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Abstract: Small Shallow Lakes (SSL) support exceptionally high and original biodiversity, provid-

ing numerous ecosystem services. Their small size makes them especially sensitive to anthropic ac-

tivities, that causes a shift to dysfunctional turbid states and induces loss of services and biodiver-

sity. In this study we investigated the relationships between environmental factors and macrophyte 

communities. Macrophytes play a crucial role in maintaining functional clear states. Better under-

standing factors determining the composition and richness of aquatic plant communities in least-

impacted conditions may be useful to protect them. We inventoried macrophyte communities and 

collected chemical, climatic and morphological data from 89 least-impacted SSL widely distributed 

in France. SSL were sampled across four climatic ecoregions, various geologies and elevations. Hi-

erarchical cluster analysis showed a clear separation of four macrophyte assemblages strongly as-

sociated with mineralisation. Determinant factors identified by db-RDA analysis are, in order of 

importance, geology, distance from source (DIS, a proxy for connectivity with river hydrosystems), 

surface area, climate and hydroperiod (water permanency). Surprisingly, at country-wide scale, cli-

mate and hydroperiod filter macrophyte composition weakly. Geology and DIS are the major de-

terminants of community composition, whereas surface area determines floristic richness. DIS is 

identified as determinant in freshwater lentic ecosystems for the first time. 
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tude; hydroperiod 

 

1. Introduction 

Human activities such as fish stocking, impoundment or mineral extraction have in-

duced the creation of numerous Small Shallow Lakes (hereafter SSL) [1,2], which are the 

most abundant freshwater ecosystems on Earth [3]. The term SSL includes both man-

made and natural waterbodies. The mean depth of SSL in temperate regions is less than 

3 m, but can reach 7m [4], and their surface area ranges from 1 m² to 100 ha [5]. SSL can 

be largely colonized by macrophytes and do not have persistent stratification for long 

periods in summer [6]. Obviously, intense sediment-water interaction and the poten-

tially large impact of aquatic vegetation make the functioning of SSL different from that 

of their deeper counterparts [7]. 

SSL provide many economically valuable services and long-term benefits to society, 

such as drinking-water supply, irrigation and aquaculture, and are often used for differ-

ent types of recreation, such as angling, boating and swimming, or are built for amenity 

value [8]. They provide habitats for rich and distinct aquatic fauna and flora [9], and also 

contribute to the preservation of terrestrial biodiversity, such as birds or bats, by provid-

ing habitat or food [10,11]. SSL play a role in regional carbon processing, burial in sedi-

ments and the emission of natural greenhouse gases [12] and are useful for carbon se-

questration [13]. They retain part of watershed nutrients and contaminants [14,15] and 
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influence river hydrology and hydromorphology [16]. Despite their economic im-

portance and conservation value, SSL are largely neglected by the scientific community 

[17,18]. In particular, SSL remain little studied in many European countries, including 

France, although pond loss has reached 90% in many regions [19], due to agricultural 

intensification, urbanisation and, probably, global warming [20,21]. Human pressures on 

freshwater ecosystems are increasing, through eutrophication and climate change [22] or 

by the introduction of exotic or native species [23]. Indeed, climatic disruption induces 

changes in stratification and mixing regime that could increase the frequency of harmful 

algal blooms, favouring cyanobacteria and altering nutrients and light availability [24]. 

Furthermore, extensive nutrients loading increases phytoplankton and periphyton 

growth, increasing turbidity and limiting access to light for macrophytes [25]. When a 

critical level of turbidity is exceeded, submerged macrophytes disappear, producing 

shifts from clear to turbid states [26].  

The decline of macrophyte beds in these freshwater ecosystems induces a reduction in 

biodiversity and has a negative impact on their function since macrophytes play a key 

role in SSL. In their pristine state, many SSL are characterized by clear waters with abun-

dant submerged vegetation. Macrophytes have a positive feedback on transparency, 

maintaining clear-water conditions through (1) competition with microalgae and excre-

tion of allelochemicals, (2) providing habitats and refuges from fish predation for zoo-

plankton and invertebrates, (3) providing habitat for piscivorous fish, limiting zooplank-

tivorous fishes [27]. Macrophytes also provide habitat for numerous other living organ-

isms, such as periphyton [28,29], water birds [30] and amphibians [31]. As primary pro-

ducers, they often dominate the production of organic matter, absorbing nutrients, ions 

and aerial carbon dioxide [32]. Finally, they also strongly attenuate light and wind-

driven turbulence, and separate warm surface water and colder bottom waters [33]. 

