurity ions that define the equilibrium levels for the most abundant ions as 
discussed above. 

A significant difference of 3-10 times both in the values of D (see Fig. 7 (b)) and in the values p  
(see Figures 7 and 8) in various types of CS equilibrium suggests their direct coupling with the 
observations of impurities in the L-, I -, and H-modes in plasma [24, 37]. The estimates p  made on 
the basis of CS transport modelling of C and Ar are in good agreement with the known experimental 
scaling [36] and measurements [37].  

The coupling of the profile  np  with the rates of particle transport makes it possible to 

directly analyze typical profiles  D   and  v   observed in experiments, in particular, for the 
central accumulation or any other distribution of impurities in the plasma cross-section. It is shown 
that using REC analysis, data on  np , ionization-recombination rates and the proposed 
approximation of λ (see Formula (44)), it is also possible to solve the recovery problem for rate 
profiles along with equilibrium CS transport analysis. In particular, it is possible to calculate the 
relative profile of neutral hydrogen, which determines the charge-exchange recombination rate of 
light and medium impurities.  

Thus, the concept of impurity CS transport opens up significant prospects for direct analysis of 
the rates of ionization-recombination processes in a hot quasi-stationary plasma.  
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