In Europe, most studies on the structure and composition of aquatic plant communities 

have been conducted in Central, Northern or Mediterranean countries, within an area 

defined by homogeneous climatic conditions [34]. The aim of this study is to identify the 

environmental drivers of aquatic macrophyte assemblages in French least-impacted SSL. 

France is characterized by four of the five European climatic ecoregions and by a high 

altitudinal gradient. The hydrogeochemistry of SSL in France also varies quite substan-

tially, from mountainous resistant rocks to regions dominated by low-lying alluvial de-

posits. SSL can be found on non-calcareous and calcareous sandy deposits, in bogs and 

on calcareous bedrocks. The baseline hydrogeochemical conditions play a fundamental 

underlying role in regulating the diversity of macrophyte communities [35].  

The target waterbodies of this study occupy a wide range of environmental conditions 

(altitude, climate, geology), although the latitudinal range is relatively small. Our first 

hypothesis is that the main driver of aquatic plant communities and richness is the bio-

geochemistry of these lakes and in particular the mineralization (water mineral content), 

because nutrient concentrations are generally low in least-impacted conditions. In partic-

ular, we expected a lower richness in non-calcareous lakes because such lakes may sup-

port only carbon-limited species. Our second hypothesis is that the distribution is also 

explained by climatic gradient, because temperature is a determinant factor for macro-

phyte metabolism [36]. 

2. Materials and Methods 

2.1. Site Selection 

We selected 89 SSL ranging from 3 to 3340 m above sea level (asl), differing in their geol-

ogy (calcareous to siliceous), substrate type (sand, clay, rock), water supply (rainfall, 

groundwater, river flow) and surface area (from 1 m² to 41.4 ha). These SSL included both 

permanent, semi-permanent (dry only exceptionally, in drought years) and temporary 
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waters [37]. They were selected from four different biogeographical regions: Alpine, Med-

iterranean, Continental and Atlantic (Figure 1). They were of natural origin (glacial, allu-

vial ...) or the result of human activity. SSL which were characterized by shading equal to, 

or higher than, 75% were not included in the analysis, because of their very low floristic 

richness [38]. 

 

 

Figure 1. Localization of the sampling sites. 

2.2. Environmental data 

The size, altitude, average depth (estimated), maximum depth, shoreline index [39] 

and % shading were noted for each sampling site, whereas other factors were coded into 

four or five classes: slope of banks (class 1: <5%; 2: 5%-25%; 3: 25%-50%; 4:50%-75%; 5: 

>75%) and hydroperiod (0: Permanent waters; 1: exceptional pluri-annual droughts; 2: 

short annual droughts; 3: long annual droughts). Distance from source (DIS), was meas-

ured using French National Geography Institute topographic maps; this is a proxy for the 

degree of connectivity between the SSL and a river hydrosystem [40]. If DIS = 0, the SSL 

was outside a river floodplain. If DIS > 0, the SSL is crossed by a river or located in its 

floodplain. Where the SSL was itself a source, DIS = length of the longest distance from 

the banks to the SSL outlet. Where the SSL was a river impoundment, DIS = length from 

the source of the river to the SLL outlet. Where the SSL was on a river floodplain, DIS = 

length from the source to the perpendicular formed by the line between the river and the 

SSL. So, higher values of DIS denote connections with a larger river. Climatic factors (e.g. 

mean annual air temperature, mean annual air temperature amplitude, mean annual pre-

cipitation) were extracted from an INRAE reanalysis [41] of the SAFRAN/France database 

[42] for the years 2010-2016, with a grid size of 5 km. 

We collected water and sediment samples once only, in the winter following the mac-

rophyte surveys when biological activity is lower and the concentration of inorganic nu-

trients is potentially the highest [43]. The water and sediments were sampled at the deep-

est point of the waterbody, with the exception of the impoundments. In this last case, three 

sediment samples were taken along an upstream-downstream gradient and were mixed 
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to form a single aggregate sample. The top centimeters of sediment were sampled with a 

sediment corer or with an Ekman grab, depending on the water depth. pH, conductivity 

and water color were measured directly in the water column with probes (Multi-parame-

ter WTW 3430, WTW 3630, Hydrolab, YSI, Exo3 for the usual parameters, and Lovibond 

MD100 for water color). Additional chemical parameters (Kjeldhal N, ammonium, nitrite, 

nitrates, Total Phosphorus, Soluble Reactive Phosphorus, calcium, alkalinity) were ana-

lyzed from the water, whereas Kjeldhal N, Total Phosphorus, Soluble Reactive Phospho-

rus, organic carbon, loss on ignition were analyzed from the sediment samples according 

to French norms by an accredited laboratory. 

2.3. Macrophyte community 

Macrophytes were studied during the period of vegetation growth from 2013 to 2018. 

We sampled all sites at least once. All macrophytes were surveyed according to a newly-

adapted method from the French standard method XPT90-328 [44] and the PSYM protocol 

[45]. Terrestrial plants and wetland plants growing outside the outer edge of the water-

bodies were not recorded. The vegetation abundance was assessed using the XPT90-328 

classes (class 1: few individuals; 2: isolated small patches; 3: numerous small patches; 4: 

large discontinuous patches; 5: large continuous patches). Macrophytes at the outer edge 

and the shallow part of the site were surveyed while walking or wading in a zig-zag pat-

tern. Deeper water zones were point-sampled from a boat following a zig-zag pattern with 

a grapnel or a rake. 

Samples such as species of Characeae, Ranunculus subg. Batrachium and mosses 

were kept in alcohol or dried for identification in the laboratory. We identified all macro-

phytes (spermatophytes, bryophytes and Characeae) at species level when it was possible. 

The study of the macrophyte community was realized by calculation of four biodi-

versity indices (taxonomic richness, Shannon-Wiener (1), Pielou’s (2) and Simpson (3) di-

versity indices) [46]. The Shannon and Simpson diversity indices are the most widely used 

indices based on species richness, and provide a synthetic image of richness and species 

distribution. The Simpson and Pielou’s indices are independent of species richness, and 

depend solely on species distribution [47]. 

 

𝐻′  =  − ∑ 𝑝𝑖
𝑆
𝑖 =1 log2 𝑝𝑖, (1) 

 J =
H'

logS
, (2) 

  D1 =  1- ∑ pi
2S

i =1 , (3) 

 

 

where pi is the proportion of species i, and S is the number of species. 

 

2.4. Data analysis 

For multivariate analysis, taxa found at one station only were discarded. Singleton 

macrophyte species were removed to prevent random and uninterpretable fluctuations 

and only taxa identified at species level were retained in the analysis. 

Square-rooted Bray-Curtis dissimilarity was calculated for the abundance-based tax-

onomic matrix. The dissimilarity matrix was then subjected to a hierarchical cluster anal-

ysis using Ward’s minimum variance method, which seeks to define well-delimited 

groups by minimizing within-group sum of squares [48]. 

Community groups were then determined by comparing the distance matrix ob-

tained with dendrogram and binary matrices representing partitions [49]. A category label 

(Soft-Water, Soft-Water Marginal, Mixed and Calcareous) was attributed to each 
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community group in accordance with the boundaries of the physico-chemical conditions. 

Strictly-defined Soft-Water lakes are those with Ca < 3 mg/L, with very low alkalinity, 

whereas soft-water-marginal lakes are characterized by Ca c10 -15 mg/L, and higher pH 

[35]. Calcareous lakes are those with Ca > 20 mg/L and alkalinity > 1 meq/L [50]. 

Finally, indicator species for each group were identified using the indicspecies pack-

age [51,52]. 

IndVal is a measure of association between a taxon and a group of stations and is 

calculated as the product of specificity (mean biomass of a given taxon within one group 

compared to other groups) and fidelity (taxon occurrence at stations belonging to a 

group). IndVal is maximal (= 100%) when a given taxon is observed at all stations of one 

community group only and in none of the other groups. 

Relationships between environmental factors and groups were explored using pair-

wise comparisons with Dunn’s tests and boxplots for groups with significant shifts. 

Major environmental determinants for macrophyte abundance-based taxonomic 

composition and groups were identified with distance-based redundancy analysis (db-

RDA) [53] combined with parametric forward selection [54] and tested by an ANOVA-

like permutation test [55]. 

Correlations between community characteristics and quantitative environmental 

variables were assessed using Spearman rank correlations to investigate the intensity of 

all possible relations following a positive or negative monotonic trend [56]. We used R 

software [57] for statistical analysis and data plotting. Most of the analysis was processed 

with the R Vegan package, except Dunn’s test where the FSA R package was used and 

forward selection, which was conducted with the adespatial R package. 

3. Results 

A total of 183 plant taxa, reduced to 145 after singleton removal, were identified 

across all 89 stations. 

3.1. Community Groups and Environmental Patterns 

Ward clustering analysis resulted in four defined plant community groups (Figure 2, 

Table 1) based on the major variables identified by the Dunn test and db-RDA analysis 

(alkalinity, calcium, pH, Figure 3, Table S1). The complete record of indicator species for 

each group, with fidelity, specificity and indicator values are provided in Table S2. 
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Figure 2. Community group partition. Ward’s minimum variance cluster analysis 

based on Square-rooted Bray-Curtis matrix from abundance-classes taxonomic composi-

tion at 89 sites sampled between 2013-2018. Groups are labelled according to the major 

variables identified by and db-RDA analysis (alkalinity, calcium, pH): calcareous (C), 

mixed (M), soft-water marginal (SW), soft water (S). 
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Table 1. Floristic community groups and their respective median values and standard deviation in parenthesis for taxonomic rich-

ness, calcium (mg/L), alkalinity (meq/L) pH, DIS (distance from the source, km), surface area (m²), altitude (meters above sea level), 

and some best indicator taxa for each group. Complete indicators taxa and corresponding index values (specificity, fidelity, indica-

tor value) are precised Table S6. 

Community group 
N° of 

station 
Richness 

Calcium 

mg/L 

Alkalinity 

Meq/L 
pH 

DIS 

in m 

Surface 

in m² 

Altitude 

in m NGF 
Significant indicator taxa 

Soft-water 23 11 (5) 1.83 (3.25) 0.18 (0.21) 5.9 (0.81) 0 (0.8) 242 (2585) 68 (257) 

Eleocharis multicaulis 

Potamogeton polygonifolius 

Sphagnum auriculatum 

Soft-water-marginal 25 22 (12) 3.7 (16.28) 0.24 (0.91) 7.5 (0.97) 0.4 (22) 9855 (93324) 857 (109) 

Carex rostrata 

Sphagnum fallax 

Ranunculus peltatus 

Mixed 30 22 (9) 31.35 (38.82) 1.85 (1.89) 7.93 (0.62) 5.2 (238) 1975 (23841) 30 (109) 

Phragmites australis 

Leptodyctium riparium 

Potamogeton lucens 

Calcareous 11 9 (4) 63 (24.53) 2.68 (1.17) 8.3 (0.36) 0 (2.8) 195 (2146) 371 (908) 

Juncus articulatus 

Ranunculus trichophyllus 

Chara contraria 

Drepanocladus aduncus 
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Figure 3. Box-plots of environmental variables that were significantly different among the differ-

ent types of communities defined by group partition. S = soft-water, SM = soft-water marginal, M = 

mixed, C = calcareous group. A Dunn’s test revealed significance groups for each variable, repre-

sented by letters a,b,c. 

The first group of stations corresponded to acid (pH = 5.9 ± 0.8) Soft-Water Lakes 

(median [calcium] = 1.83 ± 3.25 mg/L, median alkalinity = 0.18 ± 0.21 meq/L). This group 

pooled together 23 SSL, mostly located at low altitude (<138m asl), with the exception of 

three outliers (around 800m asl). DIS values (median DIS = 0.0 ± 0.8 km) indicated that 

most of these lakes were not connected to a stream. The indicator species were helophytes, 

such as Eleocharis multicaulis, hydrophytes, such as Potamogeton polygonifolius, or 

bryophytes, such as Sphagnum auriculatum (Table 1). The median macrophyte richness was 

low (n = 11 ± 5). 
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The second group of stations corresponded to neutral (median pH = 7.5 ± 0.96) Soft-

Water Marginal Lakes. It comprised 25 SSL. The mineralization level was higher than in 

the Softwater Lake Group (median [calcium] = 3.70 ± 16.28 mg/L, median alkalinity 0.24 ± 

0.91 meq/L). Most of the rare calcareous fens sampled were strongly associated to this 

group, and explained most of the outliers found for calcium, alkalinity, pH and altitude. 

SSL from Group 2 were frequently larger than those of the first group. The DIS values 

(median DIS = 0.4 ± 21.6km) were higher in this group than those of Group 1, because 

most of these SSL were upland lakes located close to the source of a stream. This group 

was defined by numerous helophyte species, such as Carex rostrata or Equisetum fluviatilis, 

by bryophyte species of the Sphagnum Section Cuspidata (mostly S. fallax) and by 

hydrophyte Ranunculus peltatus. It was characterized by a higher median richness (n = 22 

± 12) than that of the first group. 

The third group of stations was the Mixed Group, with slightly alkaline conditions 

(median pH = 7.9 ± 0.6). It was characterized by higher mineralization (median [calcium] 

= 31.35 ± 39.82 mg/L; and alkalinity = 1.85 ± 1.89 meq/L). It grouped together 30 

intermediate-hardwater lakes, located in ancient polders, estuaries or rare geological 

formations, such as limestone lens on siliceous bedrock. The DIS of these sites showed 

wide variation (from 0 to 950 km, with median = 5.2 km). The main indicator species were 

the hydrophyte Potamogeton lucens, the helophyte Phragmites australis and the bryophyte 

Leptodictyum riparium. The median richness was similar to that of Group 2 (n = 22 ± 9). 

The fourth group of stations, called the Calcareous Group, comprised 11 alkaline SSL 

(pH = 8.3 ± 0.36). The group was characterized by its high mineralization level (median 

[calcium] = 63.00 ± 24.52 mg/L; alkalinity = 2.68 ± 1.17 meq/L), DIS was generally low (DIS 

= 0.0 ± 2.8km, but with two outliers). Altitude ranged from 213 to 3340 m asl, with a 

median of 371 m asl. The outlier at 3340 m asl corresponded to a rare calcareous fen with 

low floristic richness. Group 4 was mostly characterized by submerged macrophyte 

species, such as Chara contraria, Ranunculus trichophyllus, mosses, such as Drepanocladus 

aduncus, and by helophyte species such as Juncus articulatus. Species richness was low 

(median n = 9 ± 4). 

 

3.2. Environmental drivers of macrophyte communities 

The db-RDA analysis indicated four determinant axes according to the results of the 

ANOVA-like permutation test (P < 0.001). Two db-RDA biplots, respectively on the 1-2 

axes and 3-4 axes, are illustrated in Figure 4. In these two biplots, macrophyte communi-

ties were significantly influenced by a set of environmental variables that explained a total 

variation of 26.48%, with the first two axes explaining 15.02% and the two later axes con-

tributing 11.46% of the db-RDA analysis. Among the 22 explanatory variables employed 

in the forward selection of the db-RDA model, 10 variables were retained (Table 2). 
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Figure 4. Distance-based redundancy analysis (db-RDA) ordination plots of macrophytes abun-

dance-based taxonomic composition against forward selected environmental variables (black ar-

rows) on 89 stations sampled from 2013 to 2018. (a) = Axis 1 & Axis 2, (b) = Axis 3 & Axis 4. Ex-

plained variance (Pr <0.001) for each axis are indicated in parenthesis at each legend axis. Colors 

and points shape represent the 4 groups defined by cluster partition (soft-water, soft-water mar-

ginal, mixed and calcareous). Area= surface area, DIS = Distance from the source, P = total phos-

phorus in water, T°amplitude = air annual temperature amplitude, T°mean = air mean annual tem-

perature. 
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Table 2. Results of correlations between axes and environmental variables and ANOVA-like per-

mutation test performed on db-RDA computed with macrophytes abundance-based taxonomic 

composition against forward selected environmental variables. Environmental variables are or-

dered according to the F values obtained with the permutation test. Pr(>f) = p.values of the permu-

tation tests. 

Factors Correlation with axes ANOVA test 

 Axis 1 Axis 2 Axis 3 Axis 4 F Pr (>f) 

Ca2+ concentration -0,8 -0,17 0,24 0.09 2.51 0.002 

pH -0,76 0,20 -0,05 0.04 1.67 0.028 

Alkalinity -0,79 -0,14 0,20 0.11 1.52 0.063 

Distance from source -0,41 -0,28 -0,40 -0.31 2.73 0.001 

Total water phosphorus -0,18 -0,20 -0,17 -0.17 2.20 0.004 

Altitude -0,03 0,87 0,08 0.10 2.28 0.006 

Air mean temperature 0.10 -0,81 0,11 0.02 2.15 0.004 

Air temperature amplitude -0,18 0,62 0,04 -0.34 1.64 0.045 

Surface area -0,14 -0,01 -0,67 0.11 3.21 0.001 

Mean depth -0,01 0,24 0,33 -0.18 1.42 0.100 

Hydroperiod -0.07 -0.27 0.08 0.37 1.54 0.049 

The db-RDA analysis indicated four determinant axes according to the results of the ANOVA-like 

permutation test (P < 0.001). Two db-RDA biplots, respectively on the 1-2 axes and 3-4 axes, are 

illustrated in Figure 4. In these two biplots, macrophyte communities were significantly 

According to the ANOVA-like permutation test and the correlations test with db-

RDA axes (Table 2), the best explanatory variables were, in order of importance, surface 

area (F = 3.15, P = 0.001), DIS (F = 2.53, P = 0.002), Calcium concentration (F = 2.44, P = 

0.001), altitude (F = 2.21, P = 0.007) and mean annual air temperature (F = 2.14, P = 0.005). 

Alkalinity (r = -0.79), calcium concentration (r = -0.79), pH (r = -0.76) and DIS (r = -0.41) 

were negatively correlated with the first db-RDA axis. Altitude (r = 0.88) and air 

temperature amplitude (r = 0.62) were positively correlated with the second db-RDA axis, 

whereas mean annual air temperature (r = -0.77) was negatively correlated with this 

second axis. Surface area (r = -0.68) and air temperature amplitude (r = -0.44) were 

negatively correlated with the third db-RDA axis, and hydroperiod (r = 0.37) with the 

fourth db-RDA axis. Total phosphorus was weakly correlated with the fourth db-RDA 

axis but showed a strong correlation with DIS (r = 0.70). Finally, mean depth was weakly 

correlated with the third db-RDA axis, and a moderate correlation with surface area (r = 

0.46) was established. However, the influence of mean depth was not significant (P = 

0.077). 

3.3. Community characteristics: biological and environmental links 

Floristic richness (Figure 5) was positively correlated with the Shannon H’ and Simp-

son D1 indices (r = 1 and r = 0.99, respectively). The Shannon H’ and Simpson D1 indices 

were perfectly correlated (r = 1). Pielou’s J was not strongly correlated with any commu-

nity characteristics nor with any environmental variables (best correlation r = -0.58 with 

Simpson D1) (Table S3). 

Among the relationships tested with environmental variables, Floristic Richness and 

Shannon H’ index were strongly positively correlated with surface area (respectively, r = 

0.73, r = 0.73) and perimeter (r = 0.74, r = 0.74, respectively). Simpson D1 index was strongly 

negatively correlated with surface area, r = -0.74) and perimeter (r = -0.74). 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 December 2020                   doi:10.20944/preprints202012.0617.v1

https://doi.org/10.20944/preprints202012.0617.v1


 

 

 
Figure 5. Relationships between surface area of each SSL and (a) floristic richness, (b) 

Shannon diversity index, (c) Simpson diversity index. Community groups (soft-water, 

soft-water marginal, mixed and calcareous) are indicated. 

4. Discussion 

4.1. Drivers of Aquatic Plant Community Composition 
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Our results suggest that mineralization (i.e. alkalinity, calcium concentration) may 

have a stronger influence than climate on plant distribution and on their abundance. The 

influence of alkalinity on macrophyte species originates from their varying ability to use 

bicarbonate or carbon dioxide as a source of carbon in photosynthesis [58]. For the first 

time DIS was found to be among the best explanatory variables for aquatic community 

composition. DIS is a proxy for connectivity between SSL and river hydrosystems. Being 

close to a source (DIS close to 0) indicates that SSL are more isolated and have a water 

chemistry mostly influenced by geology. Increasing values of DIS indicates increased in-

puts from the catchment area and a higher chance of an SSL receiving propagules. 

The influence of regional, spatial and environmental drivers can vary according to 

geographic region [59]. Continental France is subject to highly heterogenous climatic con-

ditions in a very small area (less than 600 000 km²), excluding most of the influence of 

latitude, which may have strong effects on macrophyte communities [60]. Climate and 

altitude seem to have a marginal influence on macrophyte community composition, e.g. 

filtering some species that are especially adapted to high elevations, such as Philonotis se-

riata, or endemic species, such as Caropsis verticillato-inundata in the South-West lowlands. 

Hydroperiod is another driver highlighted by our results. This factor influenced flo-

ristic composition, affecting hydrophyte species [61] and favouring therophyte species, or 

species adapted to drought or frequent water level fluctuations, such as helophytes. Hel-

ophytes are related to hydroperiod. Their adaptations can explain their distribution in the 

four groups of plants. Water fluctuations imply a discontinuity of the habitat conditions 

suitable for aquatic plant species, for shorter or longer periods, and induced stress for 

most aquatic plants, whereas helophytes are well-adapted to these conditions.  

The influences of hydroperiod can be observed in our dataset through species with 

strong affinities with temporary systems, such as the occurrence of Sphagnum inundatum 

in the Soft-Water SSL or Calliergonella cuspidata in the Mixed SSL. 

4.2. Drivers of macrophyte species richness 

Contrary to what was predicted, richness was not correlated with calcium concentra-

tion nor with alkalinity. This result is surprising because other studies have found 

[e.g.35,62,63] a major effect of alkalinity and correlated chemical parameters on macro-

phyte richness in varying regions. We also expected to find higher macrophyte richness 

in Calcareous SSL than in Soft-Water SSL. Soft-Water Stations (Group 1) had moderate 

richness (n = 11). The highest richness was observed in the Soft-Water Marginal Lakes 

(Group 2: n = 22) and in the Mixed Group (Group 3: n = 22). If we have established that 

Soft-Water Marginal Lakes are richer in species than Soft-Water or Calcareous SSL (Group 

2 versus Groups 1 and 4), this is clearly linked to the higher surface area of the lakes. The 

richness in Group 3 (Mixed) could be explained by the presence of some large sites. In 

contrast, the Calcareous Group (Group 4) had the lowest richness (n = 9). Most of the larger 

calcareous lakes in France, and more broadly in Europe, are impacted [50]. In our study, 

most of the Calcareous SSL were small, with calcareous rocky substrata, factors which do 

not favour the establishment of numerous plants and lead to low floristic richness. 

Water fluctuation was not found to be an important predictor of floristic richness. 

These results were surprising, since moderate water level fluctuations may increase flo-

ristic richness [64], and severe droughts may also reduce it [65]. The effects of water fluc-

tuation in the investigated SSL are unclear, because (1) most of the temporary SSL were 

very small, making it difficult to disentangle the influence of surface area from that of 

hydroperiod, (2) water level fluctuations were not monitored accurately. 

Thus, our first hypothesis was only partially validated. Floristic richness appears to 

be influenced mostly by surface area. Lack of evidence of the influence of alkalinity may 

be explained by the dominance in SSL of helophytes species, which are less sensitive to 

carbon dioxide availability. 

Similarly to the case of alkalinity, the influence of nutrients on macrophyte commu-

nity richness is well-known [36]. Nitrogen concentrations may be negatively correlated 
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with macrophyte richness [66]. The response of macrophyte richness to total phosphorus 

is frequently unimodal, decreasing [62] or increasing with eutrophication [67], which is 

probably hiding a more general hump-shaped relationship (low richness in oligotrophic, 

high richness in mesotrophic, and low richness in hypereutrophic lakes) [68]. These rela-

tions can also vary across regions or contexts [69] and macrophyte growth-forms [63]. Our 

results showed no correlation between total phosphorus and macrophyte species richness, 

probably due to the low phosphorus concentrations found in most of our SSL. 

Contrary to our second hypothesis, we did not establish a correlation between 

aquatic plant richness and climate (neither with mean annual temperature nor with ele-

vation). Several studies have demonstrated a linear decrease or negative correlation of 

macrophyte species richness with altitude [63,70,71], probably depending on the strength 

of elevational gradient [72]. However, some other studies failed to demonstrate a clear 

pattern between floristic richness and altitude [34,73]. The generality of a decrease in spe-

cies richness with elevation has been more and more criticized [74]. The decrease is not 

necessarily uniform, nor similar for all groups of organisms. Indeed, Rahbek [75] showed 

that a decrease in species richness was not the rule and that approximately half of the 

studies had a mid-elevation peak in species richness, because mountains may represent 

an attractive ecosystem for certain organisms. There are several environmental constraints 

that change with elevation [76]: those directly linked to the physical elevation above sea 

level (e.g. temperature, oxygen) and those determined by local characteristics (e.g. geol-

ogy, land use). Confounding the former with the latter introduces confusion into studies 

of elevational gradients. The floristic richness of our high-altitude SSL was sometimes 

lower than the richness in other SSL, but some sites had levels of floristic richness that 

were similar to those observed at mid- or low-altitudes. Differences in macrophyte species 

richness between high altitude SSL probably reflect morphological features of the lakes 

(steep slopes versus flat banks; depth, type of substrate) more than climatic limitations 

[77]. 

We found a strong positive correlation between macrophyte species richness and sur-

face area. Relationships between surface area and floristic richness are generally accepted 

[34,78]. For example, macrophyte species richness has been found to respond positively 

to increasing surface area in Norway [64], in Finland and in Minnesota [63] or in the study 

by Rørslett [62] in North Europe. Some conflicting results [79,80] were obtained in studies 

that were not focused on least-impacted sites. Disturbance such as eutrophication and 

stress, well known as factors reducing floristic richness [45], could explain the contrasting 

results in richness-area relationships. Another possible cause of confusion is the con-

trasting responses of particular floristic groups in SSL, with helophyte richness clearly 

being sensitive to surface area but not hydrophyte richness, because the hydrophyte spe-

cies pool would be too small in SSL, and the deepest zones and bottom sediments of larger 

SLL are frequently unfavourable to hydrophytes [64]. 

5. Conclusions 

To conclude, our study highlights that factors influencing macrophyte abundance 

and composition in French least-impacted conditions are mainly geology and DIS, which 

determine Soft-Water, Mixed and Calcareous communities. In particular, DIS separates 

most of the Mixed communities from the Soft-Water or Calcareous Groups. DIS is also an 

indication of a major connectivity pattern. However, our findings suggest that minerali-

zation and, to a lesser extent, total phosphorus concentrations were determinant variables 

of SSL macrophyte community composition, but not of their richness, which is mostly 

correlated with surface area. Finally, climate and hydroperiod marginally filter macro-

phyte composition. The drivers of aquatic plant community composition differed from 

the drivers of aquatic plant richness in least-impacted small lakes. Contrary to Edvardsen 

& Økland [64], who suggested aquatic communities in SLL are unpredictable, we expect 

that the combination of geology and DIS may be useful in predicting floristic composition. 

Stochastic events determining macrophyte composition, in particular randomness in 
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dispersal and establishment success, might be largely compensated by a generalized dis-

persal pattern, where macrophyte dispersal originates from the nearest river hydrosys-

tem, a parameter represented by DIS. On the other hand, global optimal floristic richness 

could be predicted with high reliability from surface area. 
